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Dynamics of two psychomotor activities: Chaotic properties

ANA PROROKOVIC and LJILJANA GREGOV

The aim of this study was to find out whether observed time series of complex reaction time (CRT) and
tapping intervals (TI) reflect nonlinear, chaotic dynamics of underlying cognitive and motor processes. Seven
female subjects, aged between 19-25 participated in 2x2 within groups factor experiment (two levels of task
difficulty and two types of performance; single and dual). Seven time series were observed: Four CRT series
(single and dual performance of two primary tasks) and three TI time series (single performance and dual perfor-
mance with two primary tasks. Analysis of CRT series and TI time series included calculation of various nonlin-
ear parameters (correlation dimension, largest Lyapunov exponent), as well as an application of quantitative
recurrence analysis (%determinism, divergence) and the surrogate data technique, for testing nonlinearity. The
results indicated the existence of chaotic dynamics in human response time, as well as in tapping data. In general,
it seems that increased task requirements (difficulty) caused a reduction in the dimensionality of CRT series, i.e.
underlying system dynamics. It was also found that one of the nonlinear properties of the CRT series and TI time
series was their sensitive dependence on initial conditions. Maximum Lyapunov exponents for CRT and TT time
series were greater for more complex tasks, indicating deterministic and chaotic nature of undergoing cognitive

and motor processes.
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Recent, theoretical and quantitative concepts of chaos
theory have been found applicable in the field of psycholo-
gy and related areas (Guastello, 2000). Chaos theory itself
is variously referred to as “deterministic chaos”, “the cha-
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os paradigm”, “chaotic”, “chaos science”. Some talk more
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generally about “dynamic system theory”, “nonlinear dy-
namics” or “theories of complexity” (Ayers, 1997).

Chaos has been formally defined as “stohastic behav-
iour in a deterministic system”, i.e. a system which dis-
plays apparent random behaviour, but has an underlying
pattern of lawfulness. The most effective contribution of
nonlinear analysis resulting from chaos theory is a better
understanding of underlying processes in human behavior-
al dynamics. For example, the phenomenon of chaos (sensi-
tive dependence) itself occurs only in nonlinear interde-
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pendent systems. Nonlinearity alone is not enough. The
nonlinear revolution, then, is about exploring the nature of
nonlinear interdependency, which, in the final analysis, is
what all real world systems are (Robertson, 1995).

Although nonlinear methods of data analysis have been
in use for more then ten years, there is a rather small num-
ber of studies involving dynamical aspects of psychomotor
and cognitive behavioral systems. Since reaction time (RT)
may provide a good measure of some cognitive dynamics,
there has been much more interest in this area recently (Beltz
& Kello, 2004; Ding, Chen, & Kelso, 2002; Gilden, Thomn-
ton, & Mallon 1995; Gilden 1997; Kelly, Heathote, Heath
& Longstaff, 2001, Pressing, 1999). Traditionally, fluctua-
tions of RT are characterized as stochastic (Kelly et al, 2001).
From this perspective, these fluctuations are composed of
a true score plus random error. Furthermore, common sta-
tistical analysis often ignores two sources of information,
dynamic structure in the inter-trial RT fluctuations and in-
dividual differences in RT variability. Some recent investi-
gations have showed clear evidence for non-random dy-
namic structure in performance fluctuations: short-term lin-
ear dependencies and longer-term rhythms (Gilden et al.,
1995, Kelly et al., 2001, Pressing, 1999). These linear de-

35




PROROKOVIC and GREGOV, Dynamics of psychomotor activities, Review of Psychology, 2004, Vol. 11, No. 1-2,35-44

pendencies between sequential responses have been found
in vigilance tasks, serial response task and some percep-
tion tasks (Kelly et al, 2001). In general, dynamical analy-
sis (linear and nonlinear) examines data for evidence of
dependence between its states at different time intervals
and implies that future states are a function of past states.
While linear dynamic systems produce relatively simple
and regular outputs (time series data), nonlinear dynamic
systems usually produce complex output. On the other hand,
complex output can be produced by nonlinear interactions
between a small number of variables in which case it is
considered the low dimensional —chaos. In the same non-
linear context, interaction of large number of variables pro-
duces high dimensional or hyper-chaos (Heath, 2000). Ex-
istence of low dimensional chaotic structure opens up the
possibility that RT fluctuations can be modeled by relative-
ly simple recursive equations with only a few parameters.
From this point of view, Cooney & Troyer (1994) proposed
a simple nonlinear difference equation to describe the dy-
namics underlying reaction time on the Steinberg short-term
memory scanning task. In this task, subjects are presented
with a set of numbers or letters to be remembered. A probe
item is given following presentation of the memory set. The
task is to make a manual response indicating whether or
not the probe item belongs to the memory set. They hy-
pothesized that trial to trial variability in speed of access to
recently presented information is deterministic in nature and
that it reflects important properties of immediate memory.
Their model posits that RT is a function of the interaction
of two control parameters: susceptibility to interference and
episodic activation. Evaluation of the model indicated an
exceptionally good fit with the raw empirical observations.
Brown and Heathcote (2005) proposed the so-called bal-
listic (i.e. deterministic within trial) model of RT variabili-
ty, which is capable to determine relationship between er-
ror and correct RT, but can also model other benchmark
behavioral phenomena.

Generally, nonlinear analysis of data, necessary includes
assessments of various nonlinear parameters and testing
nonlinearity of data (Heath, 2000). Most frequently used
quantitative indices of nonlinear dynamics are parameters
of system dimensionality, Lyapunov exponents and indi-
ces resulting from recurrence quantification analysis.

Therefore, the aim of this study was to find out whether
series of complex reaction time (CRT) and tapping inter-
vals (TI) contain some kind of nonlinear, chaotic dynamic
structure. Several nonlinear statistical techniques have been
applied, in attempt to:

- assess the dimensionality of the data;

- assess the possibility that the data are the product of
a deterministic system;

- distinguish nonlinear, linear and noise components
in time series.
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METHOD

Subjects

Seven female subjects (volunteers), university students,
aged between 19-25 participated in this study. All subjects
were right-handed.

Experimental situations

The study consisted of five comparative experimental
situations with duration of twenty minutes each:
1. CRT task 1 performed as single task (independently),
2. CRT task 2 performed as single task (independently),
3. Tapping task performed as single task (independently),
4. CRT task 1 performed as dual task (simultaneously with
tapping task),
5. CRT task 2 performed as dual task (simultaneously with
tapping task).

«Dual task” situations included participant’s work on
two psychomotor tasks simultaneously. The primary task
was CRT task, and secondary task was tapping task. It means
that subject had to be oriented primarily on CRT task per-
formance, while the tapping task was performed in depen-
dence of allowance of the primary activity.

Those experimental situations produced 7 different types
of time series: 3 TI time series (independent performance,
simultaneous performance with CRT task 1 and simulta-
neous performance with CRT task 2) and 4 CRT series (in-
dependent and simultaneous performance of CRT task 1
and CRT task 2). The lengths of CRT series vary (interindi-
vidually) between 500 and 800 time points and the lengths
of TI time series vary between 2500 and 4500 time points.

Before starting the main experiment, subjects exercised
single and dual task performance about one hour. The time
sequence of experimental situations was rotated by latin
square principle between subjects.

CRT task description
Tapping task

In this simple psychomotor task, subject had to “tap”
on one computer key (“space”) with his left (non-domi-
nant) hand and by his own rhythm, as regularly, as he could.

CRT task 1

The stimulus (two numbers) was presented on comput-
er screen. One number was randomly chosen odd number,
and second number was randomly chosen even number (in
the range 1-20). The subject’s task was to react on position
of even number by pressing the corresponding key with his
right (dominant) hand.
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CRT task 2

The presentation of stimulus was the same as in the CRT
task 1. The subject’s task was to react using right key if
even number was larger then odd number, or to react using
the left key if even number was smaller then odd number.

CRT task 1 CRT task 2

19 16 18 15
] ®
0 ° W
f even < even > >
/

corect response corect response

Program was run under Windows 98 operating system
(DirectRT v2004; Jarvis, 2000). For greater precision of
the keyboard, stimulus exchange and time registration pro-
gram uses DirectX drivers.

Nonlinear data analyses

Quantitative nonlinear dynamics parameters and surro-
gate data were estimated based on the following methods:

a) CRT serie (single performance/task 1)

1000

1. Correlation dimension (D,): Grassberger & Proccacia
(1983) technique;

2. Largest Lyapunov exponent (LLE): Wolf, Swift, Swin-
ey, and Vastano (1985) method;

3. Surrogate data: Theiler, Eubank, Longtin, Galdrikian and
Farmer (1992) adjusted Fourier transform surrogates
(AAFT) algorithm;

4. Recurrence Quantification Analysis RQA: (Zbilut,
Giuliani, & Webber, 1998) determinism (DETER), di-
vergence (DIVERG).

RESULTS

In general, descriptive parameters of CRT series (mean
and variability measures) for different experimental situa-
tions were sensitive to task difficulty, but could not differ-
entiate single from dual task performance (Table 1). Graph-
ical examples of CRT and TI time series are presented on
Figure 1. As could be expected, variability parameters of
TI series were greater in situations where tapping task was
performed as dual task. Therefore, the main interest of this
study was to get insight in this variability, i.e. in dynamic
structure of measured time series. Are fluctuations of CRT
and TI really random, or maybe deterministic and nonlin-
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c) CRT serie (dual performance/task 1)
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d) TI time serie (dual performance/task 2)

Figure |. CRT and TI time series (examples)
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Table 1
Descriptive statistics for different experimental situations
M (ms) SD (ms) vV DM (ms) DSG (ms)
Tapping task (single) 298.92 70.87 0.24 63.43 67.82
Tapping task (dual with CRT task 1) 313.59 121.43 0.39 112.20 110.27
Tapping task (dual with CRT task 2) 295.06 94.70 032 98.00 97.51
CRT task 1 (single) 620.10 121.86 0.20 109.04 104.87
CRT task 1 (dual) 611.09 115.04 0.19 105.79 103.73
CRT task 2 (single) 951.06 226.55 0.24 181.99 180.31
CRT task 2 (dual) 859.59 195.67 0.23 192.04 166.29

Note. V-index of variability (s&/M); DM-index — mean value of absolute differences between successive time intervals; DSG - standard deviation of

absolute differences.

ear in nature? To answer this question, different nonlinear
analyses were performed.

To distinguish linear components of time series, “white
noise” components, and potential chaotic properties, sur-
rogate data technique has been performed. Surrogate time
series calculated with algorithms by Theiler et al. (1992)

have the same distribution (M, SD) and the same spectra as
original time series, but the phases of linear components
are randomly shuffled. Thus, comparing the original and
surrogate data properties give us an opportunity to discuss
about possible nonlinear aspects of the dynamic system
(Prorokovi¢, 2002).
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Figure 2. Graphical representations of different dynamical systems
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Estimates of dimensionality

The concept of dimension could be used in more than
one sense: number of dimensions of Euclidean space, the
number of variables in a dynamic system and so-called frac-
tal dimension which often characterizes irregular geomet-
ric objects, i.e. dynamic systems presented in phase-space.
Fractal dimension is also a term related to fractal objects
(for example Cantor set, Koch snowflake, Mandelbrot set,
etc.), which are known as self-similar mathematical struc-
tures produced by simple repetitive mathematical opera-
tions. Some of the most important fractal dimensions for
practical applications are: Huseldorff-Besicovitch dimen-
sion, correlation dimension, and Hurst exponent.

From a non-linear dynamical perspective, variability is
interaction of a limited number of non-independent non-
linear dynamical factors (Frey & Clayton, 1996). There-
fore, assessing the fractal properties of an observed time
series could be very informative; chaotic system usually
has fractal dimension greater than 2, periodic (sine wave)
and quasiperiodic systems (interferention of two or more
sine waves) between 1 and 2, while random systems (noise)
do not have finite dimensionality. Graphical representations
of those systems are shown on Figure 2.

Correlation dimension

The most popular attempts to characterize attractors and
dimensional complexity have been based on the correla-
tion dimension as proposed by Grassberger and Procaccia
(1983). Their algorithm has been performed to calculate
correlation dimension for CRT series and TI time series

12
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TAPPING TASK (SINGLE) TAPPING TASK (DPUAL 2)
TAPPING TASK (DUAL 1)

Figure 3. Correlation dimension of TI time series

(Figures 3 and 4). Correlation dimension is typically com-
puted as the slope of the correlation integral from a recon-
structed state-space.

Correlation dimension could be interpreted as fractal
dimensionality, an indicator of the information complexity
of a time series, i.e. number of dimensions required to pre-
dict behaviour of some dynamic system (Heath, 2000).

For the TI time series correlation dimension varied be-
tween 7 and 10, while for the CRT series it varied between
6 and 8. The results are similar to those of Frey and Clay-
ton (1996) and indicate existence of 6-8 non-independent
nonlinear dynamical factors, which are determining vari-
ability of CRT data. Surrogate data had not finite dimen-
sionality, which could mean that Gaussian noise fits the
data much better than linear sinusoidal waves. Although
there was a tendency of greater dimensionality in tapping
intervals during simultaneous performance (dual task), there
was no significant difference between correlation dimen-
sions of TI series in different experimental situations
(F(2,12) = 0.79, p>.05).

On the contrary, dimensionality of CRT series was sig-
nificantly lower for more difficult task than for the easier
one (F(1,6) = 6.65, p<.05), while there was no significant
difference in dimensionality of CRT during independent
and simultaneous performance (F(1,6) = 0.13, p>.05). In
general, it seems that increased task requirements caused a
reduction in the dimensionality of CRT underlying system
dynamic. Comparing these results with descriptive variabil-
ity parameters (SD, DM, V, DSG), we could say that greater
variability of CRT in more difficult task did not reflect in-
fluence of more random factors and/or linear factors, but
could reflect complex dynamics of some nonlinear system.
As Kelly et al. (2001) concluded, there is a clear evidence

10,0,

=
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80 7.57

CORRELATION DIMENSION

I SINGLE TASK
%5 DUALTASK

TASK1 TASK2

Figure 4. Correlation dimension of CRT time series
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for chaotic dynamics in human response time data, but it is
difficult to detect low dimensional chaos in experimental
data filled with noise. That is because the noise component
has significant effect on increased dimensionality of time
series. In spite of those facts, it could be speculated that
psychomotor dynamics in tapping task, as well as in CRT
task, may be of finite dimensionality, which possibly orig-
inates from simultaneous psychophysiological processes
spanning in range from 6 to 10.

Estimates of predictability (instability)

The correlation dimension is not necessarily correlated
with predictability and could not be the only indicator of
possible chaotic dynamics. For example, noise is “very
complex” but there is no predictability at all. On the other
hand, a waveform, which is linearly built up by very many
sine waves, may be understood as a complex signal, but it
remains very predictable. One of the most important chaot-
ic properties of some dynamic system is sensitivity to the
initial conditions (SIC). That is, two nearby points in the
phase-space diverge as the orbits (trajectories) of attractor
progress. The points are known to diverge exponentially,
and this divergence could be examined in terms of Lyapunov
exponents spectrum. The Lyapunov exponent and chaos
occurs when at least one exponent in the spectrum is posi-
tive. A value of zero indicates a periodic, totally predict-
able system; positive exponents indicate chaotic system
behaviour, whereas negative exponents suggest that sys-
tem does not show chaotic behaviour (noise). Therefore, to
gain more information about possible chaotic features of
the system dynamics, it should be sufficient to compute the
largest Lyapunov exponent. Positive LLE suggests that time
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Figure 5. Largest Lyapunov exponent (LLE) of TI time
series
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series exhibit sensitive dependence on initial condition,
which is characteristic of chaotic systems. From this point
of view, the less predictable the time series, the greater is
LLE.

Two more quantitative parameters related to system pre-
dictability are divergence and determinism. These indices
are result of quantitative recurrence analysis, another very
popular nonlinear approach concerned with graphical rep-
resentation of system dynamics (Zbilut et al., 1998). Com-
pared with other nonlinear indices, those parameters could
also be very informative.

Largest Lyapunov exponent

As we can see, complexity of some dynamic system
depends not only of the number of variables defining the
system, but on the amount of noise in the data as well. In
practical applications, a time series generated by a deter-
ministic, possibly chaotic, nonlinear system will have su-
perimposed measurement noise. This noise will contami-
nate the computation of quantitative indices such as corre-
lation dimension and LLE (Heath, 2000). So, the next step
in analysis was to calculate LLE, that is, a measure of pre-
dictability and possible chaotic dynamics (Figures 5 and 6).

The LLE was positive for both time series (T1 and CRT),
but not in all experimental situations (F(2,12) = 11.29,
p<.05). When task performance was simultaneous, T time
series exhibit sensitive dependence on initial condition, and
could be chaotic. On the contrary, surrogate data exhibit no
sensitivity on initial condition, i.e. Lyapunov exponent was
approximately zero (F (1,6) = 11.5, p<.05, F.,(1,6) =
20.92, p<.05). In CRT series LLE was greater for more dif-
ficult task, while it was very low for easier task (F(1,6) =
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Figure 6. Largest Lyapunov exponent (LLE) of CRT series



PROROKOVIC and GREGOV, Dynamics of psychomotor activities, Review of Psychology, 2004, Vol. 11, No. 1-2, 35-44

3.84, p<.05). These results strongly suggest the possibility
that CRT series and TI time series are the product of some
deterministic, chaotic, underlying dynamic system. Heath
(2000) computed Lyapunov spectrum for the reaction time
series and obtained LLE of 0.215. Because the sum of
Lyapunov exponents was positive and data exhibited high
finite dimensionality, he suggested that the reaction time
series is nonlinear, but quite noisy. There were not signifi-
cantly differences in LLE between single and dual perfor-
mance (F(1,6) = 1.11, p>.05).

Since application of Wolf’s algorithm to short and noisy
time series is very spurious, the data of this study could be
treated with considerable reserve (Elbert, Ray, Kowalik,
Skinner, Graf, & Birbaumer, 1994). Therefore, to gain more
information about the non-linearity and predictability of
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the TI and CRT series, Recurrence quantification analysis
(RQA) was applied. Since RQA methodology is indepen-
dent of limiting constraints such as data set size, data sta-
tionarity and statistical distributions (Zbilut et al, 1998),
two additionally nonlinear parameters, which are related to
predictability of time series, were calculated (divergence
and determinism).

Divergence

Divergence of time series trajectories is defined by the
reciprocal of the longest line segment in the recurrence plot,
plotted in the phase space (rescaled by multiplying by 1000).
Examples of recurrence plots for different dynamical sys-
tems are shown on Figure 7.
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;)mC:RT serie (an e

Figure 7. Examples of recurrence plots for different dynamical systems
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Figure 8. Index of divergence of TI time series

The less predictable the time series, the greater is diver-
gence. Divergence is usually smallest for structured cyclic
sample, greatest for the noise sample, while it is intermedi-
ate for the chaotic sample (Heath, 2000).

In general, divergence (Figures 8 and 9) was greater for
surrogate data than for the original data (F(1,6) = 22.38,
p<.05, F.(1,6) = 5.65, p<.05). Similar results were ob-
tained by Heath (2000) on interkey tapping time series, and
handwriting velocity data. He suggested the presence of
determinism in those time series, but could not differenti-
ate effects of noise component on divergence parameter.
According to same author, divergence is related to LLE;
the larger the divergence, the greater is evidence for chaos
or perhaps noise.

Divergence computed on CRT and TI time series could
also be related to correlation dimensions, because surro-
gate data are primarily saturated with noise. There was also
significant task difficulty effect on divergence in CRT se-
ries (F(1,6) = 15.12, p<.05), but not in TI time series
(F(2,12) = 0.32, p>.05). It was greater for more difficult
task then for easier task. In comparison to LLE, it could be
presented that CRT in more complex task is more chaotic
then in easier task. There were no significant differences in
divergence of CRT series during independent and simulta-
neous task performance (F(1,6) = 0.4, p>.05).

Determinism

This parameter relates to the predictability of the time
series. Determinism (%DETER) is defined by the ratio of
the number of recurrent points forming upward diagonal
lines and the total number of recurrent points (Heath, 2000).
The percentage recurrence (%RECUR) was computed by
dividing the number of recurrent points in the upper trian-
gular region of the recurrence plot by the area in that re-
gion. Index of determinism is defined by the ratio of %DE-
TER and %RECUR. It is usually greatest for the cyclic
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time series and the lowest for white noise. Chaotic time
series has an intermediate level of determinism.

As could be expected, results indicate that level of de-
terminism is significantly lower in surrogate series (F. (1,6)
= 40.65, p<.05, F,.(1,6) = 16.29, p<.05; Figures 10 and
11). There were also significant differences in TI time se-
ries and CRT series depending on a task difficulty (F(2,12)
=5.05, p<.05; F(1,6) = 6.09, p<.05). It seems that indepen-
dent performance of tapping task, as well as CRT series in
less complex task, could be primarily determined by linear
components. On the contrary, TI series during simultaneous
performing and CRT series in more complex task, could be
primarily determined by non-linear components. There were
no significant differences in determinism of CRT series
during independent and simultaneous task performance
(F(1,6) = 2.6, p>.05).

DISCUSSION AND CONCLUSIONS

Variability of complex reaction times and tapping time
intervals could not be interpreted as stochastic fluctuations
and could not be treated as error of measurement. Dimen-
sionality of both psychomotor activities (simple tapping
activity, response time dynamic) is probably finite and pos-
sibly originates from simultaneous psychomotor processes
spanning in range from 6 to 10.

Dynamics of both psychomotor activities could be de-
terministic in nature, that is, produced by non-linear and
linear interactions of different variables. The clear evidence
of non-linear determinism was found in tapping activity
during simultaneous performance, and in the response time
dynamics during more difficult task performance. Linear
determinism was found in the less complex activities (sim-
ple tapping task independently performed and response time
dynamics produced by performance of easier CRT task).

Greater variability of output variables produced by more
complex task performance does not necessarily mean more
complex dynamical structure of underlying system as well.
On the contrary, greater variability in output variables could
be determined by non-linear interactions between a small-
er number of factors, indicating the existence of less com-
plex dynamical structure of underlying processes (low di-
mensional chaos). Mental load related to easier CRT task is
lower than in more complex task, which implies greater
influence of more uncontrollable factors (i.e. attention fluc-
tuations, motivation, environmental factors etc.) on psy-
chomotor dynamics. Those uncontrollable factors could
reflect on correlation dimension of the dynamic system by
making it greater. In contrast, factors which are related di-
rectly to task requirements are dominant in the more com-
plex CRT task, mental load is greater, uncontrollable fac-

tors’ influence on psychomotor activity are probably sup-
pressed and nonlinear interaction of underlying processes
are more evident.

Simultaneous performance of two psychomotor activi-
ties has significant effect on dynamical properties of sec-
ondary activity. Those properties could not be explained
only by descriptive variability parameters, but with the
changes in whole dynamical structure of underlying pro-
cesses.

Based on summarised arguments (all computed indi-
ces), it could be concluded that complex reaction time and
simple tapping activity are most probably product of non-
linear, chaotic dynamics of some (6-10) cognitive and mo-
toric simultaneous and interacting processes.
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