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HADAMARD DIFFERENCE SETS AND RELATED

COMBINATORIAL OBJECTS IN GROUPS OF ORDER 144

Tanja Vučičić

Abstract. In this paper we address an appealing and so far not
completed combinatorial problem of difference set (DS) existence in groups
of order 144. We apply our recently established method for DS construction
which proves to be very efficient. The result is more than 5000 inequivalent
(144, 66, 30) DSes obtained in 131 groups of order 144. The number of non-
isomorphic symmetric designs rising from them is 1364.

Using the obtained DSes as a source, new regular (144, 66, 30, 30) and
(144, 65, 28, 30) partial difference sets are constructed, together with the
corresponding strongly regular graphs. 43 non-isomorphic graphs of va-
lency 66 are obtained and 78 of valency 65. The full automorphism groups
of these graphs, as well as those of symmetric designs, are explored using
the software package Magma.

1. Introduction

In this paper we consider different types of combinatorial objects related
to groups of order 144. There are 197 such groups and 10 of them are abelian.
To denote them we take on the notation introduced in the “SmallGroups”
library of the software package Magma [3] which we use for computation.

First we focus on (144, 66, 30) difference sets (DSes). Investigating the
DS existence has been a major combinatorial task. As combinatorial objects,
DSes are interesting in the first place for their connection with coding theory
and for having many applications (e.g. in digital communications), primarily
in the widely studied abelian case. Our parameters belong to the impor-
tant and intriguing Hadamard family [5, 7, 9], being among the smallest with
the existence problem not completely decided as yet. However, they are large
enough so that the underlying DSes are not attainable by exhaustive computer
searches within different approaches. In this paper we present an application
of our recently established method [15], a sort of prolific DS generating algo-
rithm (Section 3), on solving this existence problem. The current status of
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research on the subject exists only in preprint form [12], which appears as a
reference in [2]. The two independent dealings with this research problem,
although run by applying totally different methods, on the existence side give
equal lists containing 131 positively decided groups. Such an outcome leaves
a strong hunch that, apart from the detected groups (Section 4, [12]), the
remaining groups of order 144 do not support Hadamard difference sets.

The existence of (144, 66, 30) abelian difference sets is completely decided.
By direct construction we show that four abelian groups support DSes and in
Section 5 we give a very simple proof that the remaining six abelian groups do
not allow DSes. Otherwise in the paper we do not bring results on the nonex-
istence side; in the nonabelian case we rather put an emphasis on successful
constructions.

The next combinatorial objects in our focus are partial difference sets
(PDSes). Within their construction the existence of reversible (144, 66, 30)
DSes is confirmed in 53 groups. Regular PDSes lead to the corresponding
graphs. We perform the construction of 43 non-isomorphic strongly regu-
lar Cayley graphs with parameters (144, 66, 30, 30) and 78 with parameters
(144, 65, 28, 30). The Magma files “SRG144” and “DS144” containing records
of the constructed graphs and symmetric designs are available at the site [17],
together with the “Info file_144” on how to handle them.

2. Preliminaries to DS construction

An incidence structure is a triple Γ = (P ,B, I), where P and B are sets of
“points” and “blocks”, respectively, and I ⊆ P×B is a binary relation between
them. In this research the point set P is finite and nonempty, while B ⊆ 2P

is a set of nonempty subsets of P . The incidence relation is membership, so
we use a short notation Γ = (P ,B). Repeated blocks are not considered, thus
our incidence structures are simple. They are denoted in accordance with
[1], where the interested reader can find more general information and details
about incidence structures and other combinatorial objects we consider.

Incidence structures Γi = (Pi,Bi), i = 1, 2 are isomorphic if there exists
a bijection ϕ : P1 → P2 with (B1)ϕ = B2. In that case ϕ is called an
isomorphism from Γ1 to Γ2. Every simple incidence structure is isomorphic
to an incidence structure of the described type (P ,B).

The set of all isomorphisms of an incidence structure Γ into itself forms
its full automorphism group Aut(Γ). Each subgroup of Aut(Γ) is an automor-
phism group of Γ. An automorphism group of a simple incidence structure
(P ,B) is a subgroup of Sym(P). We say that group G acts on an incidence
structure Γ = (P ,B) if it acts on sets P and B and preserves incidences.

If there exists an automorphism group acting transitively (regularly) on
the set of points and blocks, then we speak of a transitive (regular) inci-
dence structure. An incidence structure (P ,B) having automorphism group
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G ≤ Sym (P) which acts transitively on points and blocks we here denote by
I(P , G,B), where B ⊆ P and B = {Bg | g ∈ G}. Using this notation, a well-
known assertion that holds for transitive incidence structures may be stated
as follows.

Lemma 2.1. Incidence structures I(P , G,Bπ) and I(P , Gπ−1

, B) are iso-
morphic for every π ∈ Sym (P) .

Connected to our difference set construction method, now we point to the
procedure of obtaining transitive substructures of a given transitive incidence
structure Γ = I(P , G,B) related to some subgroup of G. Let a subgroup
H ≤ G act transitively on P , and in l orbits on B, l ∈ N. If we denote by
B1, . . . , Bl the representatives of H-orbits on B, then

(2.1) {I (P , H,Bi) , i = 1, . . . , l}
is the set of all transitive substructures of Γ having the automorphism group
H . Obviously, there exist gi ∈ G, i = 1, . . . , l with the property Bi = Bgi ,
so the set (2.1) can be rewritten as {I (P , H,Bgi) , i = 1, . . . , l} . Lemma 2.1

implies that I (P , H,Bgi) is isomorphic to I
(

P , Hg−1
i , B

)
. Thus, proceed-

ing in a technically convenient manner and exploring incidence structures
I (P , Hg, B), with g from the (right) transversal of H in G, will suffice to
obtain all transitive substructures of Γ related to the subgroup H ≤ G.

Incidence structures of our particular interest are block designs.

Definition 2.2. Incidence structure D = (P ,B) with |P| = v and |B| = b
we call t− (v, k, λ) design if each block consists of exactly k points and any t
different points are contained in exactly λ blocks, t ≤ k and λ > 0. 2−(v, k, λ)
design is called (v, k, λ) block design and it is symmetric if b = v.

A difference set is a subset of a group with nice combinatorial property.

Definition 2.3. A (v, k, λ) difference set is a subset ∆ ⊆ G of size k in a
group G of order v with the property that the multiset

{
xy−1 | x, y ∈ ∆, x 6= y

}

contains each nonidentity element of G exactly λ times.

Difference set ∆ ⊆ G is often thought of as an element ∆ =
∑

d∈∆
d of

the integral group ring ZG. Putting in the same sense (and slight abuse of
notation) G =

∑
g∈G

g, the statement that ∆ is a difference set is equivalent to

the equation
∆∆(−1) = (k − λ)1G + λG,

where ∆(−1) =
∑

d∈∆
d−1.

The development of a difference set ∆ ⊆ G is the incidence structure
dev∆ = (G, {∆g | g ∈ G}), whose blocks, the so-called ∆-shifts, are difference
sets as well. This structure relates difference sets to symmetric designs (SDs)
in the following way.
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Theorem 2.4. Let ∆ ⊆ G be a (v, k, λ) difference set. Then dev∆ is a
regular symmetric (v, k, λ) design with respect to G ≤ Aut dev∆.
Vice versa, let D = (P ,B) be a symmetric (v, k, λ) design with automorphism
group G acting regularly on P. Then, for any point p ∈ P and any block
B ∈ B, the set ∆ = {g ∈ G | pg ∈ B} is a (v, k, λ) difference set in G.

If the automorphism group of a symmetric design acts regularly on points,
then it acts regularly also on blocks.

Two difference sets ∆1 (in G1) and ∆2 (in G2) are isomorphic if the
designs dev∆1 and dev∆2 are isomorphic; ∆1 and ∆2 are equivalent if there
exists a group isomorphism ϕ : G1 → G2 such that (∆1)ϕ = ∆2g for a
suitable g ∈ G2. It is clear that equivalent difference sets ∆1 and ∆2 give rise
to isomorphic symmetric designs dev∆1 and dev∆2.

If a difference set ∆ ⊆ G in group G is known, the latter part of Theorem
2.4 provides also a straightforward procedure for obtaining difference sets
in regular subgroups of Aut dev∆ distinct from G, if any. This “reading off”
difference sets in regular subgroups of Aut(dev∆), having the same parameters
as ∆, we will call Procedure DS0. Difference sets obtained in this way are
obviously isomorphic and inequivalent to ∆.

Parameter triples of the form

(2.2) (4u2, 2u2 − u, u2 − u), u ∈ N,

determine the Hadamard family of DSes and/or the Menon family of SDs.
In 1962 Kesava Menon proved that the set of groups containing a

Hadamard difference set (HDS) is closed under direct product [16]. Later
improvements and generalizations of this result led to the well-known fact
that two HDSes yield a new HDS by the ’product method’ which is conve-
niently illustrated, for instance, by Theorem 2.5 (below), [8, p. 13]. A more
general approach to building HDSes from smaller ones found in subgroups of
the considered group, under certain conditions, is given in [9, Theorem 5.1]
and called generalized products.

Theorem 2.5 (Product method). Let G be the group and G1, G2 its
subgroups with the property G = G1G2 and G1 ∩ G2 = {1G}. If difference
sets with parameters of type (2.2) exist in G1 and G2 for u = u1 and u = u2

respectively, then G contains a difference set with parameters (2.2) for u =
2u1u2.

Denoting by ∆1 ⊆ G1 and ∆2 ⊆ G2 initial difference sets, the product
difference set in group G is described by the formula

(2.3) ∆ := (∆1∆2) ∪ (∆1∆2),

where ∆i = Gi \ ∆i, i = 1, 2. Formula (2.3) generalizes the one given in [1, p.
368] for direct product G = G1 ×G2.
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Alternatively: from Menon designs Di = (Pi,Bi), i = 1, 2 with u =
ui one can obtain their “product”, a new Menon design denoted by D1 ⊗
D2 = (P ,B) with u = 2u1u2 by taking point set P = P1 × P2 and block set
B = { (B1 ×Bc

2) ∪ (Bc
1 ×B2)|B1 ∈ B1, B2 ∈ B2}. If G1 ≤ AutD1 and G2 ≤

AutD2 then G1 ×G2 ≤ Aut(D1 ⊗D2), [11, p. 129].
In this paper we consider (144, 66, 30) HDSes with u = 6 which can obvi-

ously be obtained by the product method from (36, 15, 6) HDSes and a trivial
HDS in group of order 4. All difference sets in groups of order 36 are known
[5, p. 432 (Kibler)]; there exist exactly 9 non-isomorphic (35 inequivalent)
(36, 15, 6) HDSes. On the other side, one has two trivial (4, 1, 0) HDSes (two
groups of order 4). HDSes with parameters (144, 66, 30) obtained from them
by the product method serve as an initial set of difference sets needed to
launch our construction method. Namely, to start the underlying algorithm
at least one known difference set with given parameters is needed. In the next
section we describe how the method works, i.e. how we obtain new DSes with
the same parameters if we start from a single known DS. Moreover, the big-
ger initial set of already known difference sets, the more efficient our method
becomes. In that sense, upon obtaining 9 non-isomorphic initial (144, 66, 30)
HDSes by the product method, we subjected them to the Procedure DS0.
This yielded (144, 66, 30) HDSes in new groups so that altogether 61 host
groups were detected at the end of the procedure. Finally, in the launching
set we included (144, 66, 30) DS in group [144, 182] given in [4]. Thus, before
employing our construction method, the launching set enabled us to confirm
the HDS existence in 62 groups of order 144.

3. Our DS construction method

As we have seen in Theorem 2.4, (v, k, λ) DSes are equivalent to (v, k, λ)
symmetric designs with a regular automorphism group. Our DS construction
method [15] uses this equivalence. It is applicable only to transitive incidence
structures, being based on the following well-known result of Cameron and
Praeger.

Theorem 3.1 ([6, Proposition 1.1]). If I(P , H,B) is a t− (v, k, λ) design
and H ≤ G ≤ Sym (P) holds, then I(P , G,B) is a t − (v, k, λ∗) design with
λ∗ ≥ λ.

The theorem ensures that a block design can appear as a transitive sub-
structure only within an overstructure which is a block design itself. Further,
it justifies that, in general, a task of obtaining all transitive subdesigns of an
initial block design D = I(P , G,B) with transitive group G can be accom-
plished by a computer search as follows. First one finds, up to conjugation,
all maximal subgroups M ≤ G that are transitive on P . The next step is
checking whether I (P ,Mg, B) is a block design, for each M found in the first
step and all elements g from the (right) transversal of M in G. All groups
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Mg for which the answer is positive have to be further analyzed, so they are
stored at this level and the procedure continues by exploring their maximal
subgroups. That is repeating of the first step on the lower level which can
be continued as long as one obtains transitive block designs in the succeeding
check. The procedure is obviously finite; its feasibility and computer time
consumption depend on the structure of the lattice of subgroups of G.

In our method we modify the direction of the described procedure and
confine it to the regular case. In that sense, starting from a known difference
set, say ∆, we accomplish the construction of new difference sets with the
same parameters proceeding in the following two steps.

10) Developing a transitive overstructure of the regular symmetric design
corresponding to ∆.
Let ∆ ⊆ H be a given difference set and let G be an overgroup of H , H ≤
G ≤ Sym (P). For any point p ∈ P let B = {pg| g ∈ ∆}. Then I(P , H,B) is
the symmetric design corresponding to the starting difference set ∆. Theorem
3.1 implies that the overstructureD = I(P , G,B) of I(P , H,B) is also a block
design.

20) Exploring the developed block design D for sought-after regular sub-
designs.
Given that the outcome of step 20) is a set of regular symmetric designs, it can
again be subjected to step 10), i.e. the obtained designs can be developed into
overstructures and then explored for regular subdesigns. Our construction
course runs so that steps 10) and 20) are consecutively repeated; the repetition
makes sense as long as we get new combinatorial possibilities as an input to
step 10). The method in fact presents a (v, k, λ) difference set generating
algorithm launched by the initial set Ω of (v, k, λ) difference sets, |Ω| ≥ 1.

The most delicate moment in application of our method is the choice of
the overgroup by which we develop an overstructure in step 10). A desirable
overgroup G should contain a considerable number of regular subgroups. On
the other hand, this choice affects the feasibility of the task of obtaining
regular subgroups of G or, if possible, of AutD in step 20). Fact is: if the
input group size is convenient, one simple command in the software Magma
[3] returns, up to conjugation, all its regular subgroups.

Taking into account also our preliminary experience [15], we decided that
the holomorph of H , denoted by Hol(H), is an appropriate choice for G in this
research. Although the construction algorithm in that case depends on the
automorphism group Aut(H), the choice G = Hol (H) ensures that at least
regular subgroups of G, together with their transversals in G, stay within the
reach of Magma.

Group Hol (H) = Aut(H) ⋉ H is a semidirect product with the multi-
plication formula (α, x) (β, y) =

(
αβ, xβy

)
for all x, y ∈ H and α, β ∈ AutH .

The equation x(α,y) = xαy defines an action of group Hol (H) on set H. In
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this action HEHol (H) acts regularly. If the action of H on P is regular, then
Hol (H) can be observed as embedded in Sym (P) . This justifies the notation
that we use in the next passage to describe how step 20) is performed in case
G = Hol (H).

Upon developing the design D = I(P , Hol (H) , B), for each regular sub-
group R ≤ Hol (H) and for every R̃ from the conjugacy class of R in Hol (H) ,
it is necessary to check whether the structure I(P , R̃, B) is a block design.
Technically, groups R̃ are handled in the convenient form Rg, with g taken
from the (right) transversal of R in Hol (H). The designs detected in this
search are necessarily symmetric and in the corresponding regular groups R̃
difference sets are easily read off.

4. (144, 66, 30) difference set existence results

We launched our construction method, described in the previous section,
by submitting to step 10) the initial set of (144, 66, 30) difference sets. The
details on how we obtained the initial set are given in the conclusion of Section
2. With multiple repeating steps 10) and 20) the combinatorial task increased
in scope and many non-isomorphic regular symmetric designs emerged. While
monitoring the course of our algorithm we focused on different regular groups
[144, cn] that occurred, cn being the catalogue number in the “SmallGroups”
library of [3]. It was before having exhausted all possibilities of consecutive
developing overstructures and checking them upon the existence of regular
subdesigns that the number of constructed inequivalent (144, 66, 30) difference
sets had risen over 5000 while, at the same time, the absence of new groups
appearing in the process was noticed. This was indicative for the question of
deciding groups [144, cn] regarding DS existence, so we stopped the algorithm.
The outcome of our construction procedure at that stage was proving the
existence of HDSes in 69 groups of order 144 which we did not have initially.
Thereby the problem of existence is solved for the total of 131 groups [144, cn],
’cn’ belonging to the list

(4.1)

[52, 53,54,55,58,59,60,61,62, 63, 64, 65, 66, 67, 69,70,71,73,
74,75, 76, 77, 78, 79,81,82,83, 84, 85,86,87,89, 90,91, 92, 93, 94,
95,97,98,99, 100, 101, 102, 103, 104,105,107,108, 115, 116,118,
119, 120,121,122, 123,124,125, 126,127,128, 129, 130,131, 132,
133, 134,135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146,
147, 148, 149, 150, 151, 152, 153, 154, 155,156,157, 158, 159, 160,
161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174,
175, 176, 177, 178, 179, 180, 181,182, 183, 184, 185, 186, 187, 188,
189, 190, 191, 192, 193, 194, 195, 196, 197].
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The list reveals that using our algorithm we managed to construct DSes in 37
groups for which product constructions do not work [12]; their catalogue num-
bers are written in bold type. The research described in [12] was supervised
by K.W. Smith and, besides some common construction methods, it involved
application of the “spread construction”, as it was called at the time, later
published in [2]. This resulted in the construction of DSes in the mentioned
37 groups. Interestingly enough, the set of groups for which HDS existence
is ultimately confirmed in [12] is the same as the one given with list (4.1).
Underlined in (4.1) are abelian groups.

Constructed difference sets (precisely 5765 inequivalent ones) are dis-
tributed among 131 groups as the exponents of the group catalogue numbers
show in the following list:

[5215, 535, 542, 555, 587, 599, 607, 617, 6213, 6386,64195, 65101, 66163, 6799,
6915, 70, 718, 738, 745, 754, 7682, 77148, 7891,79198, 818, 8210, 8314, 84112,
855, 864, 874, 894, 904, 91, 9236, 9363, 9439, 9565, 974, 982, 996, 10041, 10111,
10229, 10325, 1045, 105, 1074, 1084,115209, 11698, 1186, 1192, 12023, 1213,
1226, 12313, 1243, 1253, 1263, 1279, 1289, 1296, 1307, 131, 13265, 13361,
1345, 135, 13661, 13767, 13852, 13949, 14064, 14150, 14258, 143145, 14481,
14589, 146116, 147119, 14855, 149111, 15074, 151142, 15252, 153174, 154173,
15516, 15619, 15719, 15846, 159108, 16075, 16150, 16280, 16360, 16427, 16520,
16657, 167152, 16842, 16975, 17028, 17151, 17249, 17350, 17444, 17522, 17629,
17757, 17827, 17932, 18020, 18127, 182, 1838, 1844, 1855, 186154, 18712,
18813, 1893, 1906, 19168, 192108, 19310, 1943, 19527, 19616, 1975].

Groups [144, 64], [144, 79], and [144, 115] are highlighted in bold for hosting a
large number of inequivalent DSes. The developments of the constructed dif-
ference sets split into 1364 isomorphism classes of symmetric designs. These
designs are given in the Magma file “DS144”, [17]. The next table contains
the orders of the full automorphism groups and the number of non-isomorphic
designs having the full automorphism group of the given order.

|AutD| No. of nonisom. designs
144 397
288 382
432 5
576 383
864 19
1152 118
1296 15
1440 1
1728 16

|AutD| No. of nonisom. designs
2592 8
3456 1
5184 8
7776 2
10368 4
15552 2
46656 1
93312 1
190080 1

As expected, designs with small automorphism groups are numerous, while
few of them have large automorphism groups. In case |AutD| = 190080,
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design D cannot be obtained by the product method. It is primitive and
AutD is almost simple group containing M12. The only regular subgroup of
AutD is [144, 182] [4]. That group is also the only regular subgroup for the
design D with |AutD| = 1440. In cases |AutD| = 46656 and |AutD| = 93312
the designs are obtainable by the product method. Both designs have, besides
several others, abelian groups [144, 101] and [144, 178] as regular subgroups
of the full automorphism group.

5. Nonexistence in abelian case

As one can see from the list (4.1), (144, 66, 30) difference sets exist in four
abelian groups: [144, 101] ∼= C2

3 ×C2
4 , [144, 104] ∼= C2

3 ×C2 ×C8, [144, 178] ∼=
C2

3 × C2
2 × C4, and [144, 197] ∼= C2

3 × C4
2 . The remaining six abelian groups:

[144, 2], [144, 20], [144, 23], [144, 30], [144, 47], and [144, 113] do not support
HDS existence. This is easily proved applying the necessary criteria for DS
existence given in Theorem 5.1 and Theorem 5.2 (below). Let us recall that
a prime p is called self-conjugate modulo an integer w if there exists a non-
negative integer j with pj ≡ −1(modw′), where w′ denotes the p-free part of
w. In case of group [144, 23] we have to employ a more general concept of
self-conjugacy. Given positive integers m and w, m is said to be self-conjugate
modulo w if for each prime divisor p of m there exists an integer jp such that
pjp ≡ −1(modwp), where wp is the largest divisor of w coprime to p.

Theorem 5.1 ([1, p. 424]). Let D be a (v, k, λ) difference set in an
abelian group G, and let p be a prime which is self-conjugate modulo expG
and divides both v and n = k − λ. Then the Sylow p-subgroup of G is not
cyclic.

In our research |G| = v = 144, n = 36 and expG equals 2α ·3 or 2α ·9, α ≤
4. Because 2 is self-conjugate mod 3 and mod 9, it is self-conjugate modulo
expG. Theorem 5.1 implies that Sylow 2-subgroup of G is not cyclic if G
supports an HDS. Thus, p = 2 rules out groups C16 × C9

∼= [144, 2] and
C16 × C2

3
∼= [144, 30]. Similarly, because 3 is self-conjugate mod 2 and mod 4,

Sylow 3-subgroup of G supporting an HDS is not cyclic if expG = 2·3, 2·9, 4·3
or 4·9.Now p = 3 rules out groups C9×C2

2 ×C4
∼= [144, 47], C9×C2

4
∼= [144, 20],

and C9 × C4
2

∼= [144, 113].
Regarding group [144, 23], we take into consideration the following state-

ment.

Theorem 5.2 ([1, p. 425]). Let D be a (v, k, λ) difference set in an abelian
group G, let H be a subgroup of G of order s and index u, and denote the
exponent of G/H by u∗. Moreover, assume the existence of a positive integer
m with (m,n) 6= 1 which is self-conjugate modulo u∗ and for which m2 divides
n. If the Sylow p-subgroup of G/H is cyclic for every prime p dividing m and
u, then one has m ≤ 2r−1s, where r is the number of distinct primes dividing
(m,u).
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Following the notation of this theorem let us put G = [144, 23] ∼= C9×C2×
C8 = 〈x〉×〈y〉×〈z〉 and H =

〈
z4
〉
. Then s = 2 and u = 72; u∗ = exp(G/H) =

exp(C9 × C2 × C4) = 9 · 4. Moreover, m = 3 satisfies the conditions of the
theorem and p = 3 is the only divisor of m and u. Sylow 3-subgroup of G/H
is cyclic and the theorem implies 3 ≤ 2r−1s = 2 (because r = 1), which is a
contradiction.

The same result for the abelian case is obtained in [12] using the con-
trapositive of the fact that if a group contains a difference set, then any
homomorphic image of that group contains an image of the difference set.

6. Preliminaries to PDSes and Cayley graphs construction

We start with defining combinatorial objects that we construct next.

Definition 6.1. Let H be a group of order v. A k-subset S ⊂ H is called
a (v, k, λ, µ) partial difference set if the multiset

{
xy−1 | x, y ∈ S, x 6= y

}
con-

tains each nonidentity element of S exactly λ times and it contains each non-
identity element of H \ S exactly µ times.

Using the notation of the group ring ZH (where S =
∑
s∈S

s), a (v, k, λ, µ)

partial difference set S ⊂ H in group H can be defined as a subset for which
the equation

S · S(−1) = k1H + λ(S \ {1H}) + µ((H \ S) \ {1H})

holds; S(−1) =
∑
s∈S

s−1.

The notion of a partial difference set (PDS) generalizes that of a differ-
ence set. It is obvious that any (v, k, λ) difference set is a (v, k, λ, λ) partial
difference set.

PDSes S1 and S2 in groups H1 and H2, respectively, we call equivalent if
there exists a group isomorphism ϕ : H1 → H2 which maps S1 onto S2.

A partial difference set S ⊂ H is called reversible if S = S(−1). A re-
versible partial difference set S ⊂ H is regular if 1H /∈ S. Our further interest
sticks only to regular PDSes. It is easy to see (cf. [14]) that the following
assertions hold.

Proposition 6.2. Suppose that S is a reversible (v, k, λ, µ) PDS in a
group H, such that 1H ∈ S. Then S \ {1H} is a regular (v, k − 1, λ − 2, µ)
PDS in H. Conversely, if S is a regular PDS in H, then S∪{1H} is a reversible
PDS with corresponding parameters.

Proposition 6.3. Suppose that ∆ is a (v, k, λ) difference set in H, x ∈ H.
Then

(i) ∆x is a regular (v, k, λ, λ) PDS if and only if x−1 /∈ ∆ and ∆x is a
reversible set;
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(ii) ∆x\ {1H} is a regular (v, k− 1, λ− 2, λ) PDS if and only if x−1 ∈ ∆
and ∆x is a reversible set.

The notion of a PDS is connected to graph theory. A finite graph Γ =
(Ω, E) consists of a finite set Ω of points, called vertices, and a subset E of
unordered pairs from Ω called edges.

Definition 6.4. A strongly regular graph (SRG) with parameters (v, k,
λ, µ) is a graph with v vertices which is regular of valency k, i.e. every vertex
is incident with k edges, such that any pair of adjacent vertices have exactly
λ common neighbours and any pair of non-adjacent vertices have exactly µ
common neighbours.

Two graphs are isomorphic if there is a bijection between their vertex sets
that preserves adjacency. Regular partial difference sets and strongly regular
graphs are closely related through the concept of the Cayley graph. This
relation we employ for constructions in Section 7.

Definition 6.5. For a group H and a set S ⊂ H with the property
that 1H /∈ S and S = S(−1), the Cayley graph Γ = Cay(H,S) over H with
connection set S is the graph with vertex set H so that the vertices x and y
are adjacent if and only if x−1y ∈ S.

Accordingly, the set of edges of a Cayley graph Γ = Cay(H,S) over H
with connection set S is E := {{x, xs} | x ∈ H, s ∈ S}. Our construction
of strongly regular graphs (cf. [10]) will be based on the following important
assertion about Cayley graphs, [1, p. 230] or [13].

Theorem 6.6. A Cayley graph Cay(H,S) is a (v, k, λ, µ) strongly regular
graph if and only if S is a (v, k, λ, µ) regular partial difference set in H.

Obviously, equivalent regular PDSes correspond to isomorphic strongly
regular Cayley graphs. Moreover, for two inequivalent partial difference sets
S1 and S2 in a group H, the graphs Cay(H,S1) and Cay(H,S2) can be iso-
morphic. Similarly, for two inequivalent partial difference sets S1 and S2 in
groups H1 and H2, |H1| = |H2| , the graphs Cay(H1, S1) and Cay(H2, S2)
can be isomorphic. The examples of both such cases are present in our con-
struction described and analyzed in the next section.

7. Construction of regular PDSes and SRGs

We use (144, 66, 30) difference sets to construct regular (144, 66, 30, 30)
and (144, 65, 28, 30) partial difference sets. Following the theoretical back-
ground highlighted in Section 6, it is easily verified that a procedure for the
search of regular partial difference sets, starting from a known difference set
∆ ⊆ H, can be performed in the next two steps:
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(i) construction of all shifts ∆x of ∆, x ∈ H ;

(ii) selection of those shifts which are reversible sets in H.

Then, each reversible shift which does not contain 1H is a regular (v, k, λ, λ)
PDS, while each reversible shift that contains 1H yields a regular (v, k−1, λ−
2, λ) PDS ∆x \ {1H}.

To this “shifting procedure” we have submitted the constructed 5765 in-
equivalent difference sets in 131 groups listed in (4.1). Reversible shifts are
singled out and then tested upon group automorphisms by Magma. The final
result is obtaining 3452 inequivalent reversible (144, 66, 30) difference sets in
53 groups, two of them ([144, 178] and [144, 197]) being abelian. The next
table shows the exact number of obtained regular PDSes of both types in
the specified group [144, cn]. It is given in the form r1 + r2, where r1 is the
number of obtained (144, 66, 30, 30) PDSes and r2 is the number of obtained
(144, 65, 28, 30) PDSes. For instance, group [144, 186] contains the greatest
number (196 + 212 = 408) of regular PDSes.

[144, cn]
↓

rPDS
↓

[144, cn]
↓

rPDS
↓

[144, cn]
↓

rPDS
↓

[144, cn]
↓

rPDS
↓

63 8+8 132 30+38 160 8+8 186 196+212
64 26+34 133 26+26 162 34+38 188 5+2
65 50+54 136 42+50 166 10+10 189 7+3
66 12+12 143 28+28 167 86+102 190 3+1
67 8+8 144 40+44 169 20+20 191 52+52
76 8+8 145 28+28 170 23+27 192 60+79
77 12+12 146 8+8 172 74+94 193 4+3
78 8+8 149 20+20 176 5+5 194 0+1
79 26+34 150 8+8 177 46+54 195 9+11
84 50+54 151 86+102 178 5+5 196 48+64
115 108+124 153 74+82 179 23+27 197 6+7
116 30+30 154 136+168 182 1+1
123 3+3 155 1+1 183 9+3
129 2+2 159 8+8 184 0+1

The number of obtained regular PDSes with parameters (144, 66, 30, 30) is
1620. Their existence is confirmed in 51 groups of order 144; in groups
[144, 184] and [144, 194] PDSes of cardinality 66 have not been found.

The next table shows the number of non-isomorphic SRGs of both valen-
cies that correspond to the constructed regular PDSes, group by group. Like
in the previous table, it is given in the form of a sum of the numbers related
to valencies 66 and 65, respectively.
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[144, cn]
↓

SRG
↓

[144, cn]
↓

SRG
↓

[144, cn]
↓

SRG
↓

[144, cn]
↓

SRG
↓

63 4+4 132 10+12 160 5+5 186 11+13
64 12+16 133 8+8 162 6+7 188 2+2
65 12+14 136 14+16 166 5+5 189 1+1
66 6+6 143 8+8 167 24+32 190 1+1
67 4+4 144 9+10 169 5+5 191 11+11
76 4+4 145 8+8 170 8+12 192 9+11
77 6+6 146 5+5 172 10+18 193 2+1
78 4+4 149 5+5 176 5+5 194 0+1
79 12+16 150 5+5 177 8+12 195 6+7
84 12+14 151 24+32 178 5+5 196 6+7
115 16+20 153 9+10 179 8+12 197 6+7
116 10+10 154 27+35 182 1+1
123 2+1 155 1+1 183 2+2
129 1+1 159 5+5 184 0+1

A comparison of the last two tables reveals numerous examples of nonabelian
groups in which inequivalent PDSes correspond to isomorphic Cayley graphs.

Regarding isomorphism of the corresponding strongly regular Cayley
graphs, our 3452 regular PDSes split into 121 non-isomorphic SRG classes;
they are presented in Magma file “SRG144”, [17]. On the same site we provide
the file “Graphs144Analysis” with the graphs’ automorphism groups data ob-
tained using Magma. The files show that 1620 constructed inequivalent PDSes
of cardinality 66 correspond to 43 non-isomorphic strongly regular graphs of
valency 66. The next table contains the orders of their full automorphism
groups and the number of non-isomorphic graphs Γ having the full automor-
phism group of the given order.

|AutΓ| 144 288 576 1152 1728 3456 5184 10368 190080

No. of graphs 2 2 26 4 2 2 2 2 1

It is interesting that the largest automorphism group (|AutΓ| = 190080) has
[144, 182] as the only regular subgroup. On the other side, the majority of
full automorphism groups has many regular subgroups. For example, in both
cases with |AutΓ| = 3456, the full group has 28 regular subgroups. Thus,
inequivalent PDSes from non-isomorphic groups correspond to isomorphic
Cayley graphs.

The existence of regular PDSes of cardinality 65 is confirmed in 53
groups. The constructed 1832 inequivalent such PDSes correspond to 78 non-
isomorphic strongly regular graphs of valency 65. The next table contains the
orders of the full automorphism groups and the number of non-isomorphic
graphs Γ having the full automorphism group of the given order.
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|AutΓ| No. of nonisom. graphs
144 7
288 29
576 26
864 3
1152 5
1440 1

|AutΓ| No. of nonisom. graphs

1728 3
3456 1
10368 1
15552 1
31104 1

Again, [144, 182] is the only regular subgroup of AutΓ in case of the single
graph Γ with |AutΓ| = 1440. As for the last four graphs in the table, their
full automorphism groups have many regular subgroups. For instance, even
32 in case |AutΓ| = 10368.

It is of interest also to present the set of the obtained non-isomorphic
strongly regular Cayley graphs hosted by each of 51 (53) groups. As it would
be space consuming to do it in the paper, we present instead a selection of
interesting results for both valencies in the next two tables. The complete
distribution is available in the files “Cayley (144,66,30,30) by groups” and
“Cayley (144,65,28,30) by groups” at [17].

Parameters (144, 66, 30, 30) i.e. VALENCY 66

|AutΓ| ↓ . . . [144, cn] → · · · 151 154 167 172 182 · · ·
144 2
288 1 1
576 15 15 15 3
1152 4 4 4 2
1728 1 1 1
3456 2 2 2 2
5184 2
10368 2 2 2
190080 1

No. of graphs · · · 24 27 24 10 1 · · ·

Groups [144, 151], [144, 154], and [144, 167] are selected since hosting a re-
spectable number of non-isomorphic graphs. Group [144, 172] is selected be-
cause the two obtained graphs of valency 66 with |AutΓ| = 144 are presented
only through regular PDSes in that group. The characteristic feature of group
[144, 182] is already mentioned.
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Parameters (144, 65, 28, 30) i.e. VALENCY 65

|AutΓ| ↓ . . . [144, cn] → · · · 154 172 182 192 · · ·
144 6 1
288 8 5 2
576 15 3 2
864 1
1152 5 3 2
1440 1
1728 2 1
3456 1 1
10368 1 1
15552 1 1
31104 1 1

No. of graphs · · · 35 18 1 11 · · ·
Once again group [144, 182] is the only group that hosts strongly regular
Cayley graph Γ of valency 65, |AutΓ| = 1440, through a PDS. Seven obtained
non-isomorphic graphs of valency 65 with full group of order 144 appear in
groups [144, 172] and [144, 192] as presented in the table.

We see that even 27 + 35 = 62 non-isomorphic strongly regular Cayley
graphs of valencies 66 and 65 can be represented through regular PDSes in
group [144, 154]. Among them one finds representatives of all obtained graphs
Γ of valency 66 with |AutΓ| = 1152, 3456, 5184 and 10368, as well as repre-
sentatives of all obtained graphs Γ of valency 65 with |AutΓ| = 1152, 3456,
10368, 15552 and 31104.
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Hadamardovi diferencijski skupovi i s njima povezani

kombinatorni objekti u grupama reda 144

Tanja Vučičić

Sažetak. U ovom radu bavimo se kombinatorički za-
nimljivim i zahtjevnim problemom egzistencije diferencijskih
skupova u grupama reda 144 koji do sada nije riješen u potpunosti.
Primijenjena konstruktivna metoda, uvedena u našim nedavnim
istraživanjima, pokazala se veoma učinkovitom. Rezultat je više
od 5000 neekvivalentnih (144,66,30) diferencijskih skupova kon-
struiranih u 131-oj grupi reda 144. Broj njima odgovarajućih
neizomorfnih simetričnih dizajna je 1364.

Dobivene diferencijske skupove smo upotrijebili za konstruk-
ciju novih regularnih (144,66,30,30) i (144,65,28,30) parcijalnih
diferencijskih skupova, kao i pridruženih jako regularnih grafova.
Konstruirana su 43 takva neizomorfna grafa valencije 66 te 78
njih valencije 65. Pune grupe automorfizama dobivenih grafova
i simetričnih dizajna istražene su pomoću softverskog paketa
Magma.
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