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REARRANGING ABSOLUTELY CONVERGENT

WELL-ORDERED SERIES IN BANACH SPACES

Vedran Čačić, Marko Doko and Marko Horvat

Abstract. We identify a general reordering principle for well-ordered
series in Banach spaces. We prove that for every absolutely convergent well-
ordered series indexed by a countable ordinal, if the series is rearranged
according to any countable ordinal, then the absolute convergence and the
sum of the series remain unchanged.

1. Introduction

Well-known results in mathematical anaysis tell us that whenever a series
of real numbers is absolutely convergent, then it is possible to:

• reorder the terms by subjecting their indices to some permutation of
ω,

• split the series into an odd-indexed and an even-indexed part, sum
each of the two parts separately, and add the results,

• arrange the terms into an ω × ω matrix, then sum each column, and
then all the results, etc.

A natural question to ask is whether all these results are special cases of
some general principle. Before we give a positive answer to this question, we
need to discuss our choice of setting as well as the generalization of the notion
of sequence reordering. For the former, we choose Banach spaces as conve-
nient ambient spaces that allow us to compute sums, take their unique limits,
measure them with the defined norm, and infer convergence from absolute
convergence when needed. For the latter, sequences are typically reordered
by composition with some bijection from ω to ω. This means that each term
of the reordered sequence is preceded by finitely many other terms. In this
work, we consider bijections between ω and some ordinal number α, where
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“sequence” terms might have infinite indices. For example, the three previ-
ously mentioned reorderings are cases where α is respectively ω, ω · 2, and
ω2.

The corresponding extension of the notion of series is known as well-
ordered series. We show that for every absolutely convergent well-ordered
series indexed by a countable ordinal, if the series is rearranged according to
some other countable ordinal, then the absolute convergence and the sum of
the series remain unchanged.

In order to make our main contributions outlined in the previous para-
graph fully precise, we provide a discussion of the related work as well as the
necessary background in the following sections.

2. Related work

A plethora of results were being published throughout the 20th century
that cover a vast range of topics at the intersection of set theory and analysis,
including the absolute convergence of series in normed spaces [2, 3, 6]. Some
publications include the study of well-ordered series in various contexts [2,
7, 8], which even extends to recent years [5]. However, to the best of our
knowledge, the effects of the reorderings outlined in the previous section on
the absolute convergence of well-ordered series in Banach spaces have not yet
been thoroughly explored.

In the book Foundations of modern analysis [2], Dieudonné defines abso-
lutely convergent well-ordered series Σ(ai)i∈α in Banach spaces by considering
the absolute convergence of the series Σ(af(i))i∈ω for any bijection f : ω → α.
The notion is well defined because it does not depend on the choice of bijection.
This is also true for the notion of its sum, which can be lifted analogously.
We choose more general definitions of well-ordered series, their convergence
and sum, which do not depend on absolute convergence, and expand on the
work of Dieudonné by investigating the relationship of differently indexed
well-ordered series with the same terms.

3. Background

We define ordinals in the von Neumann sense and use standard notation:
ω is the set of all finite ordinals, ω1 is the set of all countable ordinals, and
Lim is the class of all limit ordinals (those that are neither 0 nor successors).

A normed space (X, ‖·‖) is a vector space X equipped with a norm ‖·‖.
We sometimes omit the norm and simply refer to (X, ‖·‖) as X . If a normed
space X is complete, it is called a Banach space. For an ordinal β ∈ ω1 \ω and
a normed space X , we call a function a : β → X a hypersequence1. We denote
the value of a hypersequence a at argument (index) α by aα. If we want

1Similar functions are sometimes called β-sequences [1] to make the index domain
explicit.
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to emphasize the domain, we write (aα)α∈β instead of a. Note that we only
consider countably infinite domains because of the known fact that convergent
series with uncountably many positive terms contain only countably many
non-zero terms [4].

A common way to define the sum of a series involves limits of partial
sum sequences. We define the notion of well-ordered series in an analogous
fashion; we call the main building block a partial sum hypersequence.

Definition 3.1. Let (X, ‖ · ‖) be a normed space. We say that the hy-
persequence s : γ → X is a partial sum hypersequence of a hypersequence
a : β → X, if the following conditions hold:

(1) 1 6 γ 6 β + 1
(2) s0 = 0
(3) (∀α ∈ γ)(α+ 1 ∈ γ ⇒ sα+1 = sα + aα)
(4) (∀λ ∈ γ)(λ ∈ Lim ⇒ sλ = lim

α→λ
sα)

By the limit in condition (4), we mean

(∀ε ∈ R
+)(∃α0 ∈ λ)(∀α ∈ λ)(α > α0 ⇒ ‖sλ − sα‖ < ε).

Hypersequences are naturally partially ordered by restriction (as func-
tions), which is the same as the subset relation when we consider functions
as sets of ordered pairs.

Proposition 3.2. For every hypersequence a, there exists the largest par-
tial sum hypersequence of a (that is, the one of which all other partial sum
hypersequences of a are restrictions).

Proof. It is possible to show, by transfinite induction, that every two
partial sum hypersequences of a must agree on the intersection of their do-
mains. Namely, the conditions from the definition prescribe the values of s on
0, successors and limit ordinals in its domain, using previous values (existing
limits are unique because the codomain is a normed space, hence Hausdorff).

Moreover, because their domain is bounded from above, all partial sum
hypersequences of a form a set—a subset of P

(
(β + 1) ×X

)
. That set is also

nonempty, since it contains the trivial hypersequence 〈0〉 with domain 1. But
then the union of that set is also a partial sum hypersequence of a, and it is
obviously the largest one.

Since it is the largest, it is unique for every a, and we denote it by σa.
We can now give a precise definition of the notion of well-ordered series.

Definition 3.3. Let a be a hypersequence and σa its largest partial sum
hypersequence. We define the well-ordered series Σa as the ordered pair
(a, σa).

The concepts of convergence, divergence, and absolute convergence can
be directly extended to well-ordered series. Before we list the definitions, we
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prove that for a given hypersequence a, there are two essentially different
possibilities for the domain of σa.

Proposition 3.4. For every hypersequence a : β → X, the domain of σa
is either β + 1 or some limit ordinal not greater than β.

Proof. We denote the domain of σa by γ. The first condition of Defini-
tion 3.1 says that γ is not zero, so it is either a successor or a limit ordinal.

• First assume γ is a successor, different from β + 1. The first condition
of Definition 3.1 says that it cannot be larger than β+ 1, so it must be
smaller: γ = δ+ 1 ∈ β+ 1. But then δ ∈ γ, which means that (σa)δ is
defined, and also δ ∈ β, which means aδ is defined. Adding those two
numbers, we can extend σa to its proper superset

σa ∪
{(
δ + 1, (σa)δ + aδ

)}

which is also a partial sum hypersequence of a, contradicting σa being
the largest one. So if γ is a successor, it must be the successor of β.

• Now assume γ is a limit ordinal. The first condition of Definition 3.1
implies that it is not greater than β+1, and it cannot be equal to β+1
because it is a limit ordinal. Therefore, it must be smaller than β + 1,
i.e., not greater than β.

Definition 3.5. Let a : β → X be a hypersequence. If the domain of
σa is β + 1, we say that the well-ordered series Σa converges. In that case,
(σa)β ∈ X is called the sum of Σa, and is denoted by

∑
α∈β aα. Otherwise,

we say that the well-ordered series Σa diverges. We say that Σa absolutely
converges if the well-ordered series Σ(‖aα‖)α∈β converges.

It is straightforward to verify that standard series with real terms can
be identified with well-ordered series over β = ω, and the definitions of con-
vergence and absolute convergence in that case coincide with our definitions.
The domain γ of each partial sum hypersequence s of a is in that case either
ω (if the series diverges) or ω + 1 (if it converges). From this point on, we
use the terms well-ordered series and series, and the notation Σ(ai)i∈ω and∑∞

i=0 ai, interchangeably.
We now formulate and prove two simple lemmas that will be an often

used tool in the following section. They are a direct result of the topological
fact that limits commute with continuous functions, and they let us sum a
series by first summing two disjoint parts, and then adding the two results
together. We denote the characteristic function of S ⊆ X by 1S .

Lemma 3.6. Let X be a normed space, (ai)i∈ω a sequence in X, and
S ⊆ ω. If the series Σ

(
ai ·1S(i)

)
i∈ω

and Σ
(
ai ·1ω\S(i)

)
i∈ω

converge, then the
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series Σ(ai)i∈ω also converges and

∞∑

i=0

ai =
∞∑

i=0

(
ai · 1S(i)

)
+

∞∑

i=0

(
ai · 1ω\S(i)

)
.

Proof. We compute

∞∑

i=0

ai = lim
n

n∑

i=0

(
ai ·
(
1S(i) + 1ω\S(i)

))

= lim
n

(
n∑

i=0

(
ai · 1S(i)

)
+

n∑

i=0

(
ai · 1ω\S(i)

)
)

(∗)
= lim

n

n∑

i=0

(
ai · 1S(i)

)
+ lim

n

n∑

i=0

(
ai · 1ω\S(i)

)

=
∞∑

i=0

(
ai · 1S(i)

)
+

∞∑

i=0

(
ai · 1ω\S(i)

)
.

We know that the equality marked with (∗) holds because the addition func-
tion, +: X ×X → X , is continuous with respect to the norm topology on X
and the product topology on X×X , and taking limits of convergent sequences
commutes with applying continuous functions.

Lemma 3.7. Let X be a Banach space, (ai)i∈ω a sequence in X, and
S ⊆ ω. Then the series Σ(ai)i∈ω absolutely converges if and only if the series
Σ(ai · 1S(i))i∈ω and Σ(ai · 1ω\S(i))i∈ω absolutely converge. Moreover,

∞∑

i=0

ai =
∞∑

i=0

(ai · 1S(i)) +
∞∑

i=0

(ai · 1ω\S(i)).

Proof. Assume that the series Σ(ai)i∈ω absolutely converges. For all
i ∈ ω, we have ‖ai‖ · 1S(i) 6 ‖ai‖ and ‖ai‖ · 1ω\S(i) 6 ‖ai‖, so we conclude
that the series Σ

(
ai · 1S(i)

)
i∈ω

and Σ
(
ai · 1ω\S(i)

)
i∈ω

absolutely converge.
The converse follows by applying Lemma 3.6 to the sequence (‖ai‖)i∈ω.

If all three series above absolutely converge, they also converge because
X is complete, so the desired equality follows directly from Lemma 3.6.

We additionally prove that the direct comparison test for series can be
extended to well-ordered series.

Lemma 3.8. Let X be a Banach space, α ∈ ω1 \ ω, and (ai)i∈α, (bi)i∈α

hypersequences in X such that for all i ∈ α, ‖ai‖ 6 ‖bi‖. If the series
Σ(bi)i∈α absolutely converges, then the series Σ(ai)i∈α absolutely converges
and

∑
i∈α ‖ai‖ 6

∑
i∈α ‖bi‖.
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Proof. We prove the lemma by transfinite induction. If α = β + 1 for
some ordinal β, from the induction hypothesis we have

∑

i∈α

‖ai‖ =
∑

i∈β

‖ai‖ + ‖aβ‖ 6
∑

i∈β

‖bi‖ + ‖bβ‖ =
∑

i∈α

‖bi‖ .

If α ∈ Lim, then for all β ∈ α, we let sβ :=
∑

i∈β ‖ai‖ and compute

sβ 6
∑

i∈β

‖bi‖ 6 lim
β→α

∑

i∈β

‖bi‖ =
∑

i∈α

‖bi‖ .

Hence, the set of real numbers {sβ : β ∈ α} is bounded from above. Therefore,
it has a supremum, which we denote with L. But then for all ε > 0, there
exists an nε ∈ ω such that L − ε < anε

. For all n > nε, we then have
L−ε < snε

6 sn 6 L < L+ε. This implies |sn −L| < ε, so the hypersequence
(sβ)β∈α converges.

We also know that limβ→α sβ 6
∑

i∈α ‖bi‖; otherwise, there would exist
i0 ∈ α such that ai0 > bi0 .

Now that all of the preliminaries are in place, we can analyze the effects
of reorderings on the convergence and sum of well-ordered series in Banach
spaces. We devote the entirety of the following section to this topic, where
we focus on absolutely convergent well-ordered series.

4. Effects of reordering on absolute convergence and sum

In this section, we determine the effects of reorderings on the convergence
and sum of absolutely convergent well-ordered series in Banach spaces.

Previously, we proved two simple lemmas that hinted at our general proof
strategy; they let us separate a series into two parts, which can be summed
individually, and the results added without changing the sum. In a proof by
induction, one of the parts may be covered by the induction hypothesis, and
what is left might be a single number, or an insignificant quantity. The former
will be the case when we look at well-ordered series up to a successor ordinal;
we will encounter the latter when we consider limit ordinals, where we make
use of the fact that a convergent series has arbitrarily small tail sums. We
also use the fact that for an absolutely convergent series Σai, tail sums of the
series Σ‖ai‖ cannot be increased by leaving out some terms of Σ‖ai‖.

By employing the strategy described in the previous paragraph, we first
prove that an absolutely convergent standard series in a Banach space can
be rearranged into a well-ordered series with respect to any countably infinite
ordinal without affecting the convergence or sum of the series.

Theorem 4.1. Let Σ(ai)i∈ω be an absolutely convergent series in a Ba-
nach space X. Then for all α ∈ ω1 \ ω and all bijections f : α → ω, the
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well-ordered series Σ(af(i))i∈α absolutely converges and

∑

i∈α

af(i) =
∞∑

i=0

ai.

Proof (by transfinite induction on α). If α = ω, the result is a
basic theorem of mathematical analysis. Let α > ω and let f : α → ω be
a bijection. Suppose the statement is true for all ordinals β ∈ α \ ω. We
separately consider two cases, where α is respectively a successor ordinal or a
limit ordinal.

α = β + 1 We define the (hyper)sequence (âi)i∈ω with

âi :=

{
ai, if i < f(β)

ai+1, if i > f(β).

The function g : β → ω defined with

g(γ) :=

{
f(γ), if f(γ) < f(β)

f(γ) − 1, if f(γ) > f(β)

is a bijection with the property af(i) = âg(i) for all i ∈ β. From Lemma 3.7,
we can now conclude

∞∑

i=0

ai =
∞∑

i=0

(
ai · 1ω\{f(β)}(i)

)
+

∞∑

i=0

(
ai · 1{f(β)}(i)

)
=

=
∞∑

i=0

âi + af(β) =
∑

i∈β

âg(i) + af(β) =
∑

i∈β

af(i) + af(β) =
∑

i∈α

af(i).

α ∈ Lim For β ∈ α \ ω, we define sequences (aβ
i )i∈ω and (aβ

i )i∈ω with

aβ
i := ai · 1f [β](i) and

aβ
i := ai · 1f [α\β](i),

where f [β] denotes the set {f(γ) : γ ∈ β}. As in the previous case, we use
Lemma 3.7 to conclude

(∗)
∞∑

i=0

ai =
∞∑

i=0

aβ
i +

∞∑

i=0

aβ
i .

For an infinite well-ordered set (S,6) and all n ∈ ω, we denote the set
obtained by removing the first n elements from S with Sn. More precisely,
we define

S0 = S; Sn+1 = Sn \ {min(Sn)}.
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f [β] a0 a1 a2 . . . an0 an0+2 an0+3 . . .

f [α \ β] an0+1 an0+4 . . .

Figure 1. When α is a limit ordinal, we split the series Σai

in two parts: one with terms indexed by f [β] that contains
the “significant” part of the sum, and the “small” rest indexed
by f [α \ β].

We use this notation to define a bijection g : β → ω that assigns to each
ordinal i ∈ β the position of its image f(i) in the well-ordered set f [β] with

g := {(i, n) ∈ β × ω : f(i) = min(f [β]n)}.
In other words, for infinite f [β] = {f(i0) < f(i1) < f(i2) < · · · } ⊆ ω, we set
g(i0) := 0, g(i1) := 1, g(i2) := 2, etc. Note that for all i ∈ β, af(i) = aβ

g(i) and

g(i) = card{k ∈ f [β] : k < f(i)}.
From the induction hypothesis and (∗) we get

∑

i∈β

af(i) =
∑

i∈β

aβ
g(i) =

∞∑

i=0

aβ
i =

∞∑

i=0

ai −
∞∑

i=0

aβ
i .

The idea now is to split the series as shown in Fig. 1. To that end, let
ε > 0. We are looking for an ordinal β0 ∈ α such that for all β ∈ α \ β0,∥∥∥∥
∑
i∈β

af(i) −
∞∑

i=0
ai

∥∥∥∥ < ε. Let n0 ∈ ω such that
∑∞

i=n0
‖ai‖ < ε. We define

β0 := min({γ ∈ α : γ > ω ∧ (∀γ′ ∈ α)(γ′ > γ → f(γ′) > n0)})

= max({ω} ∪ f−1[n0 + 1]) + 1 < α.

For all β ∈ α \ β0, due to Lemma 3.8 we have
∥∥∥∥∥
∑

i∈β

af(i) −
∞∑

i=0

ai

∥∥∥∥∥ =

∥∥∥∥∥

∞∑

i=0

aβ
i

∥∥∥∥∥ 6

∞∑

i=0

∥∥aβ
i

∥∥ 6

∞∑

i=n0

‖ai‖ < ε.

Now we consider what happens when going the other way; we prove that
we can safely reorder an absolutely convergent well-ordered series in a Banach
space into a standard series. We will actually be able to leverage Theorem 4.1
in the proof by employing a suitable choice of reordering.

Theorem 4.2. Let α ∈ ω1\ω and let Σ(ai)i∈α be an absolutely convergent
well-ordered series in a Banach space X. Then for all bijections f : ω → α,
the series Σ(af(i))i∈ω absolutely converges and

∞∑

i=0

af(i) =
∑

i∈α

ai.
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Proof. For every n ∈ ω, we denote the n-th partial sum of the series
Σ(‖af(i)‖)i∈ω with sn and compute

sn =
∑

i∈ω

‖af(i)‖ · 1n(i) =
∑

i∈α

‖ai‖ · 1n(f−1(i)) 6
∑

i∈α

‖ai‖ ,

where the last inequality can be obtained directly from Lemma 3.8. There-
fore, (sn)n∈ω is a monotonically increasing sequence of real numbers that is
bounded from above, so it converges.

To prove the second part of the theorem, let âi := af(i) for all i ∈ ω. We
know f−1 : α → ω is a bijection, so Theorem 4.1 gives us

∞∑

i=0

af(i) =
∞∑

i=0

âi =
∑

i∈α

âf−1(i) =
∑

i∈α

af(f−1(i)) =
∑

i∈α

ai.

The two theorems can now be combined to prove that any reordering, i.e.,
a bijection between countably infinite ordinals, of an absolutely convergent
well-ordered series in a Banach space yields another absolutely convergent
well-ordered series where the initial sum is preserved.

Corollary 4.3. Let α, β ∈ ω1 \ ω and let Σ(ai)i∈α be an absolutely
convergent well-ordered series. Then for all bijections f : β → α, the well-
ordered series Σ(af(i))i∈β absolutely converges and

∑

i∈β

af(i) =
∑

i∈α

ai .

Proof. Let g : ω → α be a bijection. Then (g−1 ◦ f) : β → ω is also a
bijection. If we define âi := ag(i) for all i ∈ ω, from Theorems 4.1 and 4.2 we
get

∑

i∈α

ai =
∞∑

i=0

ag(i) =
∞∑

i=0

âi =
∑

i∈β

â(g−1◦f)(i) =
∑

i∈β

af(i).

5. Conclusion

In this paper, we wanted to take a step towards a general treatise of
the effects of reorderings on the convergence and sum of well-ordered series.
Our main focus was on reordering absolutely convergent well-ordered series
in Banach spaces. Such reorderings often occur in mathematical practice, so
identifying a general underlying principle is of practical as well as theoretical
interest.

To define the notion of well-ordered series itself, we followed the modern
way of employing transfinite recursion over the structure of the index set.
Our chosen setting of Banach spaces may be possible to improve upon when
absolute convergence is replaced by a different kind of convergence; in the
future, we would like to extend our analysis to more general uniform spaces,
such as Hausdorff topological abelian groups, and investigate in detail the
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effects of reorderings on the conditional and unconditional convergence of
well-ordered series in such a setting.
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Promjena redoslijeda članova kod apsolutno konvergentnih dobro

uredenih redova u Banachovim prostorima

Vedran Čačić, Marko Doko i Marko Horvat

Sažetak. Nalazimo općenit princip promjene redoslijeda
članova za dobro uredene redove u Banachovim prostorima.
Dokazujemo da za svaki apsolutno konvergentan dobro ureden
red indeksiran prebrojivim ordinalom, red s istim članovima in-
deksiran bilo kojim prebrojivim ordinalom takoder apsolutno kon-
vergira i ima istu sumu.
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