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The steel- t     eeming time, directly affected by the output parameters of power supply, is one of the most important 
technical indicators for the electromagnetic steel-teeming system. The location and thickness of the blo  cki  ng layer 
in the mol  ten steel c  hannel directly affect the steel-teeming time. This paper establi  shes numerical simulation mod-
el and uses hi  gh temperature off-line test to prove the accuracy of numerical simulation. Result shows: As the ton-
nage increase of ladle, the posi  tion and thickness of blocking layer   are basically unchanged; As the length of molten 
steel channel extends, the pos   iti  on of bloc  king layer shift upper and thicker; As th  e   diameter of molten     steel chan-
nel extends, the blo  cking layer is lower and thinner slight; Comparing the molten steel channel in “horn” shape with 
cylindrical shape, the blocking layer of former is upper and thicker than the latter.
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INTRODUCTION

The steel-teeming system is an important part to en-
sure the normal operation of continuous casting [1, 2]. 
However, there are several defects in traditional steel-
teeming process [3, 4]. For example, the stee   l-teeming 
rate is relatively low which cannot achieve 100 % dur-
ing traditional process. The stuffing sand filled in the 
brick nozzle which will cause pollution to the molten 
steel and so on [5, 6]. Based on  these studies, He et al[7, 
8]. began to study electromagnetic teeming system in 
order to solve these problems [9, 10]. Electromagnetic 
steel-teeming system uses electromagnetic induction 
heating technology in the following way, a certain 
amount of Fe-C alloy is added to the nozzle brick short-
ly before the ladle is filled with liquid steel. These links 
utilizes the heat of liquid steel to enable the Fe-C alloy 
to form a certain of thickness blocking layer. When the 
casting begins, electromagnetic induction heating tech-
nology will be applied to melt the edge of the blocking 
layer to complete the steel teeming process.

Steel-te  eming time is one of the most important 
technical indicators in metallurgical industry. The loca-
tion and thickness of blocking     layer will affect the steel-
te  eming time directly. If the bloc  king layer is formed in 
the most effective induction heating area, the steel-
te  eming time will be reduced. Therefore, in order to 
shorten the steel-teeming time, we need to study the rel-
evant factors which influence the position and thickness 
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of the blocking layer (including molten steel channel’s 
ladle tonnage, diameter, length and shape) and also ob-
tain the rules of these factors.

NUMERIC AL SIMULATION

Model

As Figure 1   shows, a three-dimensional finite ele-
ment analytic model of the molten steel channel in the 
nozzle brick of a 110 / t steel ladle of a certain steel mill 
was developed. To clearly observe the position and 
thickness of the blocking layer, the meshes around the 
molten  steel channel were refined. Previous works [11, 
12] have given the heat conductivity (24,02 / W/m/k) 
and enthalpy (1 350 / J/kg/k) of an Fe-C alloy changing 
with temperature.

Basic assumption

In the simulation, the following basic assumptions 
are made according to the characteristics of the experi-
ment.

Figure 1 Three-dimensional model and mesh generation
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Neglect heat dissipation of the blocking   layer. And 
neglect corrosion of the lining material of the nozzle 
brick, thus deeming its compositions constant.

Boundary condition

The molten steel temperature is taken as 1 600 / ℃, 
and that of the Fe-C alloy in the molten steel channel as 
1 100 /℃. We note that in practical working conditions, 
the temperature of the blocking l  ayer in the nozzle brick 
is about 1 100 /℃. Further, these temperatures remain 
unchanged.

In the actual production process, the heat transfer 
time of the molten steel and Fe-C alloy is about 90 /min 
for the entire process from steel teeming to casting. 
Therefore, the total time of the simulation is set as 90 /
min. The physical parameters of the stacked granular 
Fe-C alloy, including heat conductivity, specific heat, 
and density, are modified according to the experimental 
data.

The length of the molten steel channel is 515 / mm, 
the diameter is 110 / mm.

Theoretical foundation

The heat transfer control equation：
 

 (1)

Where T is temperature / °C, ρ is steel density / kg/
m3, λ is thermal conductivity / W/m/°C, c is specific 
heat / J/kg/K.

ANALYSIS AND DISCUSSION ON 

EXPERIMENT RESULT 

Experiment process

As Figure 2 shows, the   nozzle brick was enclo   sed in 
the heating chamber. First, stop heating and take out the 
sliding plate of nozzle brick so that the Fe-C alloy par-
ticles in the original layer can fall off by gravity. Sec-
ond, the molten s  teel is poured out from the upper sur-

face of the nozzle brick. Measure    the height from the 
upper surface of the nozzle brick to the blocking layer 
and then pour out the blocking to measure its thickness. 
This experimental time is about 90 minutes according 
to the technological requirements of a steel mill. During 
  the experiment, the combinations of physic  al parame-
ters of Fe-C alloy are shown as follow: particle size is 
2,0 / mm, shape is cylindrical. The output frequency of 
power supply is 35,3 / kHz, the out  put current is 152,9 / 
A, and the output power is 40,1 / kW. The simulation 
and experimental resul ts are shown in Table 1.

Table 1 Numerical simulation and  experimental results

blocking layer
distance from the surface 

of nozzle block / mm
Thickness / mm

experiment 155,4 128,7
numerical simulation 156,3 128,5

As the Table 1 shows, numerical simulation and 
high-temperature offline test, for which the values are 
almost no difference, showing good conformity.

Simulation result

 Influence of ladle tonnage on   blocking layer  

In order to investigate the influence of steel-teeming 
time with different tonnage of ladle which the corre-
sponding   blocking layer changes Select the tonnage of 
ladle from commonly used in steel mill: 90 / t, 110 / t, 
260 / t and 300 / t  as the research object. In this paper 
select the same Fe-C alloy’s physical parameters (mate-
rial is 10#steel, shape is cylindrical, granularity is 2,0 / 
mm), the rest of the boundary condition and the param-
eter values are the same with model above. According 
to the calculation results, the location and thickness of 
the 90 t steel blocking layer are shown in Figure 3. The 
position and thickness of the blocking layers of 90 / t, 
110 / t, 260 / t and 300 / t ladle are obtained by the same 

Figure 2 High temperatur e off-line device
Figure 3  Temperature distributions of blocking layer for ladle 

(90 / t)
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method as shown in   Figure 4. (The calculation of other 
schemes is similar to that of this scheme, so it will not 
be explained in detail.)

A    s Figure 4 shows that the position and thickness of 
the   b locking layer are basically unchanged as the ton-
nage of the steel package increases. 

The main reason for this phenomenon is th e heat-
transfer rate between objects is mainly influenced by the 
temperature gradient between objects and the coefficient 
of heat transfer between objects. And the initial tempera-
ture of different tonnage ladles is the same, which is basi-
cally the same as that of Fe-C alloy in the molten steel 
channel. Second, the cross-sectional area of the molten 
steel channel is a constant. The material between the 
molten steel and the upper surface of the bl    ocking layer is 
unchanged, so that the coefficient of heat transfer re-
mains unchanged. Therefore, the position and thickness 
of the blocking layer is basically unchanged.

In fluence of mo  lten steel 

channel’s diameter on blocking layer

Se  lect 70 / mm, 90 / mm and 110 / mm are selected 
as study objects. Finally, the location and thickness of 
blocking layer is obtained as   Figure 5 shows.

As  Figure 5 shows, with the increase of mol   ten steel 
channel’s diameter, the blo  cking layer becomes lo  w er 
and thinner slightly.

The    main reason for the phenomenon is that with the 
increase of molten steel channel’s diameter, heat-trans-
fer rate which is above blocking layer has increased. 
This will make the blo  cking layer abs  orb more quantity 
of heat and tends to be lower and thinner. However, due 
to the increase the   mo  lten steel channel’s diameter, the 
amount of Fe-C alloy added in the molten steel channel 
is also increased. And more heat is needed, which leads 
to the bl  ocking layer become upper and thicker. But the 
heat-transfer rate is a little faster than that of Fe-C alloy 
absorbs heat. And the effect of both on blo cking layer is 
opposite, with the increase of the molten steel channel’s 
diameter, the blocking layer moves lower and thinner 
slightly.

Inf  luence of molten steel channel’s len  gth 

on blocking layer

Sel  ect 420 / mm, 520 / mm, 620 / mm as   study ob-
jects. Finally, the location and thickness of blocking 
layer is obtained as Figure 6 shows.

As Figure 6 shows, with the increase of molten   steel 
channel’s lengths, the block  ing layer becomes upper 
and thicker slightly.

The main reason for the phenomenon is that with the 
increase of molte n   steel channel’s diameter, heat-t rans-
fer rate which is above blocking layer has increased. 
This will make the blocking layer absorb more quantity 
of heat and tends to be lower and thinner. Due to the ef-
fect of heat-transfer, the high temperature region will 
transfer heat to the low temperature continually. The 
longer molten  steel channel, the mo  re Fe-C alloy filled 
into the molten steel channel. So the lower surface of 
blocking layer will absorb more heat than shorter one. 
These will make the temperature of Fe-C alloy in whole 
molten    steel channel decrease. As a result, the blocking 
layer will move u  pper and thicker comparing with short 
molten steel channel.

Figure 4  The location and thickness of blocking layer under 
different molten steel channel’s tonnage

Figure 5  The location and thickness of   blocking layer under 
different mol  ten steel channel’s diameter

Figure   6  The temperature distribution of the location and 
thickness for blocking layer under different molten 
steel channel length
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Influe  nce of molten steel channel’s shape on 

blocking layer

Select cylindrical shape and horn shape are as study 
objects. Temperature distributions of the blocking layer 
with “horn” shape as Figure 7 shows. The location and 
thickness of blocki ng layer is obtained as Fig  ure 8 
shows.

As Figure 8 shows, the “horn” shape of    the blocking 
layer has a slight upward trend and thicker compared 
with that of the cylindri  cal shape. The main reason for 
this phenomenon is that comparing with cylindri    cal 
shape, the “horn” shape of molten s   teel channel   needs 
to add more Fe-C alloy, and absorbs more heat from the 
molten steel channel. The lower surface of blocking 
layer will absorb more heat than that of cylindrical 
shape. These will make the temperature of Fe-C alloy in 
whole molten steel channel decrease. As a result, the 
blocking layer will move upper and thicker comparing 
with cylindrical shape of molten steel channel.

CONCLUSION

As the tonnage increase of ladle, the position and 
thickness of blocking layer are basically unchanged. 

As the length of molten steel channel extends the 
position of blocking layer shift upward a slight; and a 
slight increase in thickness.

As the diameter of molten steel channel extends, the 
blocking layer is slightly has an upward trend and in-
creases slightly.

Compare the molten steel channel in “horn” shape 
with cylindrical shape. The blocking layer of former is 
upper and thicker than the latter.
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Figur  e 7  Temperature distributions of the blocking layer with 
“horn” shape

Figur   e 8  The location and thickness for blocking layer under 
different molten steel channel’s shapes




