The Sedimentological Significance and Stratigraphic Position of Coarse-Grained Red Beds (?Oligocene) of the Northwestern Margin of Mt. Požeška Gora (North Croatia)

Josip HALAMIĆ, Mirko BELAK and Davor PAVELIĆ

Keywords: Coarse-grained clastics, Continental sediments, Red beds, Oligocene, Mt. Požeška Gora, Croatia

Abstract

Coarse-grained clastic sediments of rhyolitic-granitic composition which are associated with the migmatic complex of Mt. Požeška Gora were previously designated as granites. They are deposited in a continental environment or, more precisely, in an alluvial fan or proximal parts of a braided river system, or in rapid mountain streams during a strong rainfall. According to their spatial relationship with respect to surrounding Upper Cretaceous granites and rhyolites and Otniangan sediments; and considering the facies characteristics, we assume that these sediments belong to the Oligocene.

1. INTRODUCTION

Coarse-grained clastic sediments of rhyolitic-granitic composition occur in the northeastern part of Mt. Požeška Gora, frequently associated with granites. Due to the high degree of weathering, it is difficult to distinguish them from granites. This is very probably one reason why they were not registered by the previous investigators who examined migmatic rocks of this area.

Migmatic rocks of Mt. Požeška Gora, along with the coarse-grained clastic sediments linked to them, have been investigated since the middle of the last century. So, STUR (1861, 1862) described “felsic porphyrites” and “porphyritic tuffs” in Mt. Požeška Gora. Following the works of KOCH (1917, 1919), TUCAN (1919) and LASKAREV (1931), BARIC & TAJDER (1942) were first who distinguished, in the investigated area, granitic group, acid volcanic group and basic volcanic group, respectively. Volcanic rocks were described, in more details, by TAJDER (1944, 1947, 1955, 1956, 1959), Lately, ŠPARICA et al. (1979, 1980), MAJER & TAJDER (1982), PAMIC, (1988), PAMIC et al. (1990), PAMIC & LANPHERE (1991) were able to distinguish various types with regard to texture and structure. Based on examined geological relationships between volcanic and sedimentary rocks, PAMIC & ŠPARICA (1983) and ŠPARICA & PAMIC (1986) concluded that volcanic rocks belong to the Upper Cretaceous, which was proved by radioisotope dating of both extrusive and intrusive acidic rocks only (PAMIC et al., 1990).

During the geological mapping of Mt. Požeška Gora for the Geological Map of the Republic of Croatia (1:50,000), the above mentioned rocks were singled out and the mode of their occurrence and their possible stratigraphic position were established. The geological implications of this distinction are noteworthy.

2. GEOLOGICAL POSITION

Mt. Požeška Gora is situated about 150 km ESE of Zagreb (Fig. 1) and occupies the middle part of southern chain of mountains which encompass the Požega valley. Migmatic rocks, coupled with coarse-grained clastic rocks of rhyolitic-granitic composition, are spread throughout the northeastern part of Mt. Požeška Gora.

Volcanic rocks are spread from the Bukovica Creek, to the west, to the town of Pleternica, to the east.

The majority of the complex consists of alkali feldspar rhyolites (PAMIC et al., 1990), the major wide-spread being in the eastern part, where they formed a disintegrated rhyolitic body. Much smaller occurrences of alkali feldspar rhyolites are found in the western part of the volcanic complexes, where they
show up as a gravity nappe over basic rocks or, as a tectonic window below the granitic gravity nappe unit (HALAMIC, 1992).

Acidic intrusive rocks were observed almost exclusively in the area between Novo Selo Požeško, Gradski Vrhovci and Požega, where they extend over 4.5 km². According to STRECKEISEN (1973), these rocks are included in the group of alkali feldspar granites, more precisely alaskites (PAMIC, 1988). Different types of rocks which build up this group are: alkali feldspar granite, granophyric alkali feldspar granite and alkali feldspar granite porphyry. These rocks are separated from the Tertiary sediments in the west by the north-south striking fault following the valley of the Bukovica Creek. Toward the east, granites are in the tectonic contact with Upper Cretaceous and Ottangian sediments marked by a left strike-slip fault of northeast-southwest direction (Fig. 1).

The extent of basic rocks is greatest in the middle part of the magmatic complex, where they show up in the form of lavas, while smaller occurrences can also be found in the western part. However, Upper Cretaceous sediments, alkali feldspar rhyolites and granites are cut across by numerous diabase veins (HALAMIC et al., 1990; HALAMIC, 1992).

Coarse-grained clastic rocks of rhyolitic-granitic composition were observed only in the western part of the previously described magmatic complex of Mt. Požeška Gorn, where they are exclusively associated with granites, being in unconformable contact with them. The greatest extent of these sediments were found in both sides of the Vučjak Creek south of Požega, together with small occurrences directly north and west of the village of Gradski Vrhovci. The investigated sediments occupied a surface of about 1.5 km² (Fig. 1).

Between Drškovci and Požega, effusive rocks are pushed in reverse position over the coarse-grained clastics which are in tectonic contact with Ottangian sediments in this place along a strike-slip fault. The relationship between coarse-grained clastics and other Tertiary sediments is unknown, due to the cover of Quaternary deposits.

Between the Vučjak and Komušanac Creeks, south of Požega, Ottangian conglomerates and sandstones lie unconformably over rhyolitic-granitic coarse-grained clastic sediments.

It is interesting to mention that the rock outcrops in the yard of a grammar-school in Požega are built of rhyolitic-granitic coarse-grained clastic rocks (Fig. 2), instead of alkalic granites.
3. DESCRIPTION OF FACIES

Coarse-grained sediments of rhyolitic-granitic composition are usually massive, very solid and strongly tectonized rocks, well distinguished from Neogene sediments. Due to the high degree of weathering in outcrops, it is difficult to separate them from the surrounding cataclastic alkali feldspar granites. The surface of coarse-grained clastic sediments is covered with limonite and hematite coatings, which give them a yellowish or reddish colour, masking their clastic characteristics.

The bedding was hardly recognized, and in most cases this hampered us from defining the superposition in the sediment sequences. This was the main reason why sedimentological columns were not recorded, and why several samples from the particular locations were taken instead. After cutting and polishing some, significant features were emphasized.

The coarse-grained sediments of rhyolitic-granitic composition are represented by breccias intercalated with sandstones.

The breccias are clast-supported (Figs. 2, 3, 4), or, more rarely, matrix-supported (Fig. 5) when they are poorly sorted. Only two polished samples of clast-supported breccias exhibit bed planes. The lower bed plane on the intercalation of sandstone is erosional (Fig. 5), and probably flat (Fig. 6), but the upper one is rough (Fig. 5). Fragment size in breccias ranges from 2 - 150 mm. They are mostly angular and subangular, and rarely subrounded. Examples of fitting (RICHTER & FUCHTBÄUER, 1981) are not exposed. The fragments are mostly composed of granites, seldomly rhyolites. The granitic fragments include: alkali feldspar granite, granophyric alkali feldspar granite and alkali feldspar granite porphyry. The rhyolitic-type fragments include: aphyric rhyolite, porphyric rhyolite and rhyolite tuff. The clast-supported breccias have a matrix composed of well-sorted, coarse- to fine-grained sandstone which, as a consequence, give them a bimodal character (Fig. 4). The matrix colour is reddish. On the contrary, fragments in matrix-supported breccias are irregularly scattered in the matrix, which is poorly sorted (ranging
from the clast-supported breccias reveal that these sediments could have been deposited from very strong currents or debris flows. In the case of tractive transport, bimodality and grain size distribution in some samples (Fig. 4) suggest that the space between fragments could have been filled later with the fine-grained sediment from the weakened flow when the sand was deposited, still in the upper flow regime (REINECK & SINGH, 1973). In the case of debris flow, these sediments could represent washed debris flow too.

Matrix-supported breccias could be deposited from sediment gravity flows and probably represent debris flows, which have fragments supported by buoyancy and cohesion with the water-clayey matrix (MIDDLETON & HAMPTON, 1976; LOWE, 1982, 1988). This possibility is suggested by the fragment scattering in the fine-grained matrix and very poor sorting.

The rough identification of facies prevents an exact definition of the depositional environment. However, it is very likely that this coarse-grained complex was deposited in the continental environment. This interpretation is supported by the red colour of the breccia’s matrix, the monotonous composition of fragments consisting mostly of bedrock, and the lack of fossils. The coarse-grained texture of the material and the variability of size and sorting suggest that these coarse-grained sediments of rheolitic-granitic composition could have been deposited in the environment of an alluvial fan or the proximal parts of a braided river system. Matrix-supported breccias could also be deposited in rapid mountain streams during strong rainfalls. Semi-arid conditions are compatible with the characteristic red colour of the matrix in alluvial fans as a consequence of the postsedimentation changes (COLLINSON, 1989).

Alternatively, the other suggestion is that at least one part of the breccias were deposited in a screes which was temporary flooded by the active streams.

4. INTERPRETATION OF FACIES

The subangularity which prevails in most particles, as well as the composition of breccias, which corresponds to the composition of bedrock acidic magmatic rocks, point towards a very short transport. Large clasts from clay to coarse-grained sandstone) and composed of grains of myrmekite, albite, microperthite, orthoclase, quartz, opaque minerals, zircon, rutile, apatite and small particles of granitic rocks, together with accumulations of sericite and chlorite. The matrix colour is reddish to brown because of Fe-minerals.

Sandstones are found at only two localities, as intercalated within breccias. They are 1.3 cm (Fig. 5) and 4 cm (Fig. 6), respectively, in thickness.

Sandstones from the first locality are laminated. Thin (1-2 mm) horizontal to slightly undulating lamination (Fig. 5) is present by a succession of poorly sorted, medium-grained lithic arenites and poorly sorted, fine-grained lithic arenites which have a greater content of a silt-clay component. The grains are mostly subangular and represented by granites, rhyolites, seldomly quartzite, feldspars (microperthite, albite, myrmekite and orthoclase) and quartz, with subordinate quantities of muscovite, opaque minerals, zircon, rutile and apatite. The cement is a ferruginous-clay mixture, partly containing sericite, and red to light brown in colour.

Sandstones from the second locality (Fig. 6) are present by well-sorted, medium-grained lithic arenites. The sand grains are subangular and consist of granites, rhyolites, feldspars (microperthite, myrmekite, albite and orthoclase) and quartz, with subordinate quantities of muscovite, opaque minerals, zircon, rutile and apatite. The cement is ferruginous. Fossils are not found.

5. DATING OF THE COARSE-GRAINED CLASTICS

The age of the investigated coarse-grained clastics could not be exactly determined, due to the general lack of fossils in it, although samples and thin sections were carefully examined. However, the described sediments lay unconformably over granites for which, by means of isotope dating using rubidium and strontium isotopes, an Upper Cretaceous age was established (71.5 ±2.8 Ma, PAMIĆ et al., 1990). Furthermore, the sediments belonging to the Ottnangian in age also lay unconformably over the investigated coarse-grained sediments. Additionally, all the analyzed samples have fragments composed of rhyolite and granite rocks having the characteristics of the rock types which can be found in Mt. Požeška Gora. Rhyolite and granite from Mt. Požeška Gora originate from the same magmatic chamber and are of the same age (PAMIĆ et al., 1988). Taking into account that granites are hypabyssal intru-
sives, time had to pass for them to be exhumed along with rhylolites, giving off rhylolitic-granitic coarse-grained clastics as their weathering product. Strong tectonic movements of both local and regional character should be proposed for the granite uplift. These movements can be recognized as tectonic movements in the Laramian tectonic phase of the Alpine orogeny at the Cretaceous/Tertiary boundary. The inferred semiarid conditions, prevailing during deposition, should fit the first reported arid period, i.e. the Upper Eocene up to the Middle Oligocene (ANIĆ, 1959). That is why we supposed that the coarse-grained clastic sediments of rhylolitic-granitic compositions reflect the Pyrenean phase of the Alpine orogeny and are Lower to Middle Oligocene in age.

6. CONCLUSIONS

1. The results of a sedimentological analysis on reddish colored coarse-grained clastic sediments of rhylolitic-granitic composition reveal that they can be easily distinguished from the macroscopically alike granites in the vicinity.

2. A predominant subangularity of fragments, as well as a petrographic composition corresponding to the bedrock and its proximity, point out a short transport. Moreover, the bimodality and size distribution of clast-supported breccias suggest that this material was deposited from strong currents of variable velocity, or represent debris flows. Matrix-supported breccias were deposited from debris flows. The red colour of the matrix, the coarse-grained texture of materials, the debris appearance and the lack of fossils all suggest that these sediments were very probably deposited in a continental environment, more likely in alluvial fans or proximal parts of a braided river system, or, partly, in rapid mountain streams during strong rainfall. The possibility of sedimentation from a temporarily flooded scree is not excluded.

3. Following the conclusion that rhylolitic-granitic breccias are continental sediments deposited under semiarid climatic conditions, and that these conditions in this area after the Cretaceous were reported in the time span from Lower Eocene to the Middle Oligocene (ANIĆ, 1959), we suggest that these sediments reflect the Pyrenean phase of the Alpine orogeny, and that they are Lower to Middle Oligocene in age.

Acknowledgment

We are grateful to Dr. Marko ŠPARICA and Prof. Dr. Jožica ZUPANIĆ who kindly accepted our request and read the manuscript, giving us very useful advice and critical remarks which were used during the elaboration of this paper.

6. REFERENCES


graniti (aljaskiti) Požeške gore u Slavoniji (Young-Alpine alkalijfeldspar granites (alaskites) from Mt. Požeška Gora in Slavonia, northen Yugoslavia).- Geologija, Ljubljana, 30, 183-205.


Sedimentološke značajke i stratigrafska pripadnost krupnoklastičnih crvenih slojeva (oligocen) sjeveroistočnog ruba Požeške Gore (sjeverna Hrvatska)

J. Halamić, M. Belak i D. Pavlić

Krumpnoklastične sedimente pretežito izgrađene od ulomaka riolitno-granitnog sastava nalazimo na sjeveroistočnom dijelu Požeške Gore, gdje se najčešće pojavljuju uz granitne stijene od kojih se na terenu, zbog rastrošenosti, teško razlikuju. To je vjerojatno i bio razlog da ih dosadašnji istraživači, koji su proučavali magmatske stijene ovoga područja, nisu registrirali. U bogatoj faktografiji o magmatskim i sedimentnim stijenama Požeške Gore nema podataka o pojavljivanju riolitno-granitnih krupnoklastičnih naslađa. Stoga je zanimljivo istaknuti da su stijenski odsjeci u dvorištu Požeške gimnazije izgrađeni od riolitno-granitnih krupnoklastičnih sedimenta, a ne od alkalnih granita, kako se to ranije smatralo.

Takvi krupnozrnasti klastiti registrirani su u zapadnom dijelu magmatske mase Požeške Gore, gdje diskordantno leže na granitima gornjokredne starosti, a na njima diskordantno slijede taložine otnanga (sl. 1).


Prevladavajuća nezaobljenost ulomaka, kao i petrografski sastav koji odgovara magmatskim stijenama podine, kao i njezina blizina, ukazuju na vrlo kratak transport. Kod klastopotornih breća bimodalnost je raspored veličine fragmenta ukazuje da je materijal taložen iz jakih struja promjenjive brzine ili da se radi o debritima, koji su mogli biti naknadno preradeni. Matrikspotorne breće taložene su iz gravitacijskih kristalnih tokov. Crvena boja matriksa, krupnozrastnost materijala, promjena jačine struja, pojava debrita i izostanak fosila ukazuju da su opisani sedimenti najvjerojatnije taloženi u kopnenim uvjetima, i to u okolišu stoderovite rijeke ili u proksimalnim dijelovima sustava prepletenih rijeke, odnosno u bujičnjacima za jakih kiša. Pri tome se ne isključuje mogućnost sedimentacije i u siparištima, povremeno preplavljenim vodenim tokovima.

Opisane krupnoklastične naslage diskordantno naliežu na granite, kojima je determinirana izotopna starost od 71,5 ± 2,8 Ma (PAMIĆ et al., 1990), a diskordantno su prekrivene sedimentima otnanga. Starost riolita Požeške Gore, koji izgrađuju fragmente opisanih breća odgovara onoj kod granita. Za trošenje stijena različitog hipsometrijskog nivoa, a iste starosti, potrebna su jača tektonska kretanja, koja u ovom slučaju mogu odgovarati pokretima laramijanske, odnosno pirenejske faze alpinske orogeneze. Kako su riolitno-granitne breće kontinentalni sedimenti, taloženi vjerojatno, u semiarijdnim klimatskim uvjetima, a takvi su uvjeti na ovim prostorima u postkrncom razdoblju vladi od gornjeg ecocena do srednjeg oligocena (ANIĆ, 1959), logična je pretpostavka da su oni odrasli pirenejske faze alpinske orogeneze, tj. da su donijeto do srednjoalpino-censke starosti.

Manuscript received September 7, 1992.
Revised manuscript received March 5, 1993.