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RESOLVENT OPERATOR OF SINGULAR DIRAC SYSTEM

WITH TRANSMISSION CONDITIONS

Bilender P. Allahverdiev and Hüseyin Tuna

Abstract. This paper is concerned with the resolvent operator of
one dimensional singular Dirac operator with transmission conditions. We
study the Titchmarsh-Weyl function of this problem. Later, we construct
a Green function and a spectral function for regular and singular problems.
With the help of these functions, we obtain an expansion into a Fourier
series of resolvent in regular case. Furthermore, we give integral represen-
tations in terms of the spectral function for the resolvent of this operator
with transmission conditions in singular case. Finally, we obtain a formula
for the Titchmarsh-Weyl function in terms of the spectral function of the
singular Dirac system.

1. Introduction

Recently, much attention has been paid to the boundary value problems
with transmission conditions, or discontinuous boundary value problems. It
has been shown that they are closely related to various physically interesting
models and theories, such as the heat and mass transfer theory (see [22]), radio
science (see [23]), and geophysics (see [19]). For further references consider
[1-16, 19, 21-28, 30, 32, 34-37].

On the other hand, the Dirac systems play an important role in the theory
of relativistic quantum mechanics since basic physics of relativistic quantum
mechanics was governed by the Dirac operators. For example, they predict
the existence of a positron and elucidate the origin of spin 1/2 of an elec-
tron (see [29]). Dirac systems in the finite interval have been considered in
[20], [33] whereas the Dirac system in the infinite interval were considered
in [20]. Direct or inverse spectral problems for Dirac operators with trans-
mission conditions were studied in [6-8, 13, 16, 24, 36]. In [14], Hıra and
Altınışık investigated asymptotic behavior of eigenvalues and eigenfunctions
of discontinuous Dirac system which includes an eigenvalue parameter in a
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transmission condition. In [30], Tharwat and Bhrawy computed the eigen-
values of a discontinuous regular Dirac systems with transmission conditions
at the point of discontinuity numerically. In [15], Kablan and Özden stud-
ied a Dirac system with transmission conditions and eigenparameter in the
boundary condition. They investigated the existence of the solution and some
spectral properties of this problem. For the classical Sturm-Liouville equa-
tion, the integral representation of the resolvent was first proved by H. Weyl
in 1910. Similar theorems were proved by E. C. Titchmarsh [31] and [20].
Levitan and Sargsjan obtained the integral representation of the resolvent for
one dimensional Dirac operators ([20]).

The main result of the paper is obtaining an integral representations in
terms of the spectral function for the resolvent of the one dimensional singular
Dirac operator with transmission conditions.

This paper is organized as follows. In Section 2, we consider one dimen-
sional singular Dirac operator with transmission (or impulsive) conditions. In
Section 3, we study the Titchmarsh-Weyl function of one dimensional singu-
lar Dirac operator with transmission conditions. We will define limit-point
and limit-circle singularities. In Section 4, we construct a Green function and
a spectral function for regular problem. With the help of these functions,
we obtain an expansion into a Fourier series of resolvent in regular case. In
Section 5, we give the main result of this paper. We obtain integral repre-
sentations in terms of the spectral function for the resolvent of this operator
with transmission conditions in singular case. Finally, in Section 6, we obtain
a formula for the Titchmarsh-Weyl function in terms of the spectral function
of the singular Dirac system.

2. Preliminaries

We consider one dimensional Dirac expression

τ(y) :=

(
0 −1
1 0

)
dy(x)
dx

+Q(x)y(x), x ∈ Ω := Ω1 ∪ Ω2,

where

y(x) =

(
y1(x)
y2(x)

)
, Q(x) =

(
p(x) 0

0 r(x)

)
,

and Ω1 := [a, c), Ω2 := (c, b], −∞ < a < c < b < +∞. We assume that the
points a, b and c are regular for the differential expression τ. p and r are real-
valued, Lebesgue measurable functions on Ω and p, r ∈ L1(Ωk), (k = 1, 2).
The point c is regular if p, r ∈ L1[c− ǫ, c+ ǫ] for some ǫ > 0.

Let us consider the Dirac system

(2.1) τ (y) = λy, x ∈ Ω,
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with the boundary conditions

y1 (a) cosβ + y2 (a) sinβ = 0,(2.2)

y1 (b) cosα+ y2 (b) sinα = 0, α, β ∈ R := (−∞,∞) ,(2.3)

and transmission (or impulsive) conditions

(2.4) y (c+) = Cy (c−) , C ∈ M2 (R) , detC = γ > 0,

where λ is a complex spectral parameter and M2 (R) denotes the the 2 × 2
matrices with entries from R.

Now, we introduce the direct sum Hilbert space H = L2 (Ω1;E)
·
+

L2 (Ω2;E) (where E := C2) of vector-valued functions with values in C2

and with the inner product

〈u, v〉H :=
∫ c

a

(u(x), v(x))E dx+ γ

∫ b

c

(u(x), v(x))E dx, δ =
1
γ
,

where

u(x) =

(
u1(x)
u2(x)

)
, v(x) =

(
v1(x)
v2(x)

)
,

u1(x) =

{
u

(1)
1 (x), x ∈ Ω1

u
(2)
1 (x), x ∈ Ω2

, u2(x) =

{
u

(1)
2 (x), x ∈ Ω1

u
(2)
2 (x), x ∈ Ω2

,

v1(x) =

{
v

(1)
1 (x), x ∈ Ω1

v
(2)
1 (x), x ∈ Ω2

, v2(x) =

{
v

(1)
2 (x), x ∈ Ω1

v
(2)
2 (x), x ∈ Ω2

.

Denote by D the linear set of all vector-valued functions y ∈ H such
that y1, y2 are locally absolutely continuous functions on Ω, one-sided limits
y1(c±), y2(c±) exist and are finite and τ(y) ∈ H. The operator L defined by
Ly = τ(y) (y ∈ D) is called the maximal operator on H.

For two arbitrary vector-valued functions y, z ∈ D, we have Green’s for-
mula

(2.5)
∫ b

a

τ (y) zdx−
∫ b

a

yτ (z)dx = [y, z]c− − [y, z]a + [y, z]b − [y, z]c+,

where [y, z]x := Wx(y, z) := y1(x)z2(x) − y2(x)z1(x) (x ∈ Ω) .

Now, we introduce the Hilbert space H := L2 (Ω1)
·
+ L2 (Ω3) , (Ω1 :=

[a, c), Ω3 := (c,∞)) with the inner product

〈u, v〉H :=
∫ c

a

(u(x), v(x))E dx+ δ

∫ ∞

c

(u(x), v(x))E dx, δ =
1
γ
,
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where

u(x) =

(
u1(x)
u2(x)

)
, v(x) =

(
v1(x)
v2(x)

)
,

u1(x) =

{
u

(1)
1 (x), x ∈ Ω1

u
(2)
1 (x), x ∈ Ω3

, u2(x) =

{
u

(1)
2 (x), x ∈ Ω1

u
(2)
2 (x), x ∈ Ω3

,

v1(x) =

{
v

(1)
1 (x), x ∈ Ω1

v
(2)
1 (x), x ∈ Ω3

, v2(x) =

{
v

(1)
2 (x), x ∈ Ω1

v
(2)
2 (x), x ∈ Ω3

.

We will denote by

(2.6) ϕ(x, λ) =

(
ϕ1(x, λ)
ϕ2(x, λ)

)
, ϕ1(x, λ) =

{
φ

(1)
1 (x, λ), x ∈ Ω1

φ
(2)
1 (x, λ), x ∈ Ω3

,

ϕ2(x, λ) =

{
ϕ

(1)
2 (x, λ), x ∈ Ω1

ϕ
(2)
2 (x, λ), x ∈ Ω3

,

and

θ(x, λ) =

(
θ1(x, λ)
θ2(x, λ)

)
, θ1(x, λ) =

{
θ

(1)
1 (x, λ), x ∈ Ω1

θ
(2)
1 (x, λ), x ∈ Ω3

,

θ2(x, λ) =

{
θ

(1)
2 (x, λ), x ∈ Ω1

θ
(2)
2 (x, λ), x ∈ Ω3

,

the solution of the system τ (y) = λy, x ∈ Ω1 ∪ Ω3 which satisfy the initial
conditions

(2.7)
ϕ

(1)
1 (a, λ) = sinβ, ϕ(1)

2 (a, λ) = − cosβ,
θ

(1)
1 (a, λ) = cosβ, θ(1)

2 (a, λ) = sinβ.

and transmission conditions

(2.8)
Φ (c+, λ) = CΦ (c−, λ) , Φ(x, λ) :=

(
ϕ1(x, λ)
ϕ2(x, λ)

)
,

Θ (c+, λ) = CΘ (c−, λ) , Θ(x, λ) :=

(
θ1(x, λ)
θ2(x, λ)

)
,

C ∈ M2 (R) , detC = γ > 0.

3. The Titchmarsh-Weyl function

In this section, we will consider the Titchmarsh-Weyl function of one
dimensional singular Dirac operator with transmission conditions. Later, we
will define limit-point and limit-circle singularities.
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We will denote by θ(x, λ) + mb (λ)ϕ(x, λ) the solution of the equation
(2.1) which satisfy the boundary condition

(θ(2)
1 (b, λ) +mb (λ)ϕ(2)

1 (b, λ)) cosα

+ (θ(2)
2 (b, λ) +mb (λ)ϕ(2)

2 (b, λ)) sinα = 0.

Then, mb (λ) satisfies the relation

mb (λ) = − θ
(2)
1 (b, λ) cotα+ θ

(2)
2 (b, λ)

ϕ
(2)
1 (b, λ) cotα+ ϕ

(2)
2 (b, λ)

.

It is clear that mb (λ) is a meromorphic function of λ, since θ(x, λ) and ϕ(x, λ)
are entire functions of λ. Furthermore, since the eigenvalues of the regular
problem are real, all poles of mb (λ) are real and simple. The function mb is
called the Titchmarsh-Weyl function of the regular problem (1)-(4). If cotβ
is replaced by a complex variable z, then we have

(3.1) mb (λ, z) = − θ
(2)
1 (b, λ) z + θ

(2)
2 (b, λ)

ϕ
(2)
1 (b, λ) z + ϕ

(2)
2 (b, λ)

.

For every λ, the equality (3.1) is a one-to-one conformal mapping in z, which
follows from the theory of Möbius transformations [17]. Hence, if Im λ 6= 0,
then mb (λ, z) varies on a circle Cb (λ) with a finite radius in the mb-plane as
z varies over the real axis of the z-plane.

Using this notation we now state the result from [6].

Theorem 3.1. Let θ(x, λ), ϕ(x, λ) be two linearly independent solution
of the system (2.1) satisfying the initial conditions (2.7) and transmission
conditions (2.8). Then, the solution

ω(x, λ) = θ(x, λ) +mb (λ)ϕ(x, λ)

satisfies the boundary condition

(θ(2)
1 (b, λ) +mb (λ)ϕ(2)

1 (b, λ)) cosα

+(θ(2)
2 (b, λ) +mb (λ)ϕ(2)

2 (b, λ)) sinα = 0.

if and only if mb (λ) is on Cb with

lim
b→∞

W (ω, ω) (b, λ) = 0.

If b → ∞, then Cb tends either to limit-circle C∞ or to the limit-point m∞.
In the first case, all solutions of the system are in the space H. In the second
case, if Im λ 6= 0, one linearly independent solution is in the space H. In the
limit-circle case, a point is on C∞ if and only if

lim
b→∞

W (ω, ω) (b, λ) = 0.
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The function m(λ) := limb→∞ mb (λ) is called the Titchmars-Weyl func-
tion, and χ(x, λ) := θ(x, λ) + m (λ)ϕ(x, λ) is called the Weyl solution of the
singular system τ (y) = λy (x ∈ Ω1 ∪ Ω3) satisfying (2.2), (2.4).

Let us define

(3.2) χb(x, λ) := θ(x, λ) +mb (λ)ϕ(x, λ), x ∈ Ω.

Then, we have the following lemma.

Lemma 3.2. For each nonreal λ, we have

χb(x, λ) → χ(x, λ), b → ∞,

∫ c

a

∥∥∥χ(1)
b (x, λ)

∥∥∥
2

E
dx+ δ

∫ b

c

∥∥∥χ(2)
b (x, λ)

∥∥∥
2

E
dx

→
∫ c

a

∥∥∥χ(1)(x, λ)
∥∥∥

2

E
dx+ δ

∫ ∞

c

∥∥∥χ(2)(x, λ)
∥∥∥

2

E
dx, b → ∞.

Proof. It is clear that

χb(x, λ) = χ(x, λ) + {mb (λ) −m (λ)}ϕ(x, λ),

where χ(x, λ) ∈ H and mb (λ) is a point of the circle. According to [20], [6]

|mb (λ) −m (λ)| ≤ 2rb (λ)

=

[
|v|
( ∫ c

a

∥∥ϕ(1)(x, λ)
∥∥2

E
dx

+δ
∫ b

c

∥∥ϕ(2)(x, λ)
∥∥2

E
dx

)]−1

, Im λ = v 6= 0.

Since rb (λ) → 0, we get χb (x, λ) → χ (x, λ) (b → ∞). Furthermore, we have
∫ c

a

∥∥∥{mb (λ) −m (λ)}ϕ(1)(x, λ)
∥∥∥

2

E
dx

+ δ

∫ b

c

∥∥∥{mb (λ) −m (λ)}ϕ(2)(x, λ)
∥∥∥

2

E
dx

= |mb (λ) −m (λ)|2
∫ c

a

∥∥∥ϕ(1)(x, λ)
∥∥∥

2

E
dx

+ δ |mb (λ) −m (λ)|2
∫ b

c

∥∥∥ϕ(2)(x, λ)
∥∥∥

2

E
dx

≤
(

|v|2
[∫ c

a

∥∥∥ϕ(1)(x, λ)
∥∥∥

2

E
dx+ δ

∫ b

c

∥∥∥ϕ(2)(x, λ)
∥∥∥

2

E
dx

])−1

.

Therefore, we get

∫ c

a

∥∥∥χ(1)
b (x, λ)

∥∥∥
2

E
dx+ δ

∫ b

c

∥∥∥χ(2)
b (x, λ)

∥∥∥
2

E
dx

→
∫ c

a

∥∥∥χ(1)(x, λ)
∥∥∥

2

E
dx+ δ

∫ ∞

c

∥∥∥χ(2)(x, λ)
∥∥∥

2

E
dx, b → ∞.
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4. An expansion of the resolvent in regular case

In this section, we will obtain an expansion into a Fourier series of re-
solvent in regular case. We will construct a Green function and a spectral
function for this problem. With the help of these functions, we will obtain an
expansion into a Fourier series of resolvent.

Let two functions χb(x, λ) and ϕ(x, λ) be as in (3.2) and (2.6), respec-
tively. Putting

Gb (x, t, λ) =

{
χb(x, λ)ϕT (t, λ), t ≤ x, x 6= c, t 6= c
ϕ(x, λ)χT

b (t, λ), t > x, x 6= c, t 6= c

(4.1)

=





(
χb1(x, λ)ϕ1(t, λ) χb1(x, λ)ϕ2(t, λ)
χb2(x, λ)ϕ1(t, λ) χb2(x, λ)ϕ2(t, λ)

)
, t ≤ x, x 6= c, t 6= c

(
ϕ1(x, λ)χb1(t, λ) ϕ1(x, λ)χb2(t, λ)
ϕ2(x, λ)χb1(t, λ) ϕ2(x, λ)χb2(t, λ)

)
, x < t, x 6= c, t 6= c,

(4.2) (Rbf) (x, λ) = y(x, λ) =
∫ b

a

Gb (x, t, λ) f (t) dt, λ ∈ C.

Hence, we have

Gb (x, t, λ) f (t)

=








χb1(x, λ)ϕ1(t, λ)f1 (t)
+χb1(x, λ)ϕ2(t, λ)f2 (t)
χb2(x, λ)ϕ1(t, λ)f1 (t)

+χb2(x, λ)ϕ2(t, λ)f2 (t)


 , t ≤ x, x 6= c, t 6= c




ϕ1(x, λ)χb1(t, λ)f1 (t)
+ϕ1(x, λ)χb2(t, λ)f2 (t)
ϕ2(x, λ)χb1(t, λ)f1 (t)

+ϕ2(x, λ)χb2(t, λ)f2 (t)


 , x < t, x 6= c, t 6= c.

Now, we shall show that (4.2) satisfies the equation τ (y) = λy + f (x ∈ Ω,
f ∈ H) and the conditions (2.2)–(2.4). From (4.2), we have
(4.3)

y1(x, λ) =






χ
(1)
b1 (x, λ)

∫ x

a

(
ϕ

(1)
1 (t, λ)f1 (t) + ϕ

(1)
2 (t, λ)f2 (t)

)
dt

+ϕ(1)
1 (x, λ)

∫ c

x

(
χ

(1)
b1 (t, λ)f1 (t) + χ

(1)
b2 (t, λ)f2 (t)

)
dt

+ϕ(1)
1 (x, λ)δ

∫ b

c

(
χ

(2)
b1 (t, λ)f1 (t) + χ

(2)
b2 (t, λ)f2 (t)

)
dt, x ∈ Ω1,

χ
(2)
b1 (x, λ)

∫ c

a

(
ϕ

(1)
1 (t, λ)f1 (t) + ϕ

(1)
2 (t, λ)f2 (t)

)
dt

+χ(2)
b1 (x, λ)δ

∫ x

c

(
ϕ

(2)
1 (t, λ)f1 (t) + ϕ

(2)
2 (t, λ)f2 (t)

)
dt

+ϕ(2)
1 (x, λ)δ

∫ b

x

(
χ

(2)
b1 (t, λ)f1 (t) + χ

(2)
b2 (t, λ)f2 (t)

)
dt, x ∈ Ω2,
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and
(4.4)

y2(x, λ) =






χ
(1)
b2 (x, λ)

∫ x

a

(
ϕ

(1)
1 (t, λ)f1 (t) + ϕ

(1)
2 (t, λ)f2 (t)

)
dt

+ϕ(1)
2 (x, λ)

∫ c

x

(
χ

(1)
b1 (t, λ)f1 (t) + χ

(1)
b2 (t, λ)f2 (t)

)
dt

+ϕ(1)
2 (x, λ)δ

∫ b

c

(
χ

(2)
b1 (t, λ)f1 (t) + χ

(2)
b2 (t, λ)f2 (t)

)
dt, x ∈ Ω1,

χ
(2)
b2 (x, λ)

∫ c

a

(
ϕ

(1)
1 (t, λ)f1 (t) + ϕ

(1)
2 (t, λ)f2 (t)

)
dt

+χ(2)
b2 (x, λ)δ

∫ x

c

(
ϕ

(2)
1 (t, λ)f1 (t) + ϕ

(2)
2 (t, λ)f2 (t)

)
dt

+ϕ(2)
2 (x, λ)δ

∫ b

x

(
χ

(2)
b1 (t, λ)f1 (t) + χ

(2)
b2 (t, λ)f2 (t)

)
dt, x ∈ Ω2.

From (4.3), it follows that

y′
1(x, λ) =





χ
(1)′
b1 (x, λ)

∫ x

a

(
ϕ

(1)
1 (t, λ)f1 (t) + ϕ

(1)
2 (t, λ)f2 (t)

)
dt

+ϕ(1)′
1 (x, λ)

∫ c

x

(
χ

(1)
b1 (t, λ)f1 (t) + χ

(1)
b2 (t, λ)f2 (t)

)
dt

+ϕ(1)′
1 (x, λ)δ

∫ b

c

(
χ

(2)
b1 (t, λ)f1 (t) + χ

(2)
b2 (t, λ)f2 (t)

)
dt

+W (ϕ, χb) f2(x), x ∈ Ω1,

χ
(2)′
b1 (x, λ)

∫ c

a

(
ϕ

(1)
1 (t, λ)f1 (t) + ϕ

(1)
2 (t, λ)f2 (t)

)
dt

+χ(2)′
b1 (x, λ)δ

∫ x

c

(
ϕ

(2)
1 (t, λ)f1 (t) + ϕ

(2)
2 (t, λ)f2 (t)

)
dt

+ϕ(2)′
1 (x, λ)δ

∫ b

x

(
χ

(2)
b1 (t, λ)f1 (t) + χ

(2)
b2 (t, λ)f2 (t)

)
dt

+W (ϕ, χb) f2(x), x ∈ Ω2

=





{λ− r(x)}χ(1)
b2 (x, λ)

∫ x

a

(
ϕ

(1)
1 (t, λ)f1 (t) + ϕ

(1)
2 (t, λ)f2 (t)

)
dt

{λ− r(x)} ϕ(1)
2 (x, λ) +

∫ c

x

(
χ

(1)
b1 (t, λ)f1 (t) + χ

(1)
b2 (t, λ)f2 (t)

)
dt

{λ− r(x)} ϕ(1)
2 (x, λ)δ

∫ b

c

(
χ

(2)
b1 (t, λ)f1 (t) + χ

(2)
b2 (t, λ)f2 (t)

)
dt

+f2(x), x ∈ Ω1,

{λ− r(x)}χ(2)
b2 (x, λ)

∫ c

a

(
ϕ

(1)
1 (t, λ)f1 (t) + ϕ

(1)
2 (t, λ)f2 (t)

)
dt

{λ− r(x)}ϕ(2)
2 (x, λ)δ

∫ x

c

(
χ

(2)
b1 (t, λ)f1 (t) + χ

(2)
b2 (t, λ)f2 (t)

)
dt

{λ− r(x)} ϕ(2)
2 (x, λ)δ

∫ b

x

(
χ

(2)
b1 (t, λ)f1 (t) + χ

(2)
b2 (t, λ)f2 (t)

)
dt

+f2(x), x ∈ Ω2,

= {λ− r(x)} y2(x, λ) + f2(x).
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The validity of of the other equation in (2.1) is proved similarly. Hence the

function y(x, λ) =

(
y1(x, λ)
y2(x, λ)

)
in (4.2) is the solution of the system (2.1).

We check at once that (4.2) satisfies the conditions (2.2)-(2.4).
Let λm,b (m ∈ Z := {0,±1,±2, ...}) denote the eigenvalues of the self-

adjoint problem (1)-(4) and by

φm,b(x) =

(
φm,b1(x)
φm,b2(x)

)
, φm,b1(x) =

{
φ

(1)
m,b1(x), x ∈ Ω1

φ
(2)
m,b2(x), x ∈ Ω2

,

φm,b2(x) =

{
φ

(1)
m,b2(x), x ∈ Ω1

φ
(2)
m,b2(x), x ∈ Ω2

the corresponding eigenfunction which satisfy the conditions (2)-(4). If

f(x) =

(
f1(x)
f2(x)

)
, f1(x) =

{
f

(1)
1 (x), x ∈ Ω1

f
(2)
1 (x), x ∈ Ω2

,

f2(x) =

{
f

(1)
2 (x), x ∈ Ω1

f
(2)
2 (x), x ∈ Ω2

,

f ∈ H , and

α2
m,b =

∫ c

a

((
φ

(1)
m,b1(x)

)2
+
(
φ

(1)
m,b2(x)

)2
)
dx

+ δ

∫ b

c

((
φ

(2)
m,b1(x)

)2
+
(
φ

(2)
m,b2(x)

)2
)
dx.

Then we have

‖f‖2
H =

∫ c

a

(∣∣∣f (1)
1 (x)

∣∣∣
2

+
∣∣∣f (1)

2 (x)
∣∣∣
2
)
dx

+ δ

∫ b

c

(∣∣∣f (2)
1 (x)

∣∣∣
2

+
∣∣∣f (2)

2 (x)
∣∣∣
2
)
dx

(4.5) =
∞∑

m=−∞

1
α2

m,b





∫ c

a

(
f

(1)
1 (x)φ(1)

m,b1(x) + f
(1)
2 (x)φ(1)

m,b2(x)
)
dx

+δ
∫ b

c

(
f

(2)
1 (x)φ(2)

m,b1(x) + f
(2)
2 (x)φ(2)

m,b2(x)
)
dx





2

.

which is called the Parseval equality.
Now, let us define the nondecreasing step function ̺b on R by

̺b (λ) =

{ −∑λ<λm,b<0
1

α2
m,b

, for λ ≤ 0
∑

0≤λm,b<λ
1

α2
m,b

, for λ ≥ 0.
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Then equalities (4.5) can be written as

(4.6) ‖f‖2
H =

∫ ∞

−∞
|F (λ)|2 d̺b (λ) ,

where

F (λ) =
∫ c

a

(
f

(1)
1 (x)φ(1)

m,b1(x) + f
(1)
2 (x)φ(1)

m,b2(x)
)
dx

+ δ

∫ b

c

(
f

(2)
1 (x)φ(2)

m,b1(x) + f
(2)
2 (x)φ(2)

m,b2(x)
)
dx.

By letting b → ∞, we have the Parseval equality for the problem (2.1), (2.2),
(2.4).

Now, we will give a definition.
A function f defined on an interval [a, b] is said to be of bounded variation

if there is a constant C > 0 such that
n∑

k=1

|f (xk) − f (xk−1)| ≤ C

for every partition

(4.7) a = x0 < x1 < ... < xn = b

of [a, b] by points of subdivision x0, x1, ..., xn.
Let f be a function of bounded variation. Then, by the total variation of

f on [a, b], denoted by
b∨

a

(f) , we mean the quantity

b∨

a

(f) := sup
n∑

k=1

|f (xk) − f (xk−1)| ,

where the least upper bound is taken over all (finite) partitions (4.7) of the
interval [a, b] (see [18]).

Lemma 4.1. For any positive N, there is a positive constant Υ = Υ (N)
not depending on b such that

(4.8)
N∨

−N

{̺b (λ)} =
∑

−N≤λm,b<N

1
α2

m,b

= ̺b (N) − ̺b (−N) < Υ.

Proof. Let sinβ 6= 0. Since ϕ(1)
1 (x, λ) is continuous on the region

{(x, λ) : −N ≤ λ ≤ N, a ≤ x ≤ c} ,
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by condition ϕ
(1)
1 (a, λ) = sin β, there is a positive number k and near by a

such that

(4.9)
1
k2

(∫ k

a

ϕ
(1)
1 (x, λ)dx

)2

>
1
2

sin2 β.

Let us define fk(x) =

(
fk1(x)
fk2(x)

)
by

fk1(x) = 0, fk2(x) =

{
1
k , a ≤ x < k
0, x ≥ k.

From (4.6), (4.8) and (4.9), we get

∫ k

a

(f2
k1(x) + f2

k2(x))dx =
k − a

k2 =
∫ ∞

−∞

(
1
k

∫ k

a

φ
(1)
1 (x, λ)dx

)
d̺b (λ)

≥
∫ N

−N

(
1
k

∫ k

a

φ
(1)
1 (x, λ)dx

)2

d̺b (λ)

>
1
2

sin2 β {̺b (N) − ̺b (−N)} ,

which proves the inequality (4.8).

If sin β = 0, then we define the function fk(x) =

(
fk1(x)
fk2(x)

)
by the

formula

fk1(x) =

{
1

k2 , a ≤ x < k
0, x ≥ k

, fk2(x) = 0.

So, we obtain the inequality (4.8) by applying the Parseval equality.

Now, we will obtain an expansion into a Fourier series of resolvent if one
knows the expansion of the function f (.) .
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By integration by parts, we find

∫ c

a

(
τ(y(1)), ϕ(1)

m,b(x)
)

E
dx+ δ

∫ b

c

(
τ(y(2)), ϕ(2)

m,b(x)
)

E
dx

=
∫ c

a

[
−y(1)′

2 (x) + p(x)y(1)
1

]
ϕ

(1)
m,b1(x)dx

+ δ

∫ b

c

[
−y(2)′

2 (x) + p(x)y(2)
1

]
ϕ

(2)
m,b1(x)dx

+
∫ c

a

[
y

(1)′
1 (x) + r(x)y(1)

2

]
ϕ

(1)
m,b2(x)dx

+ δ

∫ b

c

[
y

(2)′
1 (x) + r(x)y(2)

2

]
ϕ

(2)
m,b2(x)dx

=
∫ c

a

[
−ϕ(1)′

m,b2(x) + p(x)ϕ(1)
m,b1

]
y

(1)
2 dx

+ δ

∫ b

c

[
−ϕ(2)′

m,b2(x) + p(x)ϕ(2)
m,b1

]
y

(2)
2 dx

+
∫ c

a

[
ϕ

(1)′
m,b1(x) + r(x)ϕ(1)

m,b2

]
y

(1)
1 dx

+ δ

∫ b

c

[
−ϕ(2)′

m,b1(x) + p(x)ϕ(2)
m,b1

]
y

(2)
1 dx

= λm,b

∫ c

a

(
y(1)(x, λ), ϕ(1)

m,b(x)
)

E
dx

+ λm,bδ

∫ b

c

(
y(2)(x, λ)ϕ(2)

m,b(x)
)

E
dx

= λ m,bγm (λ) (m ∈ Z),

where

γm (λ) =
∫ c

a

(
y(1)(x, λ), ϕ(1)

m,b(x)
)

E
dx+ δ

∫ b

c

(
y(2)(x, λ)ϕ(2)

m,b(x)
)

E
dx (m ∈ Z).

Set

y(x, λ) =
∞∑

m=−∞
γm (λ)ϕm,b(x),

cm =
∫ c

a

(
f (1)(x), ϕ(1)

m,b(x)
)

E
dx+ δ

∫ b

c

(
f (2)(x), ϕ(2)

m,b(x)
)

E
dx (m ∈ Z).
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Since y(x, λ) satisfies the system τ (y) = λy+f (x ∈ Ω, f ∈ H) and conditions
(2.2)-(2.4), we get

cm =
∫ c

a

(f (1)(x), ϕ(1)
m,b(x))Edx+ δ

∫ b

c

(f (2)(x), ϕ(2)
m,b(x))Edx

=
∫ c

a

(τ
(
y(1)

)
(x), ϕ(1)

m,b(x))Edx + δ

∫ b

c

(τ
(
y(2)(x)

)
, ϕ

(2)
m,b(x))Edx

− λ

∫ c

a

(y(1)(x), ϕ(1)
m,b(x))Edx− λδ

∫ b

c

(y(2)(x), ϕ(2)
m,b(x))Edx

= (λm,b − λ) γm (λ) (m ∈ Z).

Then, we obtain

γm (λ) =
cm

λm,b − λ
, (m ∈ Z).

and

y(x, λ) =
∫ b

a

Gb (x, t, λ) f (t) dt =
∞∑

m=−∞

cm

λm,b − λ
ϕm,b(x).

Hence, the expansion of the resolvent is

(Rbf) (x, z) =
∞∑

m=−∞

ϕm,b(x) 〈f (.) , ϕm,b (.)〉H

α2
m,b (λm,b − z)

(4.10)

=
∫ ∞

−∞

ϕ(x, λ)
λ− z

〈f (.) , ϕ (.)〉H d̺b (λ) .(4.11)

Lemma 4.2. Let z be a non real number and x be a fixed number. Then
we have

(4.12)
∫ ∞

−∞

∥∥∥∥
ϕ(x, λ)
λ− z

∥∥∥∥
2

E

d̺b (λ) < K.

Proof. Putting f(x) = ϕm,b(x) in (4.10), we get

(4.13)
1

αm,b

∫ b

a

Gb (x, t, z)ϕm,b (t) dt =
ϕm,b(x)

αm,b (λm,b − z)
,

since the eigenfunctions ϕm,b(x) are orthogonal. Using (4.13), if we apply the
Parseval equality to Gb (x, t, z) , we have

∫ b

a

‖Gb (x, t, z)‖2
E dx =

∞∑

m=−∞

‖ϕm,b(x)‖2
E

α2
m,b |λm,b − z|2

=
∫ ∞

−∞

∥∥∥∥
ϕ(x, λ)
λ− z

∥∥∥∥
2

E

d̺b (λ) .

Since the last integral convergent, the statement of lemma follows.
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5. Integral representations for the resolvent operator in
singular case

In this section, we will obtain integral representations for the resolvent in
singular case.

Now, we recall that the following well-known theorems of Helly’s.

Theorem 5.1 ([18]). Let (wn)n∈N
be a uniformly bounded sequence of

real nondecreasing function on a finite interval a ≤ λ ≤ b. Then there exists
a subsequence (wnk

)k∈N
and a nondecreasing function w such that

lim
k→∞

wnk
(λ) = w (λ) , a ≤ λ ≤ b.

Theorem 5.2 ([18]). Assume (wn)n∈N
is a real, uniformly bounded, se-

quence of nondecreasing function on a finite interval a ≤ λ ≤ b, and suppose

lim
n→∞

wn (λ) = w (λ) , a ≤ λ ≤ b.

If f is any continuous function on a ≤ λ ≤ b, then

lim
n→∞

∫ b

a

f (λ) dwn (λ) =
∫ b

a

f (λ) dw (λ) .

By Lemma 3, the set{̺b (λ)} is bounded. Using Theorems 5 and 6, we can
find a sequence {bk} such that the function ̺bk

(λ) converge to a monotone
function ̺ (λ) . Then we have a lemma.

Lemma 5.3. Let z be a non real number, and let ϕ(x, λ) be as in (2.6).
Then we have

(5.1)
∫ ∞

−∞

∥∥∥∥
ϕ(x, λ)
λ− z

∥∥∥∥
2

E

d̺ (λ) ≤ K,

where x be a fixed number.

Proof. By the inequality (4.12), for arbitrary η > 0, we have
∫ η

−η

∥∥∥∥
ϕ(x, λ)
λ− z

∥∥∥∥
2

E

d̺b (λ) < K.

Letting η → ∞ and b → ∞, we get the desired result.

Lemma 5.4. For arbitrary η > 0, we have the following inequalities.

(5.2)
∫ −η

−∞

d̺ (λ)
λ2 < ∞,

∫ ∞

η

d̺ (λ)
λ2 < ∞.

Proof. Since ‖ϕm,b (a, λ)‖2
E 6= 0, putting x = a in (5.1), we get

∫ ∞

−∞

d̺ (λ)

|λ− z|2
< ∞,

and the statement of lemma follows.
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Lemma 5.5. Let f (.) ∈ H, and let

(Rf) (x, z) =
∫ ∞

a

G (x, t, z) f (t) dt,

where

G (x, t, z) =

{
χ (x, z)ϕT (t, z) , t ≤ x, x 6= c, t 6= c
ϕ (x, z)χT (t, z) , t > x, x 6= c, t 6= c.

Then
∫ c

a

‖(Rf) (x, z)‖2
E dx+ δ

∫ ∞

c

‖(Rf) (x, z)‖2
E dx

≤ 1
v2

(∫ c

a

‖f(x)‖2
E dx+ δ

∫ ∞

c

‖f(x)‖2
E dx

)
, z = u+ iv.

Proof. For each b > c, it follows from (4.10) and the Parseval equality
that

∫ c

a

‖(Rbf) (x, z)‖2
E dx+ δ

∫ b

c

‖(Rbf) (x, z)‖2
E dx

=
∞∑

m=−∞

1

α2
m,b |λm,b − z|2

{
〈f (.) , ϕm,b (.)〉H

}2

≤ 1
v2

∞∑

m=−∞

1
α2

m,b

{
〈f (.) , ϕm,b (.)〉H

}2

=
1
v2

(∫ c

a

‖f(x)‖2
E dx+ δ

∫ b

c

‖f(x)‖2
E dx

)
.

Letting b → ∞, we get the desired result.

The main result of the paper is the following theorem.

Theorem 5.6. For every nonreal z and for each f (.) ∈ H, one has the
following equality

(5.3) (Rf) (x, z) =
∫ ∞

−∞

ϕ(x, λ)
λ− z

F (λ) d̺ (λ) ,

where

F (λ) =
∫ c

a

(f(x), ϕ(1)(x, λ))Edx+ δ lim
ξ→∞

∫ ξ

c

(f(x), ϕ(2)(x, λ))Edx,

and ϕ(x, λ) is defined by (2.6).
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Proof. Let ς be an arbitrary positive number and the real-valued func-
tion

fξ(x) =

(
fξ1(x)
fξ2(x)

)
, fξ1(x) =

{
f

(1)
ξ1 (x), x ∈ [a, c)

f
(2)
ξ1 (x), x ∈ (c, ξ]

,

fξ2(x) =

{
f

(1)
ξ2 (x), x ∈ [a, c)

f
(2)
ξ2 (x), x ∈ (c, ξ]

satisfies the following conditions:

1) fξ(x) vanishes outside the set [a, c) ∪ (c, ξ] , ξ > b.
2) The function fξ(x) has a continuous derivative.
3) fξ(x) satisfy the conditions (2.2)-(2.4).

Set

Fξ (λ) =
∫ c

a

(f (1)
ξ (x), ϕ(1)(x, λ))Edx+ δ

∫ ξ

c

(f (2)
ξ (x), ϕ(2)(x, λ))Edx.

From (4.11), we get

(5.4)

(Rbfξ) (x, z)

=
∫ ∞

−∞

ϕ(x, λ)
λ− z

Fξ (λ) d̺b (λ) =
∫ −ς

−∞

ϕ(x, λ)
λ− z

Fξ (λ) d̺b (λ)

+
∫ ς

−ς

ϕ(x, λ)
λ− z

Fξ (λ) d̺b (λ) +
∫ ∞

ς

ϕ(x, λ)
λ− z

Fξ (λ) d̺b (λ)

= I1 + I2 + I3.

Now, we will estimate I1. By (4.10), we get

(5.5)

|I1| =

∣∣∣∣
∫ −ς

−∞

ϕ(x, λ)
λ− z

Fξ (λ) d̺b (λ)

∣∣∣∣

=

∣∣∣∣∣∣

∑

λk,b<−ς

ϕk,b(x)
α2

k,b (λk,b − z)





∫ c

a

(
f

(1)
ξ (x), ϕ(1)

k,b(x)
)

E
dx

+δ
∫ ξ

c

(
f

(2)
ξ (x), ϕ(2)

k,b(x)
)

E
dx





∣∣∣∣∣∣

≤




∑

λk,b<−ς

‖ϕk,b(x)‖2
E

α2
k,b |λk,b − z|2




1/2

×




∑

λk,b<−ς

1
α2

k,b




∫ c

a

(
f

(1)
ξ (x), ϕ(1)

k,b(x)
)

E
dx

+δ
∫ ξ

c

(
f

(2)
ξ (x), ϕ(2)

k,b(x)
)

E
dx




2



1/2

.
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By integration by parts, we find

(5.6)

∫ c

a

(
f

(1)
ξ (x), ϕ(1)

k,b(x, λ)
)

E
dx+ δ

∫ ξ

c

(
f

(2)
ξ (x), ϕ(2)

k,b(x, λ)
)

E
dx

=
1
λk,b






∫ c

a
f

(1)
ξ1 (x)

{
−ϕ(1)′

k,b2(x) + p(x)ϕ(1)
k,b1(x)

}
dx

+δ
∫ ξ

c f
(2)
ξ1 (x)

{
−ϕ(2)′

k,b2(x) + p(x)ϕ(2)
k,b1(x)

}
dx






+
1
λk,b






∫ c

a
f

(1)
ξ2 (x)

{
ϕ

(1)′
k,b1(x) + r(x)ϕ(1)

k,b2(x)
}
dx

+δ
∫ ξ

c f
(2)
ξ2 (x)

{
ϕ

(2)′
k,b1(x) + r(x)ϕ(2)

k,b2(x)
}
dx






=
1
λk,b





∫ c

a
ϕ

(1)
k,b1(x)

{
−f (1)′

ξ2 (x) + p(x)f (1)
ξ1 (x)

}
dx

+δ
∫ ξ

c ϕ
(2)
k,b1 (x)

{
−f (2)′

ξ2 (x) + p (x) f (2)
ξ1 (x)

}
dx





+
1
λk,b





∫ c

a
ϕ

(1)
k,b2 (x)

{
f

(1)′
ξ1 (x) + r (x) f (1)

ξ2 (x)
}
dx

+δ
∫ ξ

c ϕ
(2)
k,b2 (x)

{
f

(2)′
ξ1 (x) + r (x) f (2)

ξ2 (x)
}
dx



 .

By Lemma 4, we have

|I1| ≤ K1/2

ς2




∑

λk,b<−ς

1
α2

k,b

[ ∫ c

a (hξ(x), ϕk,b(x))E dx

+δ
∫ ξ

c
(hξ(x), ϕk,b(x))E dx

]2



1/2

,

where

hξ (t) =

( −f ′
ξ2(x) + p(x)fξ1(x)

f ′
ξ1(x) + r(x)fξ2(x)

)
.

Using Bessel inequality, we get

|I1| ≤ K1/2

ς

[∫ c

a

‖hξ(x)‖2
E dx+ δ

∫ ξ

c

‖hξ(x)‖2
E dx

]1/2

=
C1

ς
.

By similar method, one can prove that |I3| ≤ C2

ς . Then I1 and I3 tend to zero
as ς → ∞, uniformly in b. Using Theorems 5 and 6 in (5.4), we obtain

(5.7) (Rfξ) (x, z) =
∫ ∞

−∞

ϕ(x, λ)
λ− z

Fξ (λ) d̺ (λ) .

As is known, if f (.) ∈ H, then one can find a sequence {fξ(x)}∞
ξ=1 which

satisfy the previous conditions and tend to f(x) as ξ → ∞. From the Parseval
equality, the sequence of Fourier transform converges to the transform of f(x).
By Lemmas 7 and 9, we can pass to the limit ξ → ∞ in (5.7). So, we obtain
the assertion of the theorem.



102 B. P. ALLAHVERDIEV AND H. TUNA

6. The formulas for the Titchmarsh-Weyl function and the
spectral function

In this section, we will derive formulas for the Titchmarsh-Weyl function
m (z) and the spectral function ̺ (λ) with the help of the integral representa-
tion of the resolvent.

Firstly, we recall the Stieltjes inversion formula. Let σ (λ) = σ1 (λ) +
iσ2 (λ) be a complex valued function of bounded variation on the entire line.
We put

ϕ (z) =
∫ ∞

−∞

dσ (λ)
z − λ

, ψ (ν, τ) =
sgnτ

π

ϕ (z) − ϕ (z)
2i

= − 1
π

∫ ∞

−∞

|τ | dσ (λ)

(λ− ν)2 + τ2
, z = ν + iτ.

Theorem 6.1 ([20]). If the points a, b are points of continuity of σ (λ) ,
then we have

σ (b) − σ (a) = − lim
τ→0

∫ b

a

ψ (ν, τ) dν.

Theorem 6.2. (i) For any nonreal z, one has

(6.1) m (z) −m (z0) =
∫ ∞

−∞

[
1

λ− z
− 1
λ− z0

]
d̺ (λ) , (Im z0 6= 0) .

(ii) If λ and µ are points of continuity of ̺ (λ) , then one has

(6.2) ̺ (λ) − ̺ (µ) = − 1
π

lim
τ→0

∫ λ

µ

Im {m (ν + iτ)} dν, z = ν + iτ, τ > 0.

Proof. (i) Since f(x) is arbitrary, it follows from (5.3) that

G (t, u, z) =
∫ ∞

−∞

ϕ(t, λ)ϕT (u, λ)
λ− z

d̺ (λ) .

Hence,
(6.3)

G (t, u, z) −G (t, u, z0) =
∫ ∞

−∞
ϕ(t, λ)ϕT (u, λ)

[
1

λ− z
− 1
λ− z0

]
d̺ (λ) .

Since there are matrices on both sides in (6.3), their corresponding elements
are equal. So, using (4.1) and the definition of the product ϕ(t, λ)ϕT (u, λ) ,
and then putting t = u = a and taking the initial conditions (2.7), we get

{cosβ +m(z) sinβ} sin β − {cosβ +m(z0) sinβ} sinβ

=
∫ ∞

−∞
sin2 β

[
1

λ− z
− 1
λ− z0

]
d̺ (λ) ,
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i.e.,

m (z) −m (z0) =
∫ ∞

−∞

[
1

λ− z
− 1
λ− z0

]
d̺ (λ) .

(ii) From (6.1), we get

ψ (ν, τ) =
sgnτ

π

m (z) −m (z)
2i

= − 1
π

∫ ∞

−∞

|τ | d̺ (λ)

(λ− ν)2 + τ2
.

By Theorem 11, we have

(6.4) ̺ (λ) − ̺ (µ) = − lim
τ→0

∫ λ

µ

ψ (ν, τ) dν.

Since m (z) = m (z), it follows that

(6.5) ψ (ν, τ) =
sgnτ

π

m (z) −m (z)
2i

=
sgnτ

π
Im {m (z)} .

For τ > 0, we obtain the formula (6.2) using (6.4) and (6.5). Thus, the
theorem is proved.
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Rezolventni operator singularnog Diracovog sustava s uvjetima

transmisije

Bilender P. Allahverdiev i Hüseyin Tuna

Sažetak. U ovom članku se proučava rezolventni opera-
tor jednodimenzionalnog singularnog Diracovog operatora s uvje-
tima transmisije. Proučava se Titchmarsh-Weylova funkcija ovog
problema. Takoder se konstruiraju Greenova funkcija i spek-
tralna funkcija za regularni i singularni problem. Pomoću tih
funkcija dobiva se razvoj u Fourierov red rezolvente u regularnom
slučaju. Nadalje, dajemo integralnu reprezentaciju u terminima
spektralne funkcije za rezolventu ovog operatora s uvjetima trans-
misije u singularnom slučaju. Naposljetku, dobivamo formulu
za Titchmarsh-Weylovu funkciju u terminima spektralne funkcije
singularnog Diracovog sustava.

Bilender P. Allahverdiev
Department of Mathematics
Süleyman Demirel University,
32260 Isparta, Turkey
E-mail: bilenderpasaoglu@sdu.edu.tr

Hüseyin Tuna
Department of Mathematics
Mehmet Akif Ersoy University,
15030 Burdur, Turkey
E-mail: hustuna@gmail.com

Received: 20.2.2018.

Revised: 22.6.2018.; 27.8.2018.

Accepted: 25.9.2018.



106


