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A FAST AND EFFICIENT METHOD FOR SOLVING THE

MULTIPLE LINE DETECTION PROBLEM

Rudolf Scitovski, Una Radojičić and Kristian Sabo

Abstract. In this paper, we consider the multiple line detection
problem on the basis of a data points set coming from a number of lines
not known in advance. A new and efficient method is proposed, which
is based upon center-based clustering, and it solves this problem quickly
and precisely. The method has been tested on 100 randomly generated
data sets. In comparison to the incremental algorithm, the method gives
significantly better results. Also, in order to identify a partition with the
most appropriate number of clusters, a new index has been proposed for
the case of a cluster whose lines are cluster-centers. The index can also be
generalized for other geometrical objects.

1. Introduction

Let A = {ai = (xi, yi) : i = 1, . . . ,m} ⊂ ∆ ⊂ R2, ∆ = [0, a] × [0, b], be a
data points set coming from k ≥ 2 lines

(1.1) ℓj ≡ ujx+ vjy + zj = 0, u2
j + v2

j 6= 0, j = 1, . . . , k,

in the plane not known in advance that should be reconstructed or detected.
Let us suppose that data coming from a line are homogeneously distributed
around that line, such that random errors from normal distribution with ex-
pectation 0 are added to uniformly distributed points on the line in the di-
rection of a normal.

The multiple line detection problem finds application in various fields,
such as computer vision and image processing [5,11], robotics [22], laser range
measurements [6], and crop row detection in agriculture [10, 25], etc.

Many approaches to this problem can be found in the literature. The
Hough transform is the most popular application [4,13]. This method assigns
to every point a = (x, y) ∈ A a set of all lines passing through that point.
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In this way, the point is represented by means of a set of lines in the Hesse
normal form that are defined by a set of parameters:

{(α, γ) ∈ R
2 : x cosα+ y sinα− γ = 0}.

In other words, point a ∈ A is represented by a set of points (α, γ) ∈ R2 that
lie in the so-called Hough plane. The original points close to one of the lines
intensify the points in the Hough plane. Various line detection algorithms are
based on recognizing the most intensive points in the Hough plane. The main
drawback is that algorithms based on Hough transforms are slow and various
approaches have been used to overcome this problem. E.g., [5] presented an
improved voting scheme for the Hough transform for real-time line detection.
Line and circle detection based on Hough transforms is considered in [11].

The other group of methods is based on the center-based clustering ap-
proach, where one of the first papers is [19]. In relation thereto, [1] considers
the clusterwise linear regression problem by using the incremental method (see
also [2,18]), and a line detection algorithm based on probabilistic clustering is
proposed in [3] and compared to the fuzzy clustering approach in applications
to real-world images. [25] proposes a combination of center-based cluster-
ing and total least squares for the purpose of solving the crop row detection
problem in agriculture.

The paper is organized as follows. In the next section, we define a general
center-based clustering problem and narrow it down to the multiple line de-
tection problem. We also briefly describe the main methods adapted to solve
this problem, i.e. the k-means and the incremental algorithm and propose a
construction of a random data set coming from a number of lines in the plane.
After that, a new proposed method is described in Section 3. Furthermore, a
new index is proposed for recognizing a partition with the most appropriate
number of clusters whose cluster-centers are lines. The proposed method has
been tested on 100 randomly generated data sets. Finally, some conclusions
are given in Section 4.

2. The multiple line detection problem as a special
center-based clustering problem

First, let us briefly define a general center-based clustering problem. Let
d : Rn × Rn → R+, R+ = [0,+∞〉, d(u, v) = (u − v)T (u − v) = ‖u − v‖2

2, be
the least squares distance-like function (see e.g. [9, 16]), and let A = {ai ∈
Rn : i = 1, . . . ,m} be a finite subset in Rn. A partition Π of the set A is
a collection of nonempty disjoint subsets (clusters) π1, . . . , πk, (1 ≤ k ≤ m)
whose union is A. A set of all such partitions will be denoted by P(A; k).

If to each cluster πj ∈ Π we associate its center cj defined by

(2.1) cj := argmin
x∈conv(A)

∑

ai∈πj

d(x, ai),
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then a globally optimal k-partition can be defined as a solution to the following
global optimization problem (GOP):

(2.2) argmin
Π∈P(A;k)

F(Π), F(Π) =
k∑

j=1

∑

ai∈πj

d(cj , a
i), c = (c1, . . . , ck).

Conversely, for a given set of points c1, . . . , ck ∈ R
n, by applying the

minimal distance principle, we can define the partition Π = {π(c1), . . . , π(ck)}
of the set A consisting of clusters

πj := π(cj) = {a ∈ A : d(cj , a) ≤ d(cs, a), ∀s = 1, . . . , k}, j = 1, . . . , k,

where clusters πj should be mutually disjoint and where one has to have in
mind that every element of the set A occurs in one and only one cluster. Hence
the problem of finding an optimal partition of the set A can be reduced to
the following GOP (see e.g. [9, 15, 20]):

(2.3) argmin
c∈conv(A)k

F (c), F (c) =
m∑

i=1

min
1≤j≤k

d(cj , a
i),

better known as the center-based clustering problem. The solutions of (2.2)
and (2.3) coincide [18, 20].

The problem of recognizing k lines ℓ1, . . . , ℓk in the plane will be treated
as a special center-based clustering problem; i.e. the set A will be divided
into k-clusters whose centers will be lines ℓ1, . . . , ℓk. Let us assume that points
coming from any line are uniformly allocated in the neighborhood of that line.

Remark 1. Note that this practically means that our problem can also
be treated as a special case of the multiple segment detection problem (see
e.g. [21]), where border points of line segments lie on different sides of the
rectangle ∆.

If the distance from the point ai ∈ A to the line ℓ(u, v, z) ≡ ux+vy+z = 0,
u2 + v2 6= 0 is defined as:

(2.4) D(ℓ, ai) =
(uxi + vyi + z)2

u2 + v2 ,

then according to (2.3), the multiple line detection problem can be defined as
the following GOP:

(2.5) argmin
u,v,z∈Rk

F (u,v, z), F (u,v, z) =
m∑

i=1

min
1≤j≤k

D(ℓj(uj, vj , zj), ai).

Note that, especially for k = 1, problem (2.5) is reduced to searching for the
best total least squares (TLS) line [14]:

(2.6) argmin
u,v,z∈R

F (u, v, z), F (u, v, z) =
m∑

i=1

D(ℓ(u, v, z), ai).
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The function F from (2.5) is a symmetric Lipschitz continuous, but non-
convex and non-differentiable function and GOP (2.5) can have a large number
of independent variables. Because of that, direct application of some global
optimization method would not be efficient.

2.1. Modification of the k-means algorithm. The most popular and most fre-
quently used method for solving GOP (2.5) is the well-known k-means algo-
rithm. In the case when lines are cluster-centers, this algorithm will be mod-
ified in the following way:

Algorithm 1. (The k-closest line algorithm (KCL))

Step A: (Assignment step) For each set of mutually different lines ℓ1, . . . , ℓk,
the set A should be divided into k disjoint unempty clusters π1, . . . , πk

by using the minimal distance principle

(2.7) πj := {a ∈ A : D(ℓj , a) ≤ D(ℓs, a), ∀s 6= j}, j = 1, . . . , k;

Step B: (Update step) Given a partition Π = {π1, . . . , πk} of the set A, one
can define the corresponding line-centers ℓ̂1, . . . , ℓ̂k by solving GOP’s

(2.8) argmin
u,v,z∈R

fj(u, v, z), fj(u, v, z) =
∑

a∈πj

D(ℓj(u, v, z), a), j = 1, . . . , k.

If we are able to find a good enough approximation of line-centers, then
the KCL algorithm is run with Step A, and if we are able to find a good enough
initial partition, then the KCL algorithm is run with Step B.

Similarly to the case of ordinary cluster-centers, it can be seen that the
sequence of the objective function values F (n) = F (u(n),v(n), z(n)) decreases
monotonically [18, 20]. Therefore the algorithm can be stopped when the
following condition is met for some small ǫB > 0 (say .005) (see [2]):

(2.9) F (n−1)−F (n)

F (n−1) < ǫB.

Searching for the line which represents the cluster πj in Step B is solved
efficiently according to [14]. First, we determine a covariance matrix:

(2.10) Σj = 1
|πj |

∑

ai∈πj

(cj − ai)(cj − ai)T ,

where cj is the centroid of the cluster πj . The line searched for is a TLS-line
(u0, v0)T ((x, y) − cj) = 0, where (u0, v0) is a unit eigenvector corresponding
to a smaller eigenvalue of the matrix Σj .

For solving GOP (2.5) by means of the KCL algorithm we will need a very
good initial approximation ℓ̂1, . . . , ℓ̂k, i.e. as close to the solution as possible.
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2.2. Modification of the incremental method. For solving multiple line detec-
tion problem (2.5), we can find a modification of the well-known incremental
algorithm in the literature [1, 2, 18, 25] known as the Incremental Method for
Line Detection (IMLD).

The algorithm is run by some initial center-line ℓ̃1. This can be a randomly
selected line, but the best TLS-line is used more frequently [14,25]. The next
line ℓ̃2 will be obtained by using the DIRECT algorithm for the line in the Hesse
normal form ℓ(α, γ) ≡ x cosα+y sinα−γ = 0. Note that in this case it is not
acceptable to search for a line in implicit form as it is used in formula (2.4)
since the DIRECT algorithm necessitates determining the finite domain of the
objective function. So, in this case one uses the Hesse normal form for the
next line.

Algorithm 2 (The incremental algorithm for a line in the Hesse normal

form)

Input: A = {ai = (xi, yi) : i = 1, . . . ,m} ⊂ ∆ ⊂ R2, ∆ = [0, a] × [0, b];
ǫ > 0;

1: Set r = 2 and GOmin = +∞;
2: According to [14], determine TLS-line ℓ̃1(ũ1, ṽ1, z̃1) and calculate F1 =

m∑
i=1

D(ℓ̃1(ũ1, ṽ1, z̃1), ai);

3: By using the DIRECT algorithm determine

(2.11)

(α̃, γ̃) ∈ argmin
α∈[0,2π],

γ∈[0,
√

a2+b2]

Gr(α, γ),

Gr(α, γ) =
m∑

i=1

min{δ(i)
r−1,DH(ℓ(α, γ), ai)},

where DH(ℓ(α, γ), ai) = (xi cosα + yi sinα − γ)2 and δ
(i)
r−1 =

min{D(ℓ̃1, a
i), . . . ,D(ℓ̃r−1, a

i)};
Define ℓ̃r(cos α̃, sin α̃,−γ̃) and set Fr = Gr(α̃, γ̃);

4: To the lines ℓ̃1, . . . , ℓ̃r apply the KCL algorithm and denote the obtained
partition by
Π̂r = {π̂1(ℓ̂1), . . . , π̂r(ℓ̂r)};

5: Calculate GO-index value GO(r) according to (3.3);
6: if GO(r) < GOmin, then set GOmin = GO(r) and Π⋆ := Π̂r end if ;
7: if

Fr−1−Fr

F1
< ǫ, then STOP; else set ℓ̃1 = ℓ̂1, . . . ℓ̃r = ℓ̂r and r := r+ 1 and

go to Step 3 end if ;
Output: Π⋆.
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According to [2], the iterative process stops when a relative objective
function value is less than ǫ, and, by applying the GO-index defined in Sub-
section 3.2.1, we obtain the partition with the most appropriate number of
clusters.

Problem (2.11) is most often a nonlinear and non-convex GOP that can
have many points of local or global minima, but it can be successfully solved
by using the well-known DIRECT algorithm for global optimization [7,8], where
the line ℓ̂r is searched for in the Hesse normal form, where α ∈ [0, 2π] and
γ ∈ [0,

√
a2 + b2].

Example 2.1. We will consider a line detection problem for a set of data
points A defined as in the next subsection. The initial center line ℓ̃1 will be
defined as a TLS-line (Fig. 1a). ContourPlot of the minimizing function from
(2.11) for r = 2 points to several points of the local minimum (see Fig. 1b). By
using the DIRECT algorithm we obtain the next center-line ℓ̃2 and by using the
KCL algorithm we obtain lines ℓ̂1, ℓ̂2 (see Fig. 1c). Finally, after four iterations,
we obtain the solution (see Fig. 1d).
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(d) Lines ℓ̂1, . . . , ℓ̂5

Figure 1. The IMLD algorithm
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2.3. Construction of a synthetic set of data points. Let us assume that the
points from A coming from any line ℓ1, . . . , ℓk are uniformly allocated in the
neighborhood of part of that line visible in the rectangle ∆, and their number
depends on the length of the line. Our method will be illustrated and tested
on such sets of data. In this subsection, it will be shown how sets of such data
can be generated randomly.

A set of data A ⊂ ∆ = [0, a] × [0, b] coming from k lines whose graphs
pass through a rectangle ∆ will be defined in the following way. Let h = 2
and N = 300;

First, we choose a random integer k ∈ {2, 3, 4, 5}. After that, we randomly
choose a few points Aj , Bj on the edge of the rectangle ∆ not closer for h from
the edges of the rectangle k times , such that they do not lie on the same side
of the rectangle. Pairs of points {Aj , Bj}, j = 1, . . . , k define k lines ℓ1, . . . , ℓk

passing through the rectangle ∆ (see Figure 2)

ℓj(x, y) ≡

{
x−A1

j = 0, if A1

j = B1

j ,

(B2

j − A2

j)x+ (A1

j −B1

j )y + A2

j(B1

j −A1

j ) −A1

j (B2

j − A2

j) = 0, else.

In order to have sets of data defined in the neighborhood of every line of
approximately the same density, first we will define the number N correspond-
ing to the number of points to be assigned to the diagonal of the rectangle
∆ (a line with the greatest part visible in the rectangle ∆!). After that, on
the line ℓj , we will choose mj = ⌈N‖Aj − Bj‖/

√
a2 + b2⌉ equidistantly allo-

cated points Ti = λiAj + (1 − λi)Bj , i = 1, . . . ,mj , where λi = i/mj, and
then to each point Ti we add a random error (ξi, ηi) from Bivariate Normal
Distribution with expectation 0 ∈ R2 and the covariance matrix σ2I, where
σ2 = 0.05. In this way, we have defined a cluster which belongs to the line ℓj

πj = {as ∈ R
2 : as = Ts + (ξs, ηs), s = 1, . . . ,mj}

and the set A = π1 ∪ · · · ∪πk (see Figure 2). Note that the line ℓj does not to
have to be the center of the cluster πj . Four different situations with 2, 3, 4, 5
lines are shown Fig 2. The efficiency of our method will be tested on such
sets of data.
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(d) k = 5

Figure 2. Four selected examples with k = 2, 3, 4, 5 lines

3. A new method

As already mentioned in Remark 1, due to the assumption of uniform
allocation of points that, in the rectangle ∆, come from a line, the multiple line
detection problem can also be treated as a special case of the multiple segment
detection problem, where border points of line segments lie on different sides
of the rectangle ∆. By using this assumption, we will construct a possible
solution to problem (2.5), which will be called the First Solution. This solution
will be used for searching for a globally optimal one.

3.1. The First Solution. The procedure of searching for the aforementioned
First Solution will be shown in Algorithm 3, and algorithm steps will be
illustrated by means of a simple example constructed as in Subsection 2.3,
which is shown in Fig. 3a.
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Algorithm 3 (First solution)

Input: A = {ai = (xi, yi) : i = 1, . . . ,m} ⊂ ∆ ⊂ R2, ∆ = [0, a] × [0, b];
ǫ > 0;

1: Define the sets (see Fig. 3b):

B1 = {xi ∈ A : |yi| < ǫ} (bottom edge)
B2 = {yi ∈ A : |a− xi| < ǫ} (right edge)
B3 = {xi ∈ A : |b− yi| < ǫ} (upper edge)
B4 = {yi ∈ A : |xi| < ǫ} (left edge)

2: For every set Bj 6= ∅ define a set of centers Bj as a partition with the
most acceptable number of clusters in Bj (see Fig. 3c);

3: Define a set of lines P = {ℓj : j = 1, . . . ,K}, whose graphs are visible
in the rectangle ∆ and intersect two different sides of ∆ at points from
B1 ∪B2 ∪B3 ∪B4 (see Fig. 4a);

4: To the set A apply the minimum distance principle for lines from P .
Denote the obtained clusters by π1, . . . , πK ;

5: For every pair (πj , ℓj) define a new line ℓ̂j as the best TLS-line of the
cluster πj (see Fig. 4b);

6: To every line ℓ̂j ∈ {ℓ̂j ∈ P : |πj | > 2} assign the corresponding density

ρj = |πj|
|ℓ̂j| . After that, group the lines by their densities into two groups.

Let ℓ̂1, . . . , ℓ̂r be a set of lines corresponding to a high-density cluster;
7: To the set ℓ̂1, . . . , ℓ̂r apply the KCL algorithm and denote the obtained

lines by ℓ⋆
1, . . . , ℓ

⋆
r, and the corresponding clusters by π⋆

1 , . . . , π
⋆
r (Fig. 4c);

Output: {(ℓ⋆
j , π

⋆
j ), j = 1, . . . , r}.

Let us briefly describe Algorithm 3. For given ǫ > 0, we consider elements
from the set A, which lie up to ǫ close to the edge of the rectangle ∆ (Fig. 3b).
Projection of these elements onto the corresponding bottom, right, upper or
left edge of the rectangle ∆ gives sets B1,B2,B3,B4 from Step 1. These sets
can be formed by a single loop through the set A.
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(c) Border points

Figure 3. Construction of border points

In Step 2, optimal k-partitions (k = 1, . . . , kj) are defined for every set
Bj 6= ∅ by means of the SymDIRECT global optimization algorithm (see [7,17]),
where an 1-optimal partition is defined as the arithmetical mean of the set Bj.
The number kj is determined by using the Davies-Bouldin (DB) index [23,24],
where for DB(1) we take the variance of the set Bj . In this way, we determine
sets of border points B1, B2, B3, B4 (Fig. 3c).

Every line from the set of lines P = {ℓj : j = 1, . . . ,K}, defined in Step 3,
is defined such that it intersects the rectangle ∆ at points from different sets
Bj (Fig. 4a). Step 3 is performed such that first the set B = B1 ∪B2 ∪B3 ∪B4

is defined and after that a set of pairs of points given below is found:

{(IPj , EPj) : IPj = (uj, vj), EPj = (zj , tj), uj 6= zj & vj 6= tj} ⊂ B ×B,

through which lines from P pass.
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(b) Corrected lines
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(c) First solution

Figure 4. Searching for the First Solution

A corresponding cluster πj is associated to every line ℓj ∈ P in Step 4 by
the minimal distance principle,

πj = {ai ∈ A : D(ℓj, a
i) ≤ D(ℓs, a

i), ∀s = 1, . . . ,K, s 6= j}, j = 1, . . . ,K,
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where the distance D(ℓj, a
i) from the point ai = (xi, yi) ∈ A to the line

ℓj : ujx+vjy+zj = 0 from P is given by (2.4). In this process, it can happen
that some cluster is empty or that it has only a few elements. Such line is
definitely not a candidate for the line we are looking for. Therefore, from
the set P , we leave out all lines ℓj for which the corresponding cluster πj has
less than three data from A. In Step 5, the line ℓ̂j is associated to all other
clusters πj , (|πj | > 2) as the best TLS-line [14] (Fig. 4b). Note that in this
way we actually performed one iteration of the KCL algorithm.

In Step 6, from the set of remaining lines we will extract r ≤ K lines in
whose neighborhood we find a significant number of data points. This will
be done such that for every pair (ℓ̂j , πj) we first define the density ρj = |πj |

|ℓ̂j| ,

where |ℓ̂j| is the length of part of the line ℓ̂j visible in the rectangle ∆. It can
be expected that the density assigned to the lines searched for is greater than
the density assigned to other lines. Thus a sequence of densities (ρj) will be
grouped into two groups by applying the SymDIRECT algorithm corrected by
the ordinary k-means algorithm. The set of lines with greater densities will
be denoted by ℓ̂1, . . . , ℓ̂r.

By applying the KCL algorithm to lines ℓ̂1, . . . , ℓ̂r in Step 7 we obtain a
partition Π⋆(r) = {π⋆

1 , . . . , π
⋆
r } with corresponding line-centers ℓ⋆

1, . . . , ℓ
⋆
r (see

Fig 4c), which will be called the First Solution. Note that in this example
the First Solution consists of four lines, whereby for one subset of the data
set A a corresponding line has not been recognized (see Fig. 4c). Apart from
that, the original data set in that example stems from five lines. This case is
a motivation for extending the algorithm in Subsection 3.2.

Example 3.1. The described method of searching for the First Solution
will be tested 1 on 100 sets of data generated as in Subsection 2.3. Results, i.e.
the number of detected lines and necessary CPU-time, are given in Table 1. The
following is specifically stated: CPU-time required for running the SymDIRECT

algorithm while searching for border points in Step 2, CPU-time required for
one iteration of the KCL algorithm in Step 4-5, CPU-time required for running
the SymDIRECT algorithm and the ordinary k-means algorithm in Step 6, and
CPU-time required for running the KCL algorithm in Step 7.

1All evaluations were done on the basis of our own Mathematica-modules freely avail-
able at: https://www.mathos.unios.hr/images/homepages/scitowsk/LINES-2.rar, and were
performed on the computer with a 2.90 GHz Intel(R) Core(TM)i7-75000 CPU with 16GB
of RAM.
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No. of Lines detected CPU-time
lines 0 1 2 3 4 5 6 (Step 2) (Step 4-5) (Step 6) (Step 7) Total

2 0 0 19 0 1 0 0 0.116 0.017 0.065 0.067 0.265

3 0 0 3 20 1 1 0 0.193 0.047 0.074 0.114 0.428

4 0 0 0 4 21 2 0 0.202 0.089 0.096 0.200 0.587

5 0 0 0 0 6 18 4 0.299 0.175 0.102 0.319 0.895

Table 1. Characteristics of the First Solution

As can be seen in Table 1, the First Solution itself has achieved good
results: a set of original lines was detected in 78% of cases, and total CPU-time
is extremely small. However, the set of line-centers of the cluster π⋆

1 , . . . , π
⋆
k̂

sometimes does not include all lines we search for, and sometimes these lines
do not correspond to the original ones.

3.2. Globally optimal solution. As an example considered to be an illustra-
tion of our algorithm we will assume that we have found a globally optimal
partition if line-centers of that partition correspond to (up to some small ǫ)
the original lines.

In some cases, due to a large number of lines in the set P and the distri-
bution of elements in the set A according to the minimal distance principle,
the density of points by individual lines may be distorted. Hence, in addition
to the optimal partition Π⋆(r), we will consider two more optimal partitions,
i.e. the partition Π⋆(r−1) with r−1 lines and the partition Π⋆(r+1) with
r+1 lines. This will be done such that in a sequence of sorted densities we
choose the r−1, i.e. r+1, largest and partitions associated thereto, to which
we apply the KCL algorithm.

After that, it will be necessary to decide which of the three optimal parti-
tions, i.e. Π⋆(r−1) (Fig. 5a), Π⋆(r) (Fig. 5b), Π⋆(r+1) (Fig. 5c), is a partition
with the most appropriate number of clusters with line-centers.

3.2.1. The choice of the most appropriate number of clusters. It has been
shown that, when a cluster-center is not a point but a line segment, none of
the known indexes (Davies-Bouldin, Calinski-Harabasz, Dann, the Simplify
Silhouette Width Criterion [23]) has yielded acceptable results in relation to
our problem. The reason for this lies in the fact that these indexes were
constructed for spherical or elliptical clusters. In this paper, we will define a
special index for recognizing a partition with the most appropriate number
of clusters if cluster-centers are segments with the initial and end point on
different sides of the rectangle ∆.

Generally, let Π = {π1, . . . , πk} be an optimal partition of the set A =
{ai = (xi, yi) : i = 1, . . . ,m} ⊂ R2 whose cluster-centers are lines ℓj , j =
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1, . . . , k. For every cluster πj , we will define the density

(3.1) ρj =
|πj |
|ℓj | ,

where |πj | is the number of elements of the cluster πj , and |ℓj | is the length
of the visible part of the line in the rectangle ∆.

Note that the cluster, whose center-line lies in the set of lines, from which
the data come, will have a relatively greater density. Due to mutual inter-
section of lines, this construction may have minor deviations. Note also that
grouping of pairs (πj , ℓj), j = 1, . . . , k by densities ρ1, . . . , ρk into two groups
can lead to recognition of some of k lines.

Furthermore, if we denote a sequence of densities by ρ = (ρ1, . . . , ρk), and
a variance of the sequence ρ by

(3.2) Var(ρ) = 1
k−1

k∑

j=1

(ρj − ρ̄)2, ρ̄ = 1
k

k∑

j=1

ρj , k ≥ 2,

then we can define the Geometrical Objects index (GO) in the case of lines as
cluster-centers

(3.3) GO(k) := Var(ρ).

A lower value of the GO index reveals a better partition.

Example 3.2. For the data given in Example 3.1, optimal partitions
Π⋆(r−1), Π⋆(r), and Π⋆(r+1) will be defined as described previously, and
based upon the GO index, we will decide which one of them is the closest to
the globally optimal one. The partition with the most appropriate number of
clusters will be the one for which the GO index assumes the smallest value. In
the example that was used to illustrate the method, it is a 5-partition shown
in Fig. 5c.
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(c) GO(5) = 0.11

Figure 5. The choice of a partition with the most appropriate
number of clusters
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Results, i.e. the number of detected lines and necessary CPU-time, are
given in Table 2. The following is specifically stated: CPU-time required for
obtaining the First Solution and CPU-time required for running the KCL algo-
rithm.

No. of Lines detected CPU-time
lines 0 1 2 3 4 5 6 (First Solution) (KCL) Total

2 0 0 19 0 1 0 0 0.265 0.110 0.375

3 0 0 0 24 0 1 0 0.428 0.306 0.734

4 0 0 0 0 27 0 0 0.587 0.514 1.102

5 0 0 0 0 1 26 1 0.895 0.795 1.689

Table 2. Characteristics of a globally optimal partition

As can be seen in Table 2, the percentage of recognition is very high, and
total CPU-time remains small.

3.2.2. Analysis of cases with non-detected lines. Particularly, we will con-
sider examples of data sets where our method did not detect an optimal par-
tition. These examples are shown in Fig. 6.
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Figure 6. The cases with non-detected lines
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The data set A in Fig. 6a comes from 5 lines, and our method has detected
6 lines. Two lines have appeared whose Hausdorff distance in the rectangle ∆
is 0.127, and their slopes differ only in the fourth decimal place.

The data set A in Fig. 6b comes from 3 lines, and our method has detected
5 lines. Two pairs of lines have appeared whose Hausdorff distances in the
rectangle ∆ are 0.155 and 0.133 respectively, and their slopes in the first case
differ in the second decimal place and in the second case they differ only in
the fourth decimal place.

The data set A in Fig. 6c comes from 2 lines, and our method has detected
4 lines. Two pairs of lines have appeared whose Hausdorff distances in the
rectangle ∆ are 0.162 and 0.119 respectively, and their slopes in both cases
differ in the third decimal place. There is only the example shown in Fig. 6d
for which our algorithm does not recognize a globally optimal solution.

It can be seen that a small correction in the algorithm would make these
cases well recognized, too. For example, the measure of similarity can be
calculated for all pairs of obtained lines by using Hausdorff distance (see
[12,25]). For each pair of similar lines, only one line should be kept. For such
a revised set of lines, KCL algorithm should be performed once again.

3.3. Comparison with the incremental method. The proposed new method
will be compared with the IMLD algorithm described in Subsection 2.2 on the
same 100 data sets as in Example 3.1, i.e. Example 3.2.

No. of Lines detected CPU

lines 0 1 2 3 4 5 6 DIRECT KCL Total

2 0 0 19 0 0 0 1 13.403 0.419 13.822

3 0 0 6 18 1 0 0 14.157 0.949 15.106

4 0 0 11 2 14 0 0 20.844 1.929 22.773

5 0 0 12 5 1 9 1 29.090 3.217 32.308

Table 3. The IMLD algorithm

Results, i.e. the number of detected lines and necessary CPU-time, are
given in Table 3. The following is specifically stated: CPU-time required for
running the DIRECT algorithm in Step 2 and CPU-time required for running
the KCL algorithm in Step 3.

As can be seen in Table 3, necessary CPU-time is significantly longer and
the percentage of recognition is considerably lower, especially for cases with
many lines.

4. Conclusions

The multiple line detection problem occurs in different application areas
where it is particularly important to construct an algorithm that can solve
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such problems in real time. The method we have proposed in this paper
solves this problem quickly, precisely and with an extremely high percentage
of recognition. With a small software correction, cases shown in Fig. 6a,b,c can
also be considered as resolved and we can say that our method had only 1%
of non-detected cases. With appropriate software optimization, the proposed
method could certainly be utilized in applications where a real-time solution
is expected.

For center-based clustering methods used for recognizing geometrical ob-
jects, it is important to have an efficient index for recognizing a partition
with the most appropriate number of clusters. A new special index has been
proposed in this paper for cases where cluster-centers are lines. This index
could be easily used in other similar situations.
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Brza i učinkovita metoda za prepoznavanje više pravaca u ravnini

Rudolf Scitovski, Una Radojičić i Kristian Sabo

Sažetak. U ovom radu, promatramo problem prepozna-
vanja više pravaca u ravnini na osnovi podataka poteklih od
većeg broja pravaca, koji nisu unaprijed poznati. Predložena je
nova i učinkovita metoda, utemeljena na grupiranju podataka na
bazi centara, koja ovaj problem rješava brzo i precizno. Metoda
je testirana na 100 slučajno generiranih skupova podataka. U
usporedbi s inkrementalnom metodom, predložena metoda daje
značajno bolje rezultate. Takoder, u cilju odredivanja particije s
najprihvaljivijim brojem grupa, predložen je novi indeks, za slučaj
u kome su pravci središta grupa. Indeks se takoder može poopćiti
na druge geometrijske objekte.
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