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INTRODUCTION

Laminate structures are typical lightweight elements
with expanding application in civil and mechanical en-
gineering. For the modeling and analysis of laminates
we used the classical laminate theory (CLT). The CLT is
an extension of Kirchhoff´s classical plate theory for ho-
mogeneous isotropic plates to laminated composite
plates with a high width-to-thickness ratio.

The assumptions for macro-mechanical modeling of
laminate are �1�:

1. All layers are in a state of plane stress, i. e.:

� � �z xz yz� � � 0. (1)
2. Normal distances from the middle surface remain

constant.
3. The transverse shear strains � �xz yz, are negligi-

ble.
In-plane strains can be noted as:

� � �( , , ) ( , )x y z x y z� 	 , (2)
where:
� is the vector of the in-plane or membrane strains,
� is the vector of curvature subjected to bending and

twisting.

The stress resultant force vectors are:

N E z dz E z zdz
h

h

h

h

� 	



	




	

� �( ) ( )
/

/

/

/

� �
2

2

2

2

,

M E z zdz E z z dz
h

h

h

h

� 	



	




	

� �( ) ( )
/

/

/

/

� �
2

2
2

2

2

, (3)

where:
N is the in-plane stress resultant force vector,
M is the resultant moment vector,
E is matrix of elasticity.

EQUILIBRIUM EQUATIONS

The equilibrium equations are formulated for a plate
element (Figure 1) and yield three force and two mo-
ment equations:
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p1, p2, p3 are plate loads in the x, y, z direction respec-
tively

For a coupling of in-plane loads and lateral deflec-
tion, the equilibrium Eqs (4) will be formulated for the
deformed plate element and are modified to:
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In the general case of a symmetric laminate with
p3 = 0, the plate equation can be expressed by:
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where:
D is bending stiffness matrix.

The elements of the matrix D are:
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The buckling load is like natural vibration independ-

ent of the laterial load and p3 is taken to be zero �2�.

FINITE ELEMENT ANALYSIS

The basic idea of the FEM is a discretisation of the
continuous structure. The discretisation is defined by fi-
nite element mesh make up of elements nodes. The start-
ing point for elastostatic problems is the total potential
energy. In accordance with the Ritz method the approxi-
mation is used for displacement field vector u:

~( ) ( )u x N x� �, (8)
where N is the matrix of the shape functions, that are
functions of the position vector x x y z� ( , , ) and v is the
element displacement vector.

For the stresses and strains we obtain from Eq. (8)
the Eq. (9):

� �( ) ( ) ( )x E x EDN x v� � ,

�( ) ( ) ( ) ( )x Du x DN x v B x v� � � (9)

E is the elasticity matrix obtained with suitable trans-
formations in two stages, firstly from the principal mate-
rial directions to the element local directions and sec-
ondly to the global directions. B is the strain matrix,

With the approximation (Eq. 8) the total potential en-
ergy is a function of all the nodal displacement compo-
nents arranged in the element displacement vector v.

The variation of the total potential energy:
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leads to:

�v Kv f f
T

p q( )
 
 � 0, (11)

where:
K is the symmetric stiffness matrix:

K B EBdV
T

V

� � , (12)

and fp and fq are the vectors of the volume forces and the
surface forces:

f N pdVp

T

V

� � , f N qdOq

T

Oq

� � . (13)

If the components of �v are independent of each
other, we obtain from Eq. (11) the system of linear equa-
tions:

Kv f f f fp q� � 	, . (14)
All equations considered above are valid for a single

finite element and they should have an additional index
E. We have the inner element energy:
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with the element stiffness matrix:
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where:
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Figure 1. Stress resultants applied to a plate element



T is the transformation matrix with:

T T
T( ) ( ( ))� �� 
1. (17)

Because the energy is a scalar quantity, the potential
energy of the whole structure can be obtained by sum-
ming the energies of the single elements. By a Boolean
matrix LE the correct position of each single element is
determined. The element displacement vector vE is posi-
tioned into the system displacement vector by the equa-
tion:

v L vE E� , (18)
then we obtain the system equation by summing over

all elements:

L K L v L f fiE
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The system stiffness matrix is also symmetric, but it
is a singular matrix. After consideration of the boundary
conditions of the whole system, K becomes a positive
definite matrix and the system equations can be solved.

The finite element method (FEM) is the effective
method for the numerical solution of problem formu-
lated in partial differential equation. For buckling analy-
sis we used FEM in program COSMOS/M. We made
discretization of the structure into a number of finite ele-
ments SHELL4L �3�. SHELL4L is 4-node multi-layer
composite quadrilateral plate and shell element with
membrane and bending capabilities. Each layer is asso-
ciated with identical orthotropic material properties.
The element SHELL4L is 4-node multi-layer element
with membrane and bending capabilities. Each node has
6 degrees of freedom and than we obtain the element
stiffness matrix with size �24x24� �4�.

EXAMPLE

For a rectangular laminate plate consisting of 4 lay-
ers with the given material constants a buckling analysis
is carried out. The plate is simply supported at all bound-
aries and loaded by a uniaxial uniform load (Figure 2).
Material constants are listed in Table 1 �5�.

For the stacking structure two cases shall be consid-
ered, a) symmetric and b) antisymmetric laminate struc-
ture (Figure 3a and b).

The fibre angle is to vary: � = 0o, 30 o, 45 o, 60 o, 90 o.
For the buckling analysis in COSMOS/M a unit pressure

loading must be created, and the program calculates
a factor to multiply the unit loading for obtaining the
buckling load. At the Figure 4 are buckling modes for
symmetric laminates � = 30 o, 45 o, 60 o, 90 o, respec-
tively. The results for the buckling factors are shown in
a diagram in Figure 5.

CONCLUSION

The paper deals with a modeling of buckling analysis
of laminate plates. To predict the inception of buckling
for plates in-plane resultant forces must be included.
The buckling modes are symmetric to the symmetric
axis in loading direction. For the symmetric laminates
the buckling modes for � = 0o - 30 o are nearly the same.
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Figure 2. Rectangular laminate plate

E1 / �GPa� E2 / �GPa� G12 / �GPa� �12

210 21.7 5.4 0.17

Table 1. The material properties of each layer

a) symmetric b) antisymmetric

Figure 3. Stacking sequence of layers

Figure 4. Buckling modes for symmetric laminates
� = 30 o, 45 o, 60 o, 90 o, respectively

� = 30 o � = 45 o

� = 60 o

� = 90 o

Figure 5. Results of the buckling analysis



For fibre angles � = 30 o, 45 o, 60 o, 90 o the buckling
modes have different shapes, they are shown in the
Figure 4. The buckling modes for the antisymmetric
laminate are very similar but not identical to the buck-
ling modes of the symmetric laminate. A fibre angle
near 45 o leads to the highest buckling load for a qua-
dratic plate (Figure 5). It shall be noted that the
antisymmetric stacking sequence of the laminate im-
proved the buckling stability.
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Note: The responsible translator for English language is the Author E.
Kormaníková.

List of symbols:

(�z, �xz, �yz) - transverse normal and shear stresses
�xz, �yz, - transverse shear strains
� - vector of in-plane strains
� - vector of midplane strains
� - vector of curvature subjected to bending and twisting
N - in-plane stress resultant force vector
M - resultant moment vector
E - matrix of elasticity
V - transverse shear force vector
p1, p2, p3 - plate loads in the x, y, z direction
u = (u, v, w) - displacement field vector
D - bending stiffness matrix
N - matrix of the shape functions
x = (x,y,z) - position vector
v - element displacement vector.
B - strain matrix
� - normal stress vector
K - symmetric stiffness matrix
fp , fq - vectors of the volume forces and the surface
forces
UE - inner element energy
T - transformation matrix
� - fibre angle
LE - Boolean matrix
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