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Summary 

The assessment of hydrodynamic characteristics of a screw propeller in open water test 

is of crucial significance in the preliminary design stage of a ship. The open water 

characteristics can be accurately predicted by towing tank measurements. Taking into account 

the significant advances in computational fluid dynamics which has enabled the numerical 

assessment of the open water characteristics, the time and the cost of propeller design are 

significantly reduced. Open water characteristics can be assessed numerically using potential 

and viscous flow theory. The former one allows faster and simpler preliminary determination 

of open water characteristics. Within this paper, numerical simulations are performed for 

Gawn series propellers utilizing open source code OpenProp based on the moderately loaded 

lifting line theory and commercial software package STAR-CCM+ based on viscous flow 

theory. The latter one is more time consuming regarding the time required for the preparation 

of simulation as well as computational time. The obtained numerical results are compared 

with regression polynomials based on the experimental data. The validation of the results has 

pointed out that OpenProp can be used as practical and efficient tool in preliminary design of 

screw propellers. 

Key words: screw propeller; open water test; potential flow theory; viscous flow theory 

1. Introduction 

The most important phase in the design of a screw propeller is the preliminary design 

phase during which the geometry of the screw propeller is chosen, in order to ensure the 

required thrust at a certain ship speed. Nowadays, the hydrodynamic characteristics of a screw 

propeller are most commonly determined utilizing experimental methods, i.e. open water test 

(OWT) is performed [1]. In the past different approaches based on the potential flow theory 

have been developed for modelling of the flow around a screw propeller. Numerical methods 

for the determination of the hydrodynamic characteristics of a screw propeller are according 

to the order of complexity [2]: momentum theory, lifting line method, lifting-surface method, 

Boundary Element Method (BEM) or panel method and Reynolds Averaged Navier-Stokes 
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(RANS) equations. Numerical simulations based on the potential flow theory provide a rapid 

estimation of the hydrodynamic characteristics of a screw propeller in OWT and therefore are 

of great benefit to ship designers. The lifting line method is the fastest and easiest to apply, as 

it does not require a complex preparation of the three-dimensional representation of a screw 

propeller. Because of its computational efficiency, it has been a key factor for a number of 

years in the preliminary design of a screw propeller [3]. On the other hand, methods for the 

determination of the hydrodynamic characteristics of a screw propeller based on the viscous 

flow theory are used as well. With the development of computers in last years these methods 

have taken an increasingly important role in screw hydrodynamics. 

The possibilities of improving the geometry of a screw propeller at the preliminary design 

stage using methods based on the potential flow theory are presented in [4]. Validation of the 

results was performed on DTMB 4119 and DTMB 4381 screw propellers for which the 

experimental data were available. The proposed method showed that the geometry of the 

DTMB 4119 screw propeller was optimal. Furthermore, geometric improvements had been 

achieved by the rearrangement of the pitch along the blade of a screw propeller by applying 

the same method for the DTMB 4381 screw propeller. In this way, a more favorable 

distribution of circulation along the blades of a screw propeller was achieved. Gaggero et al. 

[5] have performed the geometry optimization of the Contracted and Tip Loaded (CLT) 

propeller using BEM. The reliability of the design method and achieved improvements in the 

screw propeller geometry had been validated by extensive RANS calculations. The authors 

also performed unsteady calculations using unsteady BEM to obtain amplitudes of induced 

pressure impulses. The obtained results were compared with the available measurements and 

with results for the geometry of original CLT propeller and the authors confirmed the 

improvements for the new geometry. Bertetta et al. [6] have investigated the influence of the 

cavitation on the noise for a Controlable Pitch Propeller (CPP) outside the operating point 

using BEM. The multiobjective optimization algorithm coupled with BEM led to the 

optimum geometry of CPP for different pitches with the aim of reducing cavitation and noise. 

Outside the operating point of the screw propeller, the new geometry produces less noise and 

less pressure impulses than the original geometry. Lee et al. [7] have proposed an 

optimization code coupled with the lifting-surface method for the design of a screw propeller. 

The method uses a vortex theory to calculate the induced speeds at certain radii of a screw 

propeller. The validation of the results was carried out on DTNSRDC 4119 propeller with a 

homogeneous velocity field as well as on a series of DTNSRDC propellers that had more 

complex geometry. A study of the hydrodynamic characteristics of a screw propeller, 

operating near the free surface, for different advance coefficients and various submergence of 

propeller models was performed in [8]. The impact of the scale effects was evaluated by 

testing two models in different scale. The results of the numerical simulation included the free 

surface pattern, the velocity field around the screw propeller, and the hydrodynamic 

characteristics of the screw propeller. Islam et al. [9] have studied the influence of domain 

size and discretization parameters on the time required to run RANS simulation of OWT in 

the commercial software package STAR-CCM+ as well as their impact on the accuracy of the 

results. Based on the results for 32 different domains for the same screw propeller, the authors 

found the optimum domain dimension and domain discretization parameters utilizing design 

of experiments. The obtained results were validated by comparison with the experimental 

data. Califano and Steen [10] have performed RANS simulations using the commercial 

software package Fluent to investigate the effects of ventilation on the hydrodynamic 
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characteristics of a screw propeller while operating in the heavy sea. The authors concluded 

that predicted dynamic loads utilizing numerical simulations showed satisfactory agreement 

with the experimentally obtained ones, but only at the upright position where the blade is 

piercing the free surface. For the other angular positions the thrust is overestimated. This was 

attributed to the inability of RANS solver to resolve the tip vortex. Furthermore, it was shown 

that the tip vortex had a very important role in the ventilation of conventional propellers, 

which was not a case for surface-piercing propellers. Subhas et al. [11] have carried out a 

numerical simulation of OWT using RANS solver in Fluent for the prediction of the pressure 

field and the velocity around the screw propeller, as well as the cavitation occurrence. The 

comparison of the obtained results with experimental ones showed that Computational Fluid 

Dynamics (CFD) can be used for prediction of the cavitation occurrence. Prakash and Nath 

[12] have performed a numerical simulation of OWT for a four-blade propeller of 

Wageningen B series in Fluent utilizing unstructured grid. The validation of the obtained 

results was performed by comparison with the results obtained using regression polynomials 

which were derived based on experimental results. Krasilnikov et al. [13] have investigated 

the scale effects utilizing RANS simulations with the main focus on the impact of blade skew, 

propeller loading and blade area ratio. Müller et al. [14] have analyzed the impact of the scale 

effects on screw propeller for large container ships. The authors performed the numerical 

simulations of OWT within commercial software package CFX for 23 screw propellers in 

model scale and full-scale. Based on the obtained results, they proposed a scaling method for 

evaluation of OWT characteristics in full-scale. Lee and Paik [15] have performed numerical 

simulations of partially submerged screw propeller under the bollard condition. The authors 

showed that thrust and torque of partially submerged propeller decrease significantly with an 

increase in rate of revolution. In [16], the author has investigated wake characteristics of 

Contra Rotating Propeller (CRP) in OWT and self-propulsion conditions. In addition, Paik 

studied the effect of rudder on wake characteristics in self-propulsion test and concluded that 

the presence of the rudder has no significant influence on wake whereas a significant 

influence on thrust and torque was noticed. Kinaci and Gokce [17] have studied effect of 

propeller on free surface elevations for benchmark Post Panamax ship, Duisburg test case. For 

this purpose, the authors performed numerical simulations of resistance and self-propulsion 

tests. The authors concluded that free surface causes the increase of pressure on the propeller 

and hull stern as well as the efficiency of the propeller. 

In this paper OWT characteristics are studied numerically utilizing lifting line theory and 

RANS. Numerical simulations are performed for five Gawn series propellers with expanded 

area ratio equal to 1.1. Pitch to diameter ratio of propellers with three blades is varied in the 

range from 0.7 to 0.9. The obtained numerical results are compared with regression 

polynomials based on the experimental data. Furthermore, the flow around the screw 

propeller in OWT is analyzed. This paper is organized as follows: Section 2 provides 

governing equations for lifting line and viscous flow theory, while in Section 3 numerical 

setup is given. Section 4 provides the obtained results, while in Section 5 conclusions drawn 

from this research are given. 
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2. Governing equations 

2.1 Lifting line theory 

This subsection presents the theory of moderately loaded lifting line enhanced with vortex 

lattice for computing the induced velocities. Propeller blade is represented by a lifting line, 

with trailing vorticity aligned to the local flow velocity. The induced velocities are computed 

using a vortex lattice theory, with helical trailing vortex filaments shed at discrete stations 

along the blade. The blade itself is modelled as discrete sections, having 2D section properties 

at each radius. Loads are computed by integrating the 2D section loads over the span of the 

blade [18]. 

Using the lifting and viscous forces for infinitely many radial sections along the propeller 

blades, i.e. knowing the dependence of these two forces on the radial position along the 

propeller blades (r) and under the assumption of identical propeller blades, the total thrust and 

torque can be calculated as follows [18]: 

( ) ( ) ( )cos sin d aT e
h

R

i i v i
r

Z F F r = −    (1) 

( ) ( ) ( )cos sin d = + −  
h

R

i i v i
r

Z F F r r aQ e  (2) 

where Z is the number of blades, iF  is the magnitude of lifting force, vF  is the magnitude 

of viscous force, i  is the angle of the resultant inflow velocity ( *V ), 
a

e  is the axial 

direction, hr  is the propeller hub radius and R  is the radius of the propeller. Figure 1 shows 

the forces and velocities acting on the blade section. 

 

Fig. 1  Forces and velocities acting on the blade section, [18] 

 

The magnitudes of lifting and viscous forces can be determined as follows: 

*

iF V=   (3) 
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2

*1

2
v DF V C c=  (4) 

where   is the fluid density, *V  is the total resultant inflow velocity,   is the magnitude 

of circulation, 
DC  is the section drag coefficient and c  is the section chord. The section drag 

coefficient 
DC  is determined by means of charts for known hydrodynamic profile and 

Reynolds number calculated on the basis of the chord length. 

The circulation is computed from 2D lift coefficient, which is given as follows: 

*

2
LC

V c


=  (5) 

A standard propeller vortex lattice model is used to compute the axial and tangential 

induced velocities ( * *,a tu u ). In the vortex lattice formulation, a propeller with Z blades is 

modelled as a single representative radial lifting line, partitioned into M panels. The induced 

velocities are computed at control points on the lifting line at radial locations, by summing the 

velocity induced by each horseshoe vortex as follows: 
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where *

au  and *

tu  are the axial and tangential velocity induced at the certain radial location 

by a unit-strength horseshoe vortex surrounding panel i. 

Lifting line theory does not take into account the induced velocities. Therefore, the vortice 

lattice theory is used for the calculation of the induced velocities, *

au  and *

tu  as follows: 

( ) ( ) ( )* , , , 1a a au m i u m i u m i= − +  (8) 

( ) ( ) ( )* , , , 1t t tu m i u m i u m i= − +  (9) 

where ( ),au m i and ( ),tu m i  are axial and tangential velocities induced at the certain radial 

locations by a unit-strength helical vortex filament at the panel end point with the vector 

direction of the circulation approaching the lifting line by right-hand rule. These components 

are calculated using formulae by Wrench (1957), [18]. 

More details regarding the lifting line theory can be found within [18, 19]. 

2.2 Viscous flow theory 

In this subsection, basic physical laws for the description of the incompressible viscous 

flow along with the equations for Moving Reference Frame (MRF) method are given. 

The law of conservation of mass in differential form is defined as [20]: 



Deni Vlašić, Nastia Degiuli, The preliminary design of a screw propeller 

Andrea Farkas, Ivana Martić by means of computational fluid dynamics 

134 

0i

i

u

x


=


 (10) 

Reynolds-Averaged Navier Stokes equations for incompressible flow are given as [20]: 
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where iu  is the time averaged velocity vector, i ju u   is the Reynolds stress tensor divided 

with  , p  is the time averaged pressure and ij  is defined as follows: 
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 

 
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In order to close an unclosed set of equations (10) and (11), Shear Stress Transport k −  

(SSTKO) turbulence model is introduced. This model includes modification for the influence 

of low Reynolds numbers. SSTKO is an empirical model, where one equation includes 

turbulent kinetic energy ( k ) representing the velocity scale, and the other equation takes into 

account the dissipation rate ( ) representing the length scale. 

Moving Reference Frame (MRF) method is utilized within numerical simulations of 

OWT, which are performed as steady simulations. OWT is carried out for each advance 

coefficient (J), whereby the rate of revolution of a screw propeller is kept constant and 

advance speed is varied. In the case of MRF, the governing equations are solved together with 

additional acceleration terms. The computational domain is divided into stationary and 

rotational part. From the stationary point of view, the absolute velocity and the relative 

velocity are related with the equation: 

0i pi ijk pj ku u r = +  (13) 

where pj  is the angular velocity and kr  is the position vector from the origin of the MRF 

to the center of a control volume.  

The law of conservation of mass and RANS equations in MRF written with relative 

velocity are as follows [21, 22]: 

0
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3. Numerical setup 

In this section numerical setup used within numerical simulations of potential and viscous 

flow around a screw propeller is presented. 
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3.1 Lifting line theory 

Numerical simulations of potential flow are performed within open source code, 

OpenProp. Input data for the simulation are: profiles, chord length and pitch to diameter ratio 

of a screw propeller at different radii and maximum thickness distribution along the blade. In 

Figure 2, three-dimensional representation of the Gawn series propeller obtained from 

OpenProp is shown. 

 

Fig. 2  3D representation of the Gawn series propeller 

 

Geometry of Gawn series propeller is taken from [23]. Gawn series propellers have a 

uniform face pitch, segmental blade sections, constant blade thickness ratio and zero 

skewness. Within OpenProp, a text file is created which contains the position of the segmental 

blade sections in 3D in nondimensional form normalized with D. The shape of the hub is 

assumed to be cylindrical with diameter equal to 0.2 D. Text files are created for five 

propellers with the same expanded area ratio equal to 1.1 and with pitch to diameter ratio in 

the range from 0.7 to 0.9 with step of 0.05. Numerical simulations are performed for a range 

of advance coefficients from 0.1 up to advance coefficient for which the thrust is negative. It 

should be noted that at higher P/D ratios, i.e. for 0.85 and 0.9, at lower advance coefficients 

screw propeller is more loaded. Therefore, for these two propellers, numerical simulations are 

performed from J=0.15 and J=0.2 respectively, since within OpenProp moderately loaded 

lifting line approach is used. Equations (1) and (2) are solved in a discrete form within 

OpenProp. 

3.2 Viscous flow theory 

Numerical simulations of viscous flow are performed within commercial software 

package, STAR-CCM+. Governing equations are discretized using finite volume method, 

which are solved in a segregated manner. All numerical simulations are performed as steady 

simulations for several advance coefficients in range from 0.1 to 0.75 with a step of 0.05. The 

change of advance coefficient is achieved by variation of the inlet velocity, while rate of 

revolution is kept constant. The simulations for each advance coefficient are stopped after 

4000 iterations when residuals drop at least four order of magnitude, i.e. iteration uncertainty 

is negligible, Figure 3. The computational domain, shown in Figure 4, is discretized using 
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unstructured hexahedral mesh with following meshing tools: Prism layer mesher, Trimmer 

and Surface remesher according to the recommendations from [9]. 

 

 

Fig. 3 Residuals plot 

 

 

Fig. 4  Computational domain 

 

Numerical simulations are performed for five Gawn series propellers of same expanded 

area ratio equal to 1.1, which differ in pitch to diameter ratio ranging from 0.7 to 0.9. The 

mesh for all five propellers has around 2.5 million cells. The mesh is refined through entire 

domain within the diameter equal to 1.4 D, and vertically near the propeller in the region 

equal to 1.4 D, as can be seen in Figure 5. The refinement in rotation region can be seen in 

Figure 6. 
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Fig. 5  Mesh refinements 

 

 

Fig. 6  Mesh refinement of rotation region 

 

The special care is given to near wall treatment, where near wall cells are generated taking 

into account that y+
 of the first cell near wall has value above 30, since wall functions are 

applied, Figure 7. It is important to note that underrelaxation factor for velocity is set to 0.5 

and for pressure to 0.1. 

The boundary conditions are applied as follows: velocity inlet for inlet boundary, pressure 

outlet for outlet boundary, slip wall for lateral surface of the cylinder and no slip wall for the 

propeller. 
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Fig. 7  The obtained y+  values at the first cell near wall 

4. Results 

Within this section, the results of OWT obtained utilizing lifting line method and RANS 

equations are presented. Furthermore, the viscous flow around the screw propeller in OWT is 

analysed. The obtained numerical hydrodynamic coefficients in OWT are compared with 

regression polynomials presented in [23], which are obtained from the experimental 

measurements as follows: 

( ) ( )
39

0

1

t us v

T n E

n

K C J P D A A Z
=

=      (16) 

( ) ( )
47

0

1

t us v

Q n E

n

K C J P D A A Z
=

=      (17) 

where ,  ,  ,  ,  nC s t u v  are coefficients given in [23], TK  is the thrust coefficient, P D  is 

the pitch to diameter ratio, 0EA A  is the expanded area ratio and QK  is the torque coefficient. 

The open water efficiency can be calculated as follows: 

O
2π

T

Q

J K

K
 =  (18) 

OWT diagrams obtained utilizing lifting line theory and RANS simulations are compared 

with regression polynomials, Figures 8-12. It can be noticed that satisfactory agreement 

between numerical results obtained using viscous flow theory and regression polynomials is 

achieved. Differences in TK  and 10 QK  obtained using RANS and with regression 

polynomials are relatively low. However, as results for TK  obtained with RANS 

underestimate the solution obtained by regression polynomials and results for 10 QK  obtained 

with RANS overestimate the solution obtained by regression polynomials, the obtained 
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differences in O  are even more pronounced. Results of numerical simulations based on the 

lifting line theory have larger deviations from regression polynomials for thrust and torque 

coefficients at lower values of J. The reason for this is that propeller is more loaded at lower J 

values. Mathematical model in OpenProp uses an assumption of moderately loaded propeller 

blade and thus the radial component of induced velocity is neglected. However, heavily 

loaded propellers have significant value of induced radial velocity and for that reason 

OpenProp can be used for simulations in the range of J where the propeller is moderately 

loaded. Trends of hydrodynamic coefficients obtained with RANS simulations are the same 

as the ones obtained using regression polynomials, while the ones obtained with lifting line 

theory show significant deviations at lower J values. However, in the range of J where 

propeller is moderately loaded, trends of hydrodynamic coefficients obtained with numerical 

simulations based on lifting line theory and regression polynomials are the same. As the most 

of screw propellers operate in the range of J where propeller is moderately loaded, it can be 

concluded that OpenProp can be used for preliminary design of a screw propeller. 

 

Fig. 8  OWT diagram for P/D=0.7 

 

Fig. 9  OWT diagram for P/D=0.75 
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Fig. 10  OWT diagram for P/D=0.8 

 

Fig. 11  OWT diagram for P/D=0.85 

 

Fig.12  OWT diagram for P/D=0.9 
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Tables 1-5 show results of OWT obtained by OpenProp (potential flow), STAR CCM+ 

(RANS) and regression polynomials for different pitch to diameter ratio. 

 

Table 1: OWT results for P/D=0.7 

J KT-EXP KT-CFD KT-OpenProp 10KQ-EXP 10KQ-CFD 10KQ-OpenProp ηO-EXP ηO-CFD ηO-OpenProp 

0.10 0.3428 0.3287 0.2753 0.4242 0.3930 0.3198 0.129 0.133 0.137 

0.15 0.3206 0.3044 0.2585 0.3999 0.3695 0.3088 0.191 0.197 0.200 

0.20 0.2974 0.2787 0.2414 0.3743 0.3449 0.2969 0.253 0.257 0.259 

0.25 0.2735 0.2525 0.2235 0.3475 0.3202 0.2839 0.313 0.314 0.313 

0.30 0.2488 0.2261 0.2052 0.3200 0.2957 0.2701 0.371 0.365 0.363 

0.35 0.2235 0.1996 0.1862 0.2920 0.2711 0.2551 0.426 0.410 0.407 

0.40 0.1978 0.1732 0.1665 0.2638 0.2467 0.2387 0.477 0.447 0.444 

0.45 0.1717 0.1473 0.1460 0.2356 0.2224 0.2208 0.522 0.474 0.473 

0.50 0.1453 0.1224 0.1247 0.2077 0.1989 0.2014 0.557 0.490 0.493 

0.55 0.1187 0.0984 0.1027 0.1804 0.1761 0.1804 0.576 0.489 0.498 

0.60 0.0921 0.0753 0.0799 0.1541 0.1538 0.1578 0.571 0.468 0.484 

0.65 0.0655 0.0524 0.0564 0.1289 0.1319 0.1334 0.525 0.411 0.437 

0.70 0.0390 0.0277 0.0320 0.1052 0.1088 0.1073 0.413 0.283 0.332 

0.75 0.0128 0.0003 0.0067 0.0832 0.0833 0.0794 0.184 0.004 0.101 

 

Table 2: OWT results for P/D=0.75 

J KT-EXP KT-CFD KT-OpenProp 10KQ-EXP 10KQ-CFD 10KQ-OpenProp ηO-EXP ηO-CFD ηO-OpenProp 

0.10 0.3786 0.3645 0.2983 0.4881 0.4515 0.3579 0.123 0.128 0.133 

0.15 0.3556 0.3391 0.2816 0.4619 0.4248 0.3473 0.184 0.191 0.194 

0.20 0.3318 0.3124 0.2642 0.4342 0.3971 0.3349 0.243 0.250 0.251 

0.25 0.3071 0.2852 0.2473 0.4054 0.3693 0.3221 0.301 0.307 0.305 

0.30 0.2817 0.2580 0.2289 0.3756 0.3418 0.3077 0.358 0.360 0.355 

0.35 0.2558 0.2306 0.2101 0.3451 0.3145 0.2924 0.413 0.408 0.400 

0.40 0.2293 0.2032 0.1905 0.3142 0.2872 0.2756 0.465 0.450 0.440 

0.45 0.2025 0.1758 0.1703 0.2833 0.2625 0.2575 0.512 0.480 0.474 

0.50 0.1753 0.1493 0.1493 0.2525 0.2359 0.2378 0.553 0.504 0.500 

0.55 0.1481 0.1239 0.1276 0.2222 0.2101 0.2165 0.583 0.516 0.516 

0.60 0.1207 0.0996 0.1052 0.1926 0.1852 0.1935 0.599 0.514 0.519 

0.65 0.0934 0.0764 0.0819 0.1639 0.1611 0.1687 0.589 0.490 0.503 

0.70 0.0662 0.0533 0.0580 0.1366 0.1373 0.1422 0.540 0.433 0.455 

0.75 0.0393 0.0286 0.0332 0.1108 0.1123 0.1138 0.423 0.304 0.349 

0.80 0.0127 0.0010 0.0076 0.0869 0.0845 0.0836 0.187 0.015 0.116 
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Table 3: OWT results for P/D=0.8 

J KT-EXP KT-CFD KT-OpenProp 10KQ-EXP 10KQ-CFD 10KQ-OpenProp ηO-EXP ηO-CFD ηO-OpenProp 

0.10 0.4145 0.4000 0.3189 0.5572 0.5206 0.3980 0.118 0.122 0.128 

0.15 0.3909 0.3738 0.3035 0.5292 0.4909 0.3854 0.176 0.182 0.188 

0.20 0.3664 0.3463 0.2867 0.4996 0.4599 0.3735 0.233 0.240 0.244 

0.25 0.3411 0.3183 0.2692 0.4686 0.4288 0.3597 0.290 0.295 0.298 

0.30 0.3150 0.2902 0.2516 0.4365 0.3983 0.3455 0.345 0.348 0.348 

0.35 0.2884 0.2620 0.2330 0.4037 0.3679 0.3297 0.398 0.397 0.394 

0.40 0.2613 0.2337 0.2137 0.3703 0.3377 0.3128 0.449 0.441 0.435 

0.45 0.2338 0.2056 0.1937 0.3366 0.3078 0.2944 0.497 0.478 0.471 

0.50 0.2060 0.1779 0.1731 0.3030 0.2783 0.2745 0.541 0.509 0.502 

0.55 0.1780 0.1509 0.1517 0.2697 0.2493 0.2529 0.578 0.530 0.525 

0.60 0.1499 0.1250 0.1299 0.2369 0.2212 0.2300 0.604 0.540 0.539 

0.65 0.1219 0.1006 0.1070 0.2049 0.1944 0.2048 0.615 0.535 0.540 

0.70 0.0940 0.0772 0.0833 0.1741 0.1685 0.1778 0.602 0.510 0.522 

0.75 0.0664 0.0542 0.0589 0.1446 0.1430 0.1490 0.548 0.452 0.472 

0.80 0.0391 0.0293 0.0337 0.1167 0.1161 0.1182 0.427 0.322 0.363 

0.85 0.0123 0.0017 0.0078 0.0908 0.0860 0.0856 0.183 0.026 0.123 

 

Table 4: OWT results for P/D=0.85 

J KT-EXP KT-CFD KT-OpenProp 10KQ-EXP 10KQ-CFD 10KQ-OpenProp ηO-EXP ηO-CFD ηO-OpenProp 

0.10 0.4506 0.4357 / 0.6314 0.5930 / 0.114 0.117 / 

0.15 0.4264 0.4088 0.3250 0.6016 0.5604 0.4266 0.169 0.174 0.138 

0.20 0.4012 0.3806 0.3083 0.5701 0.5262 0.4128 0.224 0.230 0.186 

0.25 0.3753 0.3519 0.2908 0.5370 0.4919 0.3991 0.278 0.285 0.235 

0.30 0.3486 0.3231 0.2737 0.5028 0.4581 0.3846 0.331 0.337 0.285 

0.35 0.3214 0.2942 0.2556 0.4676 0.4247 0.3688 0.383 0.386 0.335 

0.40 0.2936 0.2651 0.2366 0.4317 0.3913 0.3516 0.433 0.431 0.385 

0.45 0.2654 0.2361 0.2170 0.3954 0.3582 0.3332 0.481 0.472 0.434 

0.50 0.2370 0.2074 0.1966 0.3590 0.3258 0.3131 0.525 0.507 0.480 

0.55 0.2083 0.1793 0.1756 0.3227 0.2938 0.2914 0.565 0.534 0.523 

0.60 0.1796 0.1519 0.1539 0.2868 0.2624 0.2680 0.598 0.553 0.560 

0.65 0.1509 0.1257 0.1314 0.2516 0.2320 0.2427 0.621 0.560 0.586 

0.70 0.1224 0.1012 0.1085 0.2173 0.2036 0.2159 0.627 0.554 0.594 

0.75 0.0941 0.0778 0.0846 0.1842 0.1759 0.1868 0.610 0.528 0.574 

0.80 0.0661 0.0548 0.0599 0.1526 0.1487 0.1557 0.551 0.469 0.513 

0.85 0.0386 0.0300 0.0344 0.1228 0.1198 0.1226 0.425 0.339 0.389 

0.90 0.0116 0.0023 0.0082 0.0949 0.0876 0.0876 0.176 0.037 0.135 
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Table 5: OWT results for P/D=0.9 

J KT-EXP KT-CFD KT-OpenProp 10KQ-EXP 10KQ-CFD 10KQ-OpenProp ηO-EXP ηO-CFD ηO-OpenProp 

0.10 0.4866 0.4710 / 0.7106 0.6707 / 0.109 0.112 / 

0.15 0.4618 0.4438 / 0.6790 0.6355 / 0.162 0.167 / 

0.20 0.4361 0.4150 0.3291 0.6455 0.5984 0.4550 0.215 0.221 0.230 

0.25 0.4096 0.3857 0.3122 0.6105 0.5610 0.4405 0.267 0.274 0.282 

0.30 0.3823 0.3564 0.2947 0.5741 0.5240 0.4250 0.318 0.325 0.331 

0.35 0.3545 0.3269 0.2775 0.5366 0.4874 0.4096 0.368 0.374 0.377 

0.40 0.3261 0.2972 0.2590 0.4983 0.4508 0.3923 0.417 0.420 0.420 

0.45 0.2974 0.2674 0.2397 0.4595 0.4145 0.3736 0.464 0.462 0.459 

0.50 0.2683 0.2378 0.2198 0.4203 0.3787 0.3536 0.508 0.500 0.495 

0.55 0.2390 0.2088 0.1991 0.3812 0.3436 0.3318 0.549 0.532 0.525 

0.60 0.2097 0.1803 0.1778 0.3423 0.3092 0.3084 0.585 0.557 0.551 

0.65 0.1804 0.1526 0.1557 0.3039 0.2756 0.2830 0.614 0.573 0.569 

0.70 0.1512 0.1263 0.1334 0.2662 0.2432 0.2563 0.633 0.579 0.580 

0.75 0.1222 0.1018 0.1099 0.2297 0.2130 0.2270 0.635 0.570 0.578 

0.80 0.0936 0.0784 0.0857 0.1944 0.1837 0.1958 0.613 0.543 0.557 

0.85 0.0654 0.0553 0.0608 0.1607 0.1546 0.1626 0.551 0.484 0.506 

0.90 0.0378 0.0305 0.0352 0.1288 0.1239 0.1273 0.420 0.353 0.396 

0.95 0.0108 0.0027 0.0087 0.0990 0.0893 0.0899 0.165 0.046 0.147 

 

The pressure field on the pressure side of the propeller for two values of J is shown in 

Figure 13 for propeller with P/D=0.8. It can be noticed that on the pressure side of the 

propeller for higher J, the overpressure is lower since the load on the propeller is lower. The 

pressure field on the suction side of the propeller with P/D=0.8 for two same values of J is 

shown in Figure 14. For higher J, the underpressure on the suction side of the propeller is 

reduced. The reason for this is an increase in inflow velocity and decrease of the load on the 

propeller. Since approximately two-thirds of the thrust are caused by the underpressure on the 

suction side of propeller blades [1], the thrust is lower at higher values of J. 

  

Fig. 13  Pressure distribution on the pressure side of the screw propeller at J=0.2 (left) and J=0.55 (right) 
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Fig. 14  Pressure distribution on the suction side of the screw propeller at J=0.2 (left) and J=0.55 (right) 

 

  

Fig. 15  Pressure distribution in the vertical plane at J=0.2 (left) and J=0.55 (right) 

 

In Figure 15, the pressure field of propeller with P/D=0.8 in the vertical plane is shown. 

The larger difference in the pressure between the pressure and suction side of the propeller 

can be noticed at lower J value, which is caused by larger load on the propeller blades. 

  

Fig. 16  Velocity distribution in the vertical plane at J=0.2 (left) and J=0.55 (right) 
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The velocity distribution in the vertical plane of propeller with P/D=0.8 for two values of 

J is shown in Figure 16. The larger difference in velocity distribution is present at lower J 

value due to larger thrust at lower J value. 

The streamlines behind operating propeller with P/D=0.8 for two values of J are shown in 

Figure 17. A larger trailing vortex can be noticed for lower J value and therefore the open 

water efficiency is lower due to the loss of kinetic energy. 

  

Fig. 17  Streamlines behind operating propeller at J=0.2 (left) and J=0.55 (right) 

5. Conclusion 

In this paper the numerical simulations based on potential and viscous flow theory were 

performed for five Gawn series propellers. The obtained numerical results of OWT were 

compared with the available regression polynomials. An input for numerical simulations 

based on the lifting line theory were the discrete values of the chord length of the blade 

sections at different radii. Within this research the applicability of lifting line theory in 

preliminary design of a screw propeller was investigated. Trends of hydrodynamic 

coefficients obtained using lifting line theory and regression polynomials are the same for the 

range of J values where the propeller is moderately loaded, which is of great importance since 

the most of screw propellers operate in this range. 

3D models for five Gawn series propellers were generated and used as an input data for 

RANS simulations. It was shown that trends of hydrodynamic coefficients obtained using 

RANS simulations and regression polynomials based on the experimental data are the same. 

Also, the detail analysis of the flow around screw propeller in OWT was performed. RANS 

simulations provide a complete insight into the flow around screw propeller, i.e. pressure and 

velocity distributions as well as streamlines. This is a valuable benefit of RANS simulations 

compared to simulations based on the lifting line theory. 

The satisfactory agreement between numerically obtained results and the ones obtained 

using regression polynomials was achieved for both lifting line and viscous flow theory in the 

range of J values where the propeller is moderately loaded. Therefore, OpenProp can be used 

as a practical and efficient tool in preliminary design of screw propellers as simulations based 

on the lifting line theory are significantly faster and simpler than RANS simulations. 

However, once the optimal geometry is obtained using lifting line theory, RANS simulations 
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should be performed in order to obtain detail insight into the flow phenomena around the 

propeller. 
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