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KIEPERT HYPERBOLA IN AN ISOTROPIC PLANE

Vladimir Volenec, Zdenka Kolar–Begović and Ružica
Kolar–Šuper

Abstract. The concept of the Kiepert hyperbola of an allowable tri-
angle in an isotropic plane is introduced in this paper. Important properties
of the Kiepert hyperbola will be investigated in the case of the standard
triangle. The relationships between the introduced concepts and some well
known elements of a triangle will also be studied.

1. Introduction

Kiepert triangles of an allowable triangle ABC in the isotropic plane I2
are considered in [21]. Properties of the Kiepert hyperbola of a given triangle
in the plane I2 will be investigated in this paper on the basis of characteristics
of these triangles.

It should be noted that in Euclidean geometry Kiepert triangles are de-
fined in the following way. Let ABC be a given triangle and φ a given angle.
If BCA′, CAB′, ABC ′ are mutually similar isosceles triangles constructed on
the bases BC, CA, AB with the base angle φ, then A′B′C ′ is a Kiepert tri-
angle of the given triangle ABC. The Kiepert hyperbola of the triangle ABC
is one circumscribed rectangular hyperbola of that triangle which is the set
of centers of homologies of this triangle with its Kiepert triangles (see Figure
1).

It is the isogonal image of the line OK with respect to the triangle ABC
and the line GK touches this hyperbola at the point G, where G, O, K
are the centroid, circumcenter and symmedian center of the triangle ABC,
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Figure 1. Kiepert hyperbola of the triangle ABC in Eu-
clidean case

respectively. Asymptotes of this hyperbola are parallel to the Steiner axes of
this triangle (see Figure 1) (see e.g. [4]).

The isotropic (or Galilean) plane is a projective–metric plane, where the
absolute consists of one line, the absolute line ω, and one point on that line,
the absolute point Ω. The lines through the point Ω are isotropic lines, and
the points on the line ω are isotropic points (the points at infinity). Two lines
through the same isotropic point are parallel, and two points on the same
isotropic line are parallel points. Therefore, an isotropic plane is in fact an
affine plane with the pointed direction of isotropic lines where the duality
principle is valid.

In an isotropic plane (see e.g. [17] and [18]) two points Pi = (xi, yi)
(i = 1, 2) have the distance P1P2 = x2 − x1 and two lines with the equations
y = kix+ li (i = 1, 2) form the angle k2 − k1. For two parallel points P1, P2
their span is defined by s(P1, P2) = y2−y1. Each isotropic line is perpendicular
to each nonisotropic line. Two lines with k1 = k2 are parallel.

A triangle is said to be allowable if none of its sides is isotropic. Each
allowable triangle ABC can be set by a suitable choice of the coordinate
system in the standard position, in which its circumscribed circle Kc has the
equation y = x2, its vertices are the points
(1.1) A = (a, a2), B = (b, b2), C = (c, c2),
and its sides BC, CA, AB have the equations
(1.2) y = −ax− bc, y = −bx− ca, y = −cx− ab,
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where

(1.3) a+ b+ c = 0.

We shall say then that ABC is a standard triangle. To prove the geometric
facts for each allowable triangle it is sufficient to give a proof for the standard
triangle (see [9]).

With the labels

(1.4) p = abc, q = bc+ ca+ ab,

a number of useful equalities are proved in [9], as e.g. a2 + b2 + c2 = −2q,
a2 = bc− q, b2 + bc+ c2 = −q, 2q−3ab = (b− c)(c−a), q+3bc = −(b− c)2,
(b− c)2(c− a)2(a− b)2 = −(27p2 + 4q3). Therefore, 27p2 + 4q3 ̸= 0.

2. Kiepert hyperbola in an isotropic plane

If the points Am, Bm, Cm are the midpoints of the sides of an allowable
triangle ABC and if A′, B′, C ′ are the points on perpendicular bisectors of
these sides such that the spans s(Am, A

′), s(Bm, B
′), s(Cm, C

′) are propor-
tional to the lengths of the sides BC, CA, AB, then A′B′C ′ is the so-called
Kiepert triangle of the triangle ABC. If we take the coefficient of proportion-
ality such that

s(Am, A
′)

BC
= s(Bm, B

′)
CA

= s(Cm, C
′)

AB
= −1

2
t,

then the real number t is called parameter of the Kiepert triangle A′B′C ′.
In [21], it is shown that the triangles ABC and A′B′C ′ are homological, i.e.
the lines AA′, BB′, CC ′ pass through one point T (see Figure 2). In the
case of the standard triangle ABC and the Kiepert triangle A′B′C ′ with the
parameter t the point T is given by the formula

(2.1) T =
(

3pt
q(2t+ 3ω)

,−3ωt2 + 2qt+ 6qω
3(2t+ 3ω)

)
,

where ω = − 1
3q (b− c)(c− a)(a− b) is the Brocard angle of the triangle ABC.

The point

T ′ =
(

3p
2q
,

1
2
ωt− 1

3
q

)
,

which lies on the Brocard diameter of this triangle with the equation x = 3p
2q ,

is isogonal to the point T with respect to the triangle ABC (see [21]).

Theorem 2.1. The point T given by equality (2.1) determines one special
hyperbola K (see Figure 2) with the equation

(2.2) 3px2 + 2qxy + 2q2x− 3py − 2pq = 0.
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Proof. The point T from (2.1) has the coordinates

(2.3) x = 3pt
q(2t+ 3ω)

, y = −3ωt2 + 2qt+ 6qω
3(2t+ 3ω)

.

From the first equality in (2.3) there follows

t = 3qωx
3p− 2qx

.

We substitute t in the second equality of (2.3) written in the form 3y(2t +
3ω) + 3ωt2 + 2qt + 6qω = 0. Then after multiplication by (3p − 2qx)2 and
division by 3ω, we obtain
y[6qx+3(3p−2qx)](3p−2qx)+(3qωx)2 +2q2x(3p−2qx)+2q(3p−2qx)2 = 0,
i.e. the equation

(9py − 2q2x+ 6pq)(3p− 2qx) + (b− c)2(c− a)2(a− b)2x2 = 0
or

4q3x2 − 18pqxy − 18pq2x+ 27p2y + 18p2q − (27p2 + 4q3)x2 = 0,
which after dividing by −9p yields the form (2.2).

If equation (2.2) is written in the form

(2.4) y = −3px2 + 2q2x− 2pq
2qx− 3p

,

then it follows that the curve K has an isotropic asymptote given by the
equation x = 3p

2q , which is the equation of the Brocard diameter of the triangle
ABC and the curve K is one special hyperbola. By analogy with the Euclidean
case we shall call it the Kiepert hyperbola of the triangle ABC. Equation (2.4)
can also be written in the form

y = −3p
2q
x− q − 9p2

4q2 −
p

4q2
27p2 + 4q3

2qx− 3p
,

wherefrom it follows that the hyperbola K has a nonisotropic asymptote with
the equation

(2.5) y = −3p
2q
x− q − 9p2

4q2 .

It is parallel to the Steiner axis of the triangle ABC which, according to [20],
has the equation

(2.6) y = −3p
2q
x− 2

3
q.

With x = 3p
2q from (2.5) we obtain

y = −q − 9p2

2q2 ,



KIEPERT HYPERBOLA IN AN ISOTROPIC PLANE 133

Figure 2. Kiepert hyperbola of the standard triangle ABC
in an isotropic plane

and the hyperbola K has the center

(2.7) S =
(

3p
2q
,−q − 9p2

2q2

)
.

The previously mentioned facts can be resumed as the following theorem.

Theorem 2.2. The Kiepert hyperbola of the allowable triangle ABC is the
isogonal image of its Brocard diameter and this line is its isotropic asymptote,
while its nonisotropic asymptote is parallel to the Steiner axis of this triangle.
The Kiepert hyperbola of the standard triangle ABC has equation (2.2) and
parametric equation (2.3). Its nonisotropic asymptote and its center S are
given by equations (2.5) and (2.7), respectively (see Figure 2).

The first statement of Theorem 2.2 is proved in [10].
As according to [10] the circumscribed circle of the triangle ABC is the

isogonal image of the absolute line, it immediately follows:

Corollary 2.3. A nonisotropic asymptote of the Kiepert hyperbola of
the allowable triangle ABC is parallel to the lines which are symmetrical to
the lines AO, BO, CO with respect to the angle bisectors of the angles A,
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B, C, where O is the intersection point of the Brocard diameter with the
circumscribed circle of the triangle ABC.

With x = 0 from (2.2) we get y = −2
3 q, which can also be obtained

from (2.3) with t = 0. Hence, the hyperbola K passes through the centroid
G = (0,− 2

3 q) of the triangle ABC. It is in accordance with the fact that
the symmedian center K of the triangle ABC, as the isogonal point to the
centroid G, lies on its Brocard diameter.

With y = x2 from (2.2), after dividing by 2 q, we get the equation x3 +
qx− p = 0 for the abscissas of the intersection points of the Kipert hyperbola
K with the circumscribed circle of the triangle ABC. The abscissas a, b, c of
the points A, B, C satisfy this equation because e.g.

a3 + qa = a(a2 + q) = a · bc = p.

Consequently, we have the statement:

Corollary 2.4. The Kiepert hyperbola of an allowable triangle is cir-
cumscribed to this triangle (see Figure 2).

Homotheties with centers A, B, C and coefficient 2 map the points A′, B′,
C ′ to the points on the altitudes of the anticomplementary triangle AnBnCn of
the triangle ABC, whose spans to the vertices of that triangle are proportional
to the lengths of its sides. Therefore it follows:

Corollary 2.5. Choosing the points on the altitudes of the anticom-
plementary triangle of the allowable triangle ABC such that its spans to the
vertices of the triangle are proportional to the lengths of its sides, we obtain
the vertices of a triangle which is homological with the triangle ABC, and the
center of homology is the point T , which determines the Kiepert hyperbola of
the triangle ABC.

An analogous statement of Corollary 2.5 in the Euclidean case can be
found in [5].

If we state the assertion of Corollary 2.5 for the complementary triangle
AmBmCm of the triangle ABC, then it can be formulated in this way:

Corollary 2.6. Choosing the points on the altitudes of the allowable tri-
angle ABC such that its spans to the vertices of the triangle are proportional
to the lengths of its sides, we obtain the vertices of a triangle which is homo-
logical with the triangle ABC, and the center of this homology determines the
Kiepert hyperbola of the complementary triangle of the triangle ABC.
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3. Kiepert hyperbola and some other significant elements of a
triangle

Now we are going to study the relationships between the Kiepert hyper-
bola and some other significant elements of the triangle ABC.

The point S ′ is anticomplementary to the point S from (2.7) and because
of the equality S ′ = 3G− 2S, with G = (0,−2

3q), we get

S ′ =

(
−3p

q
, 9
(
p

q

)2
)
.

According to [20], the obtained point S ′ is the Steiner point of the triangle
ABC, the fourth common point (with the exception of the points A, B, C)
of the circumscribed circle Kc and the circumscribed Steiner ellipse S of that
triangle (see Figure 3). This consideration enables us to establish the next
theorem.

Theorem 3.1. The center of the Kiepert hyperbola of an allowable trian-
gle is the complementary point to its Steiner point (see Figure 3).

An analogous statement of Theorem 3.1 in the Euclidean case is given in
[3] and [16]
The Euler circle Ke and the inscribed Steiner ellipse S ′ of a triangle are
complementary to its circumscribed circle Kc and the circumscribed Steiner
ellipse S, so we have

Corollary 3.2. The center of the Kiepert hyperbola of an allowable tri-
angle is the fourth intersection (with the exception of the midpoints of its
sides) of its Euler circle and its inscribed Steiner ellipse (see Figure 3).

Theorem 3.3. If the points D, E, F are the intersection points of the
corresponding sides of the orthic triangle AhBhCh and the complementary
triangle AmBmCm of the allowable triangle ABC, then the lines AmD, BmE,
CmF pass through the center of the Kiepert hyperbola of that triangle (see
Figure 4).

In the Euclidean case the analogous statement can be found in [5].

Proof. Owing to [9], the lines BhCh and BmCm are given by the equa-
tions of the form y = 2ax+ 2bc− q, y = −ax+ 1

2 bc− q, respectively and due
to bc− q = a2 they pass through the point

(3.1) D =
(
−1

2
bc

a
, a2
)
.

By [9], the point Am is of the form

(3.2) Am =
(
−1

2
a,−1

2
q − 1

2
bc

)
.
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Figure 3. The center of the Kiepert hyperbola, the Steiner
point, the Euler circle and the Steiner ellipses of the standard
triangle ABC in an isotropic plane

The line
y = a

q
(q − 3bc)x− q − 3ap

2q
passes through the points D and Am because of

a

q
(q − 3bc)

(
− bc

2a

)
− q − 3ap

2q
= −1

2
bc+ 3bc

2q
(bc− a2)− q

= −1
2
bc+ 3bc

2q
· q − (bc− a2) = a2,

a

q
(q − 3bc)

(
−1

2
a

)
− q − 3ap

2q
= −1

2
a2 + 3a2bc

2q
− 3ap

2q
− q

= −1
2

(bc− q)− q = −1
2
q − 1

2
bc,

and owing to
a

q
(q − 3bc)3p

2q
− q − 3ap

2q
= −9p2

2q2 − q,
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it also passes through the point S from (2.7).

Figure 4. The tangent lines of the Kiepert hyperbola and
some important lines of the triangle in an isotropic plane

By (3.1), the line AD has the slope zero as well as the orthic line of the
triangle ABC (see [9]). Therefore, we obtain the following statement.

Corollary 3.4. With the labels from Theorem 3.3, the lines AD, BE,
CF are parallel to the orthic line of the triangle ABC (see Figure 4).

Analogous statements in the Euclidean case can be found in [13].
According to Theorem 7 in [21], two points T1 and T2, which in formulas

(2.1) correspond to values t1 and t2 of the parameter t, have the joint line
with the equation

(3.3) y = − q

9p
(2t1t2 + 3ωt1 + 3ωt2 − 2q)x+ 1

3
(t1t2 − 2q),

wherefrom by t1 = t2 = t the following statement follows immediately.

Corollary 3.5. The tangent line of the Kiepert hyperbola of the standard
triangle ABC at the point T from (2.1) is given by the equation

(3.4) y = −2q
9p

(t2 + 3ωt− q)x+ 1
3

(t2 − 2q).
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By t = 0, from (3.4) we obtain the equation

(3.5) y = 2q2

9p
x− 2

3
q

of the line GK and it is the tangent line of the Kiepert hyperbola of the
triangle ABC at the centroid G of that triangle.

The line GK and the Brocard diameter ΩK are the tangent lines of the
Kiepert hyperbola of the triangle ABC, therefore the line ΩG, the Euler line
of that triangle, is the polar line of the point K with respect to this hyperbola.
This implies the following statement.

Corollary 3.6. The Euler line of an allowable triangle is the polar line
of its symmedian center with respect to its Kiepert hyperbola.

One can assign the values b − c, c − a, a − b of the parameter t to the
points A, B, C on the Kiepert hyperbola of the standard triangle ABC (see
Theorem 4 in [21]). However, with t = b − c the right-hand side of equation
(3.4) can be written in the form

− 2q
9p

[(b− c)2 + 3ω(b− c)− q]x+ 1
3

[(b− c)2 − 2q]

= −2q
9p

[−(q + 3bc)− 1
q

(b− c)2(c− a)(a− b)− q]x+ 1
3

[−(q + 3bc)− 2q]

= − 2
9p

[−q(2q + 3bc) + (q + 3bc)(2q − 3bc)]x− q − bc

= 2
9p
· 9b2c2x− q − bc = 2bc

a
x− q − bc,

so we obtain:

Theorem 3.7. The tangent lines A, B, C of the Kiepert hyperbola of the
standard triangle ABC at its vertices A, B, C are given by the equations

(3.6) y = 2bc
a
x− q − bc, y = 2ca

b
x− q − ca, y = 2ab

c
x− q − ab.

In the Euclidean case the analogous statement can be found in [15].
Let us multiply the first equation in (3.6) by 3bc − 2q, and the equation

y = −ax+ 1
2
bc−q of the midline BmCm by 2(q+3bc). By adding the obtained

equations we obtain the equation where the coefficient next to y is 9bc, the
coefficient next to x is
2bc
a

(3bc− 2q)− 2a(q + 3bc) = 1
a

[2bc(3bc− 2q)− 2(bc− q)(q + 3bc)] = 1
a
· 2q2,

and the free coefficient is of the form

−(q + bc)(3bc− 2q) + (bc− 2q)(q + 3bc) = −6bcq,
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which can be reduced to 9bcy = 2
a
q2x − 6bcq. This equation determines

equation (3.5) of the line GK. Therefore, we have proved:

Theorem 3.8. The tangent lines of the Kiepert hyperbola of an allowable
triangle at its vertices meet the corresponding midlines at the points which lie
on a tangent line of this hyperbola at the centroid of the considered triangle
(see Figure 4).

Theorem 3.9. The tangent lines of the Kiepert hyperbola of an allowable
triangle at its vertices meet the corresponding sides of its orthic triangle at
the points which lie on the Brocard diameter of the considered triangle, i.e.,
on the isotropic asymptote of this hyperbola (see Figure 4).

Proof. For example, we can get the abscissae of the point A ∩ BhCh .
Namely, out of the first equation in (3.6) and the equation of the line BhCh

that can be found in the proof of Theorem 3.3 we get x = 3p
2q that proves the

claim of theorem.

In the Euclidean case the analogous statements of Theorems 3.8 and 3.9
can be found in [13].

Theorem 3.10. The line GK meets a nonisotropic asymptote of the
Kiepert hyperbola of the triangle ABC at the point K ′, which is symetrical to
the point K with respect to the point G and which lies on the Feuerbach line
of the triangle ABC (see Figure 3).

Proof. The point

(3.7) K ′ =
(
−3p

2q
,−q

)
lies on lines (3.5) and (2.5) because each of two numbers

2q2

9p

(
−3p

2q

)
− 2

3
q and −3p

2q

(
−3p

2q

)
− q − 9p2

4q2

is equal to −q. The midpoint of the point K ′ from (3.7) and the symmedian
center K, which is by [8] of the form K =

(
3p
2q ,−

1
3q
)

, is the centroid G =
(0,− 2

3 q) of the triangle ABC. The point K ′ also lies on the Feuerbach line
of that triangle, which by [2] has the equation y = −q.

According to [20], the inscribed Steiner ellipse S ′ of the triangle ABC
passes through the point K and its center is the point G. Therefore, we have
the following statement.

Corollary 3.11. The point K ′ from Theorem 3.10 lies on the inscribed
Steiner ellipse S ′ of the triangle ABC (see Figure 3).
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The line through the point K, parallel to line (2.5), is defined by

(3.8) y = −3p
2q
x+ 9p2

2q2 −
1
3
q.

By adding (2.5) and (3.8) and dividing the result by 2 we get (2.6). Therefore,
line (2.6) is the angle bisector of lines (2.5) and (3.8) and it passes through
the point K. This consideration enables us to establish the next theorem.

Theorem 3.12. If K is the symmedian center of an allowable triangle
ABC, then the homothety (K, 2) maps its Steiner axis to the nonisotropic
asymptote of its Kiepert hyperbola.

An analogous statement of Theorem 3.12 in the Euclidean case states
that the asymptotes of the Kiepert hyperbola of a triangle are parallel to its
Steiner axes and can be found in [11] and [16].

Let T be any point on the hyperbola K. Then a quadrangle ABCT is
inscribed in this hyperbola and the triangle with vertices L = BC ∩ AT ,
M = CA ∩ BT , N = AB ∩ CT is the autopolar triangle with respect to the
hyperbola K. Therefore, e.g. the line MN is the polar line of the point L with
respect to this hyperbola. Due to collinearity of the points B, C, L, polar
lines of these points pass through one point D. Polar lines of the points B, C
are the tangent lines at these points, and the point D is the pole of the line
BC, and the polar line MN of the point L passes through this point D. The
absolute point Ω and the centroid G of the triangle lie on the hyperbola K.
With T = G, the triangle LMN is a complementary triangle AmBmCm, and
with T = Ω, the triangle LMN is an orthic triangle AhBhCh of the triangle
ABC. Therefore, the point D also lies on the lines BmCm and BhCh, and
the point D is in fact the point D from Theorem 3.3. Analogously, it is valid
for the points E and F , i.e. we have:

Theorem 3.13. The intersection points D, E, F of the correspond-
ing sides of the orthic triangle AhBhCh and the complementary triangle
AmBmCm of an allowable triangle ABC are the poles of the lines BC, CA,
AB with respect to the Kiepert hyperbola of the triangle ABC. If T is any
point of that hyperbola then with L = BC∩AT , M = CA∩BT , N = AB∩CT
the lines MN , NL, LM pass through the points D, E, F , respectively.

Corollary 3.14. The complementary triangle AmBmCm and the orthic
triangle AhBhCh of an allowable triangle ABC are autopolar triangles with
respect to the Kiepert hyperbola of the triangle ABC.

The fact that D is the pole of the line BC can easily be verified directly
and analytically. The point D from (3.1) lies on the tangent lines B, C of the
hyperbola K at the points B, C because, for example for the tangent line B,
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out of the second equation in (3.6), we get
2ca
b

(
− bc

2a

)
− q − ca = −c2 − ca− q = bc− q = a2.

Therefore, the following is valid.

Theorem 3.15. Tangent lines of the Kiepert hyperbola of an allowable
triangle ABC at its vertices A, B, C determine the triangle DEF , whose
vertices D, E, F are the intersection points of the corresponding sides of
the complementary triangle and the orthic triangle of the triangle ABC (see
Figure 4).

In the Euclidean case the analogous statements of Theorems 3.13 and
3.15 are in [1], p.137, and in [14].

Theorem 3.16. The Kiepert hyperbola of an allowable triangle ABC
passes through the points U ′, V ′, W ′ which are anticomplementary to the
midpoints U , V , W of the segments AS ′, BS ′, CS ′, where S ′ is the Steiner
point of the triangle ABC, while AU ′, BV ′, CW ′ are the diameters of this
hyperbola.

Proof. By Theorem 3.1, the point S, complementary to the point S ′, is
the center of the Kiepert hyperbola. We obtain the equalities A+ S ′ = 2U ,
S′ + 2S = 3G, 2U + U ′ = 3G, where G is the centroid of the triangle ABC,
wherefrom

A+ U ′ = 2U − S′ + 3G− 2U = 3G− S′ = 2S,
i.e., S is the midpoint of the segment AU ′.

According to Theorem 8 in [21], two points T1 and T2 given by parameters
t = t1 and t = t2 from (2.1) and the point T ′

3 = (3p
2q
,

1
2
ωt3−

1
3
q) are collinear

if and only if t1 + t2 + t3 = 0. With t3 = 3ω, the point T ′
3 has the ordinate

3
2
ω2 − 1

3
q = − 1

6q2 (27p2 + 4q3)− 1
3
q = −q − 9p2

2q2

and it coincides with the point S from (2.7), the center of the Kiepert hyper-
bola of the triangle ABC. This proves the following theorem.

Theorem 3.17. The points T1 and T2 of the Kiepert hyperbola of the
standard triangle ABC with the parametric equations (2.3), which correspond
to the values t1 and t2 of the parameter t, are diametrically opposite points of
that hyperbola if and only if
(3.9) t1 + t2 = −3ω.

By t2 = 0 from (3.9), we find that t1 = −3ω, and by t = −3ω, according
to Theorem 5 in [21], from (2.1) we get T =

(
3p
q , 3ω

2
)

for a diametrically
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opposite point of the centroid G on the considered hyperbola K. The obtained
point T lies on the circumscribed Steiner ellipse of the triangle ABC and
therefore it is the fourth intersection point (with the exception of the points A,
B, C) of this ellipse with the hyperbola K. So we have proved the statement.

Theorem 3.18. The fourth intersection point of the circumscribed Steiner
ellipse with the Kiepert hyperbola of an allowable triangle ABC and the cen-
troid of this triangle are the endpoints of one diameter of this hyperbola (see
Figure 3).

The previous result implies the equality G+T = 2S, which together with
the equality 2S + S ′ = 3G gives T + S ′ = 2G. As by [20] the centroid G is
the center of the circumscribed Steiner ellipse of the triangle ABC, we get:

Theorem 3.19. The fourth intersection T of the circumscribed Steiner
ellipse S with the Kiepert hyperbola of an allowable triangle ABC is symmet-
rical to the Steiner point S ′ of that triangle with respect to its centroid, i.e.
TS ′ is a diameter of the ellipse S (see Figure 3).

In the Euclidean case the analogous statement is given in [12].
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Kiepertova hiperbola u izotropnoj ravnini

Vladimir Volenec, Zdenka Kolar–Begović, Ružica Kolar–Šuper

Sažetak. Pojam Kiepertove hiperbole dopustivog trokuta u
izotropnoj ravnini je uveden u ovom članku. Značajna svojstva
Kiepertove hiperbole su istražena u slučaju standardnog trokuta.
Relacije izmedu uvednih pojmova i nekih dobro poznatih eleme-
nata trokuta su takoder proučavane.
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