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ON p-EXTENDED MATHIEU SERIES

TiBOR K. POGANY AND RAKESH K. PARMAR

ABSTRACT. Motivated by several generalizations of the well-known
Mathieu series, the main object of this paper is to introduce new extension
of generalized Mathieu series and to derive various integral representations
of such series. Finally, master bounding inequality is established using the
newly derived integral expression.

1. INTRODUCTION AND MOTIVATION

The series of the form

S(T):ZL r >0,

2 2)2°
= (n2? +1r?)

is known in literature as Mathieu series. Emile Leonard Mathieu was the first
who investigated such series in 1890 in his book [15]. A remarkable useful
integral representation for S(r) is given by Emersleben [7] in the following

elegant form
S(r) = l/oo xsin(rz) dr |
rJo e*-—1
which can also be written in terms of the Riemann Zeta function ((s) =
dons1n % s >1as [4, p. 863, Eq. (2.3)](with replacing n by n + 1)

(1.1) S(r) =2 (=1)" (n+1) ¢{(2n +3) r*", Ir| < 1.
n>0

The so—called generalized Mathieu series with a fractional power reads [2, p.
2, Eq. (1.6)] (also see [16, p. 181])

2n
(12) S”(T)ZZW7 T>0,M>O,
n>1
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such series has been widely considered in mathematical literature (see e.g.
papers by Diananda [5], Cerone and Lenard [2] and Pogény et al. [20]). Cerone
and Lenard also gave a series representation of S, (r) in terms of the Riemann
Zeta function [2, p. 3, Eq. (2.1)]

(1L3)  Su(r) =23 (-1)" (H+n>C(2u+2n+1)r2", r| < 1;

n
n>0

in [2] was not mentioned the convergence region |r| < 1. To show (1.3) it is
enough to expand the summands in (1.2) into a binomial series for r € (—1,1)
(compare [20, p. 72, Proposition 1]). Cerone and Lenard derived also the next
integral expression [2, p. 3, Theorem 2.1] (also consult [16, p. 181, Eq. (1.3)])

\/7?
(2r) =31

Motivated by the previous extension and by huge spectrum of other general-
izations of the Mathieu series, the main aim of this paper is to study certain
another types of, in new fashion generalized, Mathieu series.

Having in mind (1.3) let the p—extended Mathieu series be defined as

(14)  Su(r) =

oo CC‘H_%
,u+1)/0 ez_lJM_%(rx)dx, > 0.

(15) Suptr) =2 3 21 (MY 20 41),

n
n>0

where p > 0; ¢ >0, |r| <1 and (, stands for the p-extended Riemann Zeta
function [3]

y2

(16) Glo) = gy [ T e

« e’ — 1

defined for R(p) > 0 or p = 0 and () > 0, which reduces to Riemann Zeta
function when p = 0. It is also important to quote that (1.5) reduces to (1.3)
when p = 0, while taking p =1 we yield (1.1).

2. INTEGRAL FORMS, INTEGRAL TRANSFORMS AND SERIES
REPRESENTATIONS OF S, ,(7)

In this section we derive an integral expression for the p—extended Mathieu
series S, p(7). Then its various Mellin and Laplace transforms are exposed.

THEOREM 2.1. For all R(p) > 0 orp =0, > 0 and r > 0 the follow-
ing integral representation for the extended generalized Matheiu series S, ,(r)
holds true:

® phtieE
(2.1) Sup(r) = }/E / re J,_1(rx)dx.
SNCT I TPESTI S I
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PRrROOF. Using the series representation of J, [24, p. 40]
(_1)n T\ 2n+v
= 5 e (2
nzz;)n!F(nJrVJrl) 2
valid for all v, x € C we can simplify an integral given in (2.1) as:

oo .u+i _% —1)n(z ,u+2n7% oo 2u+2n —%
J:/ mtiJﬂ_;(rx) dz = g L") T / i — ° dx
o et — 1 2 = nl(p+n+3) Jo e* —1

Ly gy
= T
= n!l(p+n+3)

FCu+2n+1)02p +2n+1),

where in the last equality the definition of the p-extended Riemann Zeta
function (1.6) was used.

By the Legendre duplication formula /7 T'(2z) = 22*7!T(2)['(z + ) we
get

_ 2@ (et 1) N oy (BT
e >

which leads to the desired result. O

>Cp(2u +2n+1)

REMARK 2.2. The integral expression (2.1) one reduces to (1.4) when
p=0.

In what follows we derive Mellin and Laplace transforms of the newly
constructed series S, ,(r).

The Mellin and Laplace transforms (respectively) of some suitably inte-
grable function f with index s are defined by

M{S )} = [ T f@) de, Lo{f(@)}(s) = / "o f(a) da.

0

provided that the corresponding integrals exist.

THEOREM 2.3. The Mellin transform of the extended generalized Matheiu
series Sy, p(r) read as follows:

. af+n\2n+2n+s
{5y 00 = 2602 S () (e

in the range |r| < 1. Moreover, for u > 0; 0 < R(s) < p+ 1 and R(p) > 0,
s s
(22) Mo{S,p(M}(s) = B (5on+1-3) G2u—s+1),

where B(z,y), min{R(x), R(y)} > 0 stands for the Euler Beta function.
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ProoF. Using the definition of the Mellin transform, we find from (1.5)
M, (S} ) = [ 018,000 dp

=2) r(-1" (N N n) /mps‘le@u +2n+1)dp
0

n
n>0
=2T(s)['(s+ 1) Z P2 (—1)" (u + n)
n>0 "
2u4+2n+s
2 2 1
( o+ 2n )C( p+2n+s+1),

where in the last equality we used the formula [3, p. 1244, Eq. (3.6)]

[ g = "I g @) >0 00 >0
0 «

Next, with the help of the Weber—Sonine integral [24, p. 391, Eq. 13.24(1)]

/OO x“_”_lJ,,(x) dx F(%)
0

~ QueptiD (1+v-14)

0<R(p) <Rv)+ %,

the integral representation (2.1) derived in Theorem 2.1 and the definition of
extended Riemman Zeta (,, we find that

M, (5,0} () = [ S, () dr

V2 27K [0 ghtaeE [ [
_ ver roe SRl _i(rz)dr | dz
Pp+1) Jo e —1 0 re
(s 00 2u—sa—2
ﬁ (2) )/ € © dx
0

T 22T (p+ 1)1 (n+ 152 e’ —1
VAL (3) T@u—s+1)G(2p —s+1)
2 T(p+ DI (p+45°)

which gives (2.2) with the help of the duplication formula for the Gamma
function and the relation between Beta and Gamma functions. O

THEOREM 2.4. For the p—extended Mathieu series S, (1) we have the
Laplace transform formula

23) LS00 = e | Tt e

provided that the each member of (2.3) exists.
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PRrROOF. Using the Laplace transform formula [8, p. 49, Eq. 7.7.3(16)]

Lo {21 (pa)}(s) = L y 241

2s¥ AT (v + 1

FWHA R+ | P
v+1 ’

valid for all |R(s)| > [S(p)], R(¥ + A) > 0 and the integral representation
(2.1), we get

& {8} o) = [ e S dr

V2m 27 [ thtaemE [ [ |
- — ¢TI oy (rt) dr ) dt
Llp+1) Jo e'=1 0 :
L /°° et oL 2 B Y
aP(p+10(u+3) Jo e —1 p+g | 22|
which becomes (2.3) with the help of duplication formula. 0

REMARK 2.5. It is interesting to note when p = 0, (2.2) and (2.3) reduce
to known results in [6].

3. MASTER BOUNDING INEQUALITY UPON S, ,(7)

A set of bounding inequalities exist for the generalized Mathieu series
S,.(r); as their main source we can list the articles [20], [21], [23]. To give
upper bounds for S, ,(r) via S,(r), since the oscillatory behavior of J,, in the
integrand of the integral representation (1.4), we are forced to consider the
modulus of the input series.

Observing the p-kernel e~ =,z > 0 introduced by Chaudhary et al. [3],
instead of the obvious bound e~ < 1, for non—negative parameter p we infer
the more precise estimate

2
2 e (0,2)
e .
e—ﬁge r)={ 2 _ - [281 2), xz>0.
p(7) PYSE MRS 2,4( +e?)
1 ng(ue?)

Indeed, being I(p/2,e~2) the inflection point in which the kernel is changing
behavior from convex into concave in growing x, the secant line joining the
origin and I is above the kernel’s arc, while the tangent line in I bounds
the kernel from above in the middle interval. The structure of C,(z) mutatis
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mutandis splits the integration domain in (2.1) getting

ﬁ /OO x#‘f‘% ep(m) |J
@) T+ 1) o e -1

Teuw 5 rt3 T i (rx
2y (2r) / |- ( )Idm
0

‘Su,p(r” <

L (rz)|de

- pe2T(u+1) e’ —1
4/ (2r)5 -0 [EOHD) P |1 (r)] 2y
peZF(/,H—l)/g er —1 (x_i) *

VT /OO zhtE
3.1 ; N
(3.1) + 2r)r= 2T (4 1) Je(qe) € — 1| _i(rz)|de

All three integrals in (3.1) contain the same fashion integrands, but for p > 0
we couldn’t express these integrals in terms wia a finite linear combination
of elementary and/or higher transcendental, special functions. That is the
reason why we list here various uniform and functional upper bounds upon
|J.(2)], preferably the ones of polynomial decay compare for instance [1] and
[19, Subsection 3.2]. For the sake of simplicity we recall here only few of
them. Firstly, we mention von Lommel’s uniform bounds [13], [14, pp. 548-
549], [24, p. 406]:

|JV($)| <1 |Ju+1(x)| v>0,x¢€ R,

< 1
=4
and the bound by Minakshisundaram and Szdsz [17, p. 37, Corollary]
v>0 zeR.

Further estimates were given by Landau [12] with respect to v and « which
are in a sense best possible (outside of Bessel function’s transition region)

(3.2) | J, ()| < b v~ 1/3, by, = V/2sup Ai(t),
x>0
(3.3) | (2)] < ep, \x|_1/3, cr, = supxl/?’Jo(x) ;
x>0

here Ai(-) denotes Airy function. In turn, Olenko answered to this challenge
by [18, Theorem 1]

oq 304%
(3.4) sup vz |, (z)] < bp/ /3 + —= + —F = do, v>0.
>0 v v
Here a; is the smallest positive zero of Ai, being by, the first Landau’s constant.
Further considerable upper bounds are listed e.g. in the works by Baricz et al.
[1] and by Srivastava and Pogéany [22]. Also one draws the reader’s attention
to the sophisticated functional bounds by Krasikov [10], [11]. We cover all
these cases with a generic bound |J,_1(x)| < C-z% z > 0, where both, the
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absolute constant C' = C'(u) and the power g are changing with the different
kind bounds pointing out that the application of estimates mentioned, and
by the sake of simplicity not used in evaluating S, ,(r), we plane at another
address.

At this point we establish the master inequality by virtue of the newly
established integral expression (2.1) covering all above listed cases of Bessel
function bounding inequalities.

THEOREM 3.1. Forallp > 0,u > 0;q > —p — % and for all r > 0 there
holds

[Spp(r)] <

Cy/mpitats 1 ( 4 )
e222utaph—3 T(p+1) | 20 +q) +5 \2(u+q) +3  eF —1

2p ((1+e2)M+Q+% 1)

2(u+q)+5 2
4 1+ e?\ntats
-1
+2(u+q)+3(( 2 ) )
2 2\ ptaty
e (Y
2201+ )+ (FEFI —1) W\ 2
B e?p(1 + eQ)P”””%
200+ 3 2(p + q) + 1] (e (1Fe) — 1)
Cyrm 3 3
3.5 + ; D(p+q+3 +q+<).
(3.5) (2r)*=2 T(u+ 1) (N ¢ 2>C<M 1 2)

ProOF. Consider the auxiliary integral
b ro-1

IK(a,a,b):/ — da; a>1;0<a<b<oo.
o € —1

Being the function z +— z(e® — 1)~! monotone decreasing and convex for
x > 0 we estimate this function’s arc from above with secant line crossing
A(a,a(e® — 1)) and B(b,b(e® —1)71).

Next, taking the lower bound z(e®* — 1)~! > b(e® — 1)~! on the whole
(a,b) for a > 1 we achieve

b(ba—l _ a(y—l)
(a—1)(e?—1)

=

K,
a—1

(3.6) < K(a,a,b) < = (b —a®) + (b* "t —ah),

|

Kl:(ebb—l_eaa—l)bia; K2:<ebl—1_ea1—1) bciba‘

Letting here a — 0+, (3.6) one reduces to

be el b
6D Gopeoy S X0 <= ( + ) a>1.
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On the other hand, we get

T(ab Tty C T K (0.
(a’)_/b' et — 1 x_A T 1 T — (avv)
ba

(3.8) < I(a)((a) - CEDICEDE

where for all b > 1 the right-hand-side estimate is not redundant, namely in
this b—domain the upper bound is strict positive.

In the introductory part of this section we list diverse bounding inequal-
ities for the Bessel function of the first kind of positive argument. Bearing in
mind (3.1) we conclude

|Su,p(7")‘ <

(3.9) +—U<(u+q+§,4(1+e2))}.

Applying the estimates (3.6), (3.7) upon X and (3.8) for X, it follows

u+q+2
4 p
Spp(r)] < - t oz )
2K ( ”+q+2((1+e >“+q+% 1)
2
2K2 BYHITE 1y ey mbatd
g () )

(1+e ) (% pratd ) <<1J;e2)u+q+% _1)

LTI

e2phtats (1+ 62)M+q+%
22t H3[2(p + ) + 1] (eF(+D — 1) [

where K7, K3 are the restricted values of K1, Ky for specific a,a,b used in
(3.9). Now routine steps lead to the assertion. |

The specific estimates upon J,_1(z) in (3.5) form a set of respective
particular bounds:
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A. Taking C = 272, ¢ = 0, we infer a Lommel-type bound from (3.5)if u > %

B. When ¢ = — % > 0 and respectively
rhe
ST (k)]

we arrive at the Minakshisundaram—Szdsz—type bound, which surprisingly
becomes r—independent.

c(r)

C. Making use of Landau’s first estimate with ¢ = 0 and
br
C(T) = '717 M > %a
3 ILL _ 5
where by, was defined in (3.2), we get a bound of the same magnitude (in r)
then von Lommel’s one which is now equal to O(r=#+z).

D. Next, using Landau’s second estimate (3.3) with ¢ = —% and

c 1
C(T):T\/Lga H>§

increases the magnitude of (3.5) into O(r~#+5), ¢, being described around

E. Finally, putting ¢ = —% and according to (3.4)

C(T)ZW, u>%

implies the Olenko bound which magnitude reads O(r—#).
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O p—poopéenom Mathieuovom redu

Tibor K. Pogdny i Rakesh K. Parmar

SAZETAK. Pobudeni mnogobrojnim poopéenjima Mathi-
euovog reda uveli smo jedno novo proSirenje pojma generalizira-
nog Mathieuvog reda. Za novodefinirani red u ¢lanku su izvedene
raznovrsne integralne reprezentacije. Napokon opdéenita funk-
cionalna gornja granica je dokazana pomocu prethodno uspostav-
ljenih integralnih reprezentacija.
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