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OPTIMIZATION OF DAMPING POSITIONS IN A

MECHANICAL SYSTEM

Yoshihiro Kanno, Matea Puvača, Zoran Tomljanović and
Ninoslav Truhar

Abstract. This paper deals with damping optimization of the me-
chanical system based on the minimization of the so-called “average dis-
placement amplitude”. Further, we propose three different approaches to
solving this minimization problems, and present their performance on two
examples.

1. Introduction

The theory of linear damped oscillations has been studied for more than
hundred years by researchers in control theory, optimization, and computa-
tional aspects, but numerous problems connected to linear damped oscillations
still remain open. The main issue, this paper will be focused on, is a damping
optimization problem of the mechanical system described by the following
second order differential equation

Mü(t) + C(c)u̇(t) +Ku(t) = f̂(t) ,(1.1)

u(0) = 0 and u̇(0) = 0,

where M , K ∈ Rn×n are positive definite symmetric matrices, vector f̂(t) ∈
Rn×1 presents the external force and C(c) ∈ Rn×n presents a damping (pos-
itive semidefinite) symmetric matrix depending on viscosities c (in general.
c = (c1, . . . , cm)⊤ ∈ Rm

+ , where m ≤ n). The structure of the damping matrix
is given by

C(c) =

m∑

i=1

cihih
⊤
i .(1.2)

Here, h1, . . . , hm ∈ Rn are constant vectors, and each hi determines the ge-
ometry of the ith damping position, while ci is the corresponding viscosity.
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Thus, the problem which will be considered in this paper can be stated
as follows: “what are the best positions as well as corresponding damping
viscosities such that the objective function of interest becomes minimal.”

In this paper, we will focus on minimization of an objective function which
will be closely related to:

(1.3)
1

τ

∫ τ

0
‖u(t)‖2dt .

The above approach is usually called the “average displacement amplitude”
minimization and has been widely used in different areas, like for example in
aeronautics and astronautics [28] or [27] or in physics [11] and engineering [16]
and applied mathematics in [36], [34] and [23]. Except this criterion, one can
also consider the “average energy amplitude” minimization that in general
gives different optimal values. Initially, it is hard to say which criterion is
better since it strongly depends on applications but also (1.3) depends on the
right hand side of (1.1). There exists a vast literature in this field of research.
A nice overview of some results related to the considered problem can be
found in [36]. But, for a brief insight, one can study some older references,
i.e., [8, 18, 25], as well as some more recent ones, i.e., [4, 14, 26]. Critical
damping and other modal damping were considered in [9, 22]. Optimization
of positions, for the particular case of minimizing the total average energy,
was considered in [5, 32]. This criterion of the average total energy is also an
important criterion, (for more details, see, e.g., [5–7,35]), but it corresponds to
a different problem setting including stationary systems. On the other hand,
optimization of positions for a shear building model with discrete variables
was considered in [19].

In general, the problem of determining optimal damping is very demand-
ing, because numerous function evaluations need to be performed. In partic-
ular, one approach to determining optimal damping positions is the “direct”
approach, which includes viscosity optimization for all possible damping con-
figurations. This means that the function given by (1.3) needs to be optimized
for all different configurations of damping positions. Then the optimal posi-
tions are those corresponding to the minimal objective function value.

Obviously, this approach is computationally infeasible for dimensions
larger than n ∼ O(10), thus in this paper we will consider several differ-
ent approaches that can efficiently optimize damping. For that purpose, we
propose a novel approach which combines approaches from [34], [32] and [5]
with the one from [19].

The first novelty in the newly proposed approaches will be handling a
discrete set of possible viscosity, that is, we assume that ci can be chosen
among predetermined candidates c̄, 2c̄, . . . , pc̄, where c̄ > 0 is a constant, and
p is a predetermined number of available candidates.
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As the second novelty, we propose three different approaches to solving the
optimization problem, which will be introduced in Section 2 by (2.8). The first
heuristic approach will be called the “multigrid-like” approach. This approach
is based on the idea that we first calculate optimal viscosities for some grid
of damping positions, that is, we consider a grid sparsely distributed over the
set of admissible damping positions, and, then, around the best positions we
refine the grid and continue searching for optimal positions.

The second heuristic will be called the “discrete to continuous” optimiza-
tion approach. This approach is “direct” in a sense that it uses some standard
optimization method for continuous functions like the Nelder–Mead method
(implemented in the MATLAB function fminsearch) or Newton-like meth-
ods (implemented in the MATLAB function fmincon or fminunc), or any
other method (for example, one can use a genetic algorithm implemented in
the MATLAB function ga), where positions will be treated as continuous vari-
ables, that is, “obtained position ij” will be the damping position [ij ] with the
corresponding viscosity cj . A similar approach has been considered in [32,33],
but for a different penalty function (in particular, the goal was to minimize
the total energy of the system). The third approach will be called the “mixed-
integer programming formulation”. This approach is based on the fact that
the problem, which will be introduced in Section 2 by (2.8), can be recast
as a mixed-integer second-order cone programming (MISOCP) problem [19].
This formulation was adopted to minimize transfer functions of interstory
drifts evaluated at the undamped natural frequency of the building model
[29–31]. MISOCP is a minimization problem of a linear objective function
under the integrality constraints of some of variables and some second-order
cone constraints. If there exists no integrality constraint, then the problem is
called a second-order cone programming (SOCP) problem. SOCP is a convex
optimization problem, and its solution can be computed with a primal-dual
interior-point method [2, 38]. MISOCP can be solved globally with, e.g., a
branch-and-bound method, because its continuous relaxation is SOCP; see,
e.g., [3, 13, 37] for more details. Applications of MISOCP in engineering can
be found in, e.g., [20, 21]. The mixed-integer programming formulation can
be used to provide benchmark examples for evaluating the performance of the
proposed heuristic methods.

The paper is organized as follows. In Section 2, we precisely define the
problem and its setting, while in Section 3, we present two heuristics for
solving our problem. The mixed-integer programming formulation approach is
described in Section 4. The efficiency and accuracy of the proposed approaches
are illustrated in Section 5.
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2. Description of the problem

In this section, we will describe the problem of interest in more detail.
For that purpose, recall that we consider the model described by the following
second order differential equation given by (1.1). It should be emphasized in
(1.1) that vector f̂ ∈ Rn×1 denoting the external force has a special structure.
Specifically, we assume that

f̂(t) =

q∑

j=1

fa
j cos(ω̂jt) + f b

j sin (ω̂jt), t ∈ [ 0, T ],

with ω̂j = 2πj
T (j = 1, . . . , p), where T corresponds to the least common

multiple of all periods. The main motivation for this assumption is related
with a Fourier series which decomposes a function into the sum of a set of
simple oscillating functions. Thus, we can write equation (1.1) as

(2.1) Mü(t) + C(c)u̇(t) +Ku(t) =

q∑

j=1

(
fa

j cos(ω̂jt) + f b
j sin (ω̂jt)

)
,

with
u(0) = 0 and u̇(0) = 0.

Using the standard results from the theory of ODE, we can write the
solution of (2.1) as

(2.2) u(t) =

q∑

j=1

uj(t),

where uj satisfies

Müj(t) + C(c)u̇j(t) +Kuj(t) = fa
j cos(ω̂jt) + f b

j sin (ω̂jt) ,(2.3)

uj(0) = 0 and u̇j(0) = 0.

As mentioned in Section 1, the so-called “average displacement ampli-
tude” criterion minimizes

(2.4)
1

τ

∫ τ

0
‖u(t)‖2dt .

Moreover, it can be shown that the average displacement amplitude cri-
terion can be written in a more appropriate form, with τ equal to the above
stated parameter T , that is, it can be shown that

1

T

∫ T

0
‖u(t)‖2dt

=

q∑

j=1

(f0
j )∗ (−ω̂2

jM + i ω̂jC(c) +K
)−∗ (−ω̂2

jM + i ω̂jC(c) +K
)−1

f0
j ,

(2.5)
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where

f0
j = fa

j − if b
j for j = 1, . . . , q.(2.6)

For more details, see, e.g., [23, 34, 36]. This problem was considered in [34],
where the authors provided an explicit formula for the objective function for
the structured system, in particular, all dampers have the same damping
viscosities and internal damping is neglected. Moreover, a more general case,
which includes the arbitrary time τ in criterion (2.4), was considered in [23].

As already emphasized in Section 1, the problem of determining optimal
damping is very demanding, because numerous function evaluations have to
be conducted. This approach is feasible only for small problems, that is,
problems of dimension up to n ∼ O(10), but our intention is to increase
the dimension of optimization problems, such that we can treat problems of
dimension n ∼ O(100), for example n = 200, and the number of dampers
r ∼ O(10), for example 4 dampers.

In order to perform that properly,what follows, we will first slightly refor-
mulate our problem such that we can consider particular damping settings.

In the frequency domain, (2.1) reads

(−ω̂2
jM + iω̂jC(c) +K)v(ω̂j) = fa

j + if b
j , j = 1, . . . , q,(2.7)

for more details see, e.g., [36]. For notational simplicity, we write vj = v(ω̂j)
(j = 1, . . . , q).

Since we consider a particular external force in our system with parameter
τ equal to the period of the considered system, we can write our problem
setting in a particular form, that allows us to formulate our setting within a
mixed-integer programming framework. This means that within considered
setting we are able to reformulate the minimization problem of (2.4) such that
we obtain the problem formulation given by (2.8).

Suppose that ci is chosen among predetermined candidates c̄, 2c̄, . . . , pc̄,
where c̄ > 0 is a constant, and p is a predetermined number of available
candidates. Then the optimization problem is formulated as

Minimize

q∑

j=1

‖vj‖2(2.8a)

subject to (−ω̂2
jM + iω̂jC(c) +K)vj = fa

j + if b
j , j = 1, . . . , q,(2.8b)

m∑

i=1

ci ≤ cmax
sum ,(2.8c)

ci ∈ {0, c̄, 2c̄, . . . , pc̄}, i = 1, . . . ,m.(2.8d)

Optimization problem (2.8) is very similar to the so-called drift optimization
problems which are considered, inter alia, in [29–31].
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3. Damping optimization by using approximate approaches

Since we are particularly interested in optimization of viscosities as well
as damping positions, in this section we will introduce an auxiliary notation
which allows us a formulation suitable for describing the optimization algo-
rithms presented later.

Let external damping be given by

(3.1) C(c) = c1hi1h
⊤
i1

+ c2hi2h
⊤
i2

+ · · · + cmhim
h⊤

im
,

where ij (j = 1, . . . ,m) corresponds to the damping position with viscosity cj .
It follows directly from equation (3.1) that it is sufficient to find the optimal
positions such that 1 ≤ i1 < i2 < . . . < im ≤ n. Since we are interested in the
determination of optimal damping positions and viscosities, we will use a new
notation for the objective function, which is now a function of the damping
positions (i1, . . . , im) and the corresponding viscosities (c1, . . . , cm). Thus, for
given viscosities (c1, . . . , cm) and positions (i1, . . . , im) the objective function
will be denoted by

(3.2) f(c1, . . . , cm; i1, . . . , im),

where we are particularly interested in the objective function given by (14a),
with constraints (2.8b–2.8d).

Damping optimization can be also considered using a different objective
function, in particular, similar approximation strategies were considered in
[5,32], where the authors considered minimization of the total average energy
(for more details, see, e.g., [5–7, 35]).

Recall that the main problem is, for given mass matrix M and stiffness
matrix K, to find optimal positions (iopt

1 , . . . , iopt
m ) and corresponding vis-

cosities (copt
1 , . . . , copt

m ) such that f(c1, . . . , cm; i1, . . . , im) is minimal. Since
comparison of all possible damping configurations is computationally infeasi-
ble, we will propose two approaches to computation of approximate optimal
parameters to avoid combinatorial complexity. The first one is the so-called
“multigrid-like” approach and it will be introduced in the next subsection.

3.1. “Multigrid-like” optimization approach. In this section, we will present
the “multigrid-like” approach to determining optimal damping positions.

As we already mentiond, the basic idea of the “multigrid-like” is to first
calculate optimal viscosities for some grid of damping positions, and then,
around the best positions we refine the grid and continue the search for optimal
positions.

Algorithm 4 describes the “multigrid-like” approach. There, parameter
d1 denotes the step size that determines how fine the first grid is (the first grid
is defined in Steps 1 to 4 of Algorithm 4). Similarly, parameter d2 denotes the
step size that determines the second grid (the second grid is defined in Steps
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12 to 15 of Algorithm 4). In Steps 12 to 15, we have min and max terms in
order to ensure that 1 ≤ i1 < i2 < . . . < im ≤ n.

Algorithm 4 (“Multigrid-like” approach for determination of optimal damp-
ing)

Require: d1, d2 — parameters that determine the first and the second grid;
Ensure: Optimal damper positions iopt

1 , . . . , iopt
m and optimal viscosities

copt
1 , . . . , copt

m .
1: for i1 = d2 : d1 : n do

2: for i2 = i1 + d2 : d1 : n do

3: · · ·
4: for im = im−1 + d2 : d1 : n do

5: calculate optimal viscosities
(copt

1 , . . . , copt
m ) = arg min

(c1,...,cm)∈Rm
+

f(c1, . . . , cm; i1, . . . , im)

6: calculate f(copt
1 , . . . , copt

m ; i1, . . . , im)
7: end for

8: · · ·
9: end for

10: end for

11: Denote positions that correspond to the minimal value calculated in Step
6 with (̂i1, . . . , îm).

12: for i1 = max{î1 − d2, 1} : min{î1 + d2,n} do

13: for i2 = max{î2 − d2, i1 + 1} : min{î2 + d2, n} do

14: · · ·
15: for im = max{îm−1 − d2, im−1 + 1} : min{îm−1 + d2, n} do

16: calculate optimal viscosities
(copt

1 , . . . , copt
m ) = arg min

(c1,...,cm)∈Rm
+

f(c1, . . . , cm; i1, . . . , im)

17: calculate f(copt
1 , . . . , copt

m ; i1, . . . , im)
18: end for

19: · · ·
20: end for

21: end for

22: Optimal positions iopt
1 , . . . , iopt

m are the positions that correspond to the
minimal value calculated in Step 17 (corresponding viscosities are the
optimal ones).

We would like to emphasize that optimal parameters d1 and d2 should be
determined so that the number of function evaluations is reduced. For this
purpose, we additionally assume the following:
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• At given damper positions, we have a constant number of function
evaluations in order to determine an optimal viscosity (in our setting,
this number is equal to m);

• We take that d2 = ⌊pd · d1⌋, where pd is a ratio that determines d2 in
terms of d1, for example pd = 2

3 ;

• We take that î1, . . . , îm are not too close to the edge of the area where
optimization is performed. This assumption is used in order to es-
timate the number of function evaluations needed for generating the
second grid.

Now, for a given number of masses n, a number of dampers m and pd, we
can determine d1 such that a number of function evaluations becomes mini-
mal. Moreover, if we want to additionally determine how many dampers m
we would like to include, we first start with smaller number (e.g., k damping
parameters) and increase parameter k (up to the number m) until we ob-
serve a significant decrease in the objective function. One can vary parameter
k throughout all admissible configurations and repeat the optimization pro-
cess for all of them, but this will require many optimization processes, while
in numerical experiments, we have observed that starting with small k and
increasing it (up to the number m) until we observe a smaller value of the
objective function, yields satisfactory results.

In the next subsection, we propose an approach to efficient damping opti-
mization based on the idea that we consider variables that determine damping
positions as a continuous variable.

3.2. “Discrete to continuous” optimization approach. In this section, we con-
sider another approach to damping optimization, which relies on the opti-
mization of continuous real functions. This approach can benefit from using
of standard minimization procedures constructed for real functions, for exam-
ple, Newton-like methods, or derivative-free methods like the Nelder–Mead
method.

The approach we propose here is similar to the heuristic optimization
approach to determination of optimal damping positions presented in [33]. In
this paper, the authors propose to group the candidates for optimal damping
positions into small groups, which enables the optimization of viscosities with
respect to a much smaller number of damping positions.

Similarly, first we define an auxiliary objective function which will be used
in optimization procedure. Our goal is to determine optimal damping with k
dampers with different viscosities. Thus, for D ⊂ R

2m, we define a function
f : D → R by

(3.3) f(c1, . . . , cm; i1, . . . , im) = f(c1, . . . , cm; [i1], . . . , [im]),

where [ · ] stands for the rounding (we use the MATLAB® function round).
Function f is similar to the one from (3.2) and it represents the objective
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function given by (2.8). Here im represents a continuous variable and the
corresponding damping positions are [i1], [i2], . . . , [im], which together with
viscosities c1, c2, . . . , cm determine the damping matrix.

Now, we reduce our optimization problem to the minimization of function
(3.3) with a continuous domain. For the minimization of these functions we
can use standard methods like the Nelder–Mead method [24] or, for example,
Newton-like methods (e.g., see [12]). Once we determine the minimum of
function (3.3), we will denote the point where the minimum is achieved by
(ĉ1, ĉ2, . . . , ĉm; î1, î2, . . . , îm). Then the optimal positions are [̂i1], [̂i2], . . . , [̂im]
with the corresponding optimal viscosities equal to ĉ1, ĉ2, . . . , ĉm.

In the optimization process, we will use the aforementioned Newton-like
methods, which are much more robust than the other methods mentioned in
relation to our minimization problem.

A further question in the minimization procedure is the choice of good
starting points. For this purpose, we will define a grid of starting points for
damping positions, which will correspond to the starting points generated in
Steps 1 to 4 of Algorithm 5. Some fixed values cs

1, c
s
2, . . . , c

s
m will be taken

as starting viscosities. First, we have to choose parameters d3 and d4 which
determine the grid of starting points (is1, . . . , i

s
m). As can be seen from Al-

gorithm 5, parameter d3 determines the difference between points inside the
region, while parameter d4 defines the distance to the edge of the region where
the optimal position is to be found.

Algorithm 5 (“Discrete to continuous” approach to determining of optimal
positions)

Require: d3, d4 — parameters which determine the first and the second grid;
Ensure: Optimal damper positions [iopt

1 ], . . . , [iopt
m ] with optimal viscosities

copt
1 , . . . , copt

m .
1: for is1 = d4 : d3 : n− d4 do

2: for is2 = is1 + d4 : d3 : n− d4 do

3: · · ·
4: for ism = ism−1 + d4 : d3 : n− d4 do

5: Using starting points (cs
1, . . . , c

s
m; is1, . . . , i

s
m) calculate

min
(c1,...,cm)∈Rm

+
1≤i1<i2<...<im≤n

f(c1, . . . , cm; i1, . . . , im) .

6: end for

7: · · ·
8: end for

9: end for

10: The parameters which correspond to the minimal value calculated in Step
5 are returned as optimal parameters (copt

1 , . . . , copt
m ; iopt

1 , . . . , iopt
m ).
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Note that if one uses an unconstrained multidimensional optimization
method, then one should take special care if the optimization process returns
an optimal setting that corresponds to feasible parameters. In particular, in
numerical experiments, the optimization procedure could require an evalua-
tion at the points that are not in the domain (for example, viscosities may
become negative). Thus, at points outside the domain where the optimiza-
tion is performed, in our optimization procedure, one can set the function
value to some constant large enough. With this, our optimization procedure
will always return a minimum which is in the feasible domain. On the other
hand, an optimization method like Matlab’s fmincon can take into account
constrains on variables directly.

We would like to emphasize that in this paper the first and the sec-
ond approach will be used in order to optimize the criterion of the average
displacement amplitude. Thus, we can make a comparison with the mixed-
integer approach which will be described in the next section. On the other
hand, “discrete to continuous” and “multigrid-like” approaches can also be
applied to the above-mentioned criterion of the average energy amplitude.

4. Mixed-integer programming formulation

In this section, we show that problem (2.8) can be recast as a mixed-
integer second-order cone programming (MISOCP) problem. The essential
idea of this reformulation can be found in [19]. An MISOCP problem can
be solved globally with, e.g., a branch-and-cut method. Several software
packages, e.g., CPLEX [17], Gurobi Optimizer [15], and SCIP [1], are available
for this purpose.

Constraint (2.8d) can be rewritten by introducing 0-1 variables as

ci = c̄

r∑

l=1

2l−1til,(4.1)

ci ≤ pc̄,(4.2)

til ∈ {0, 1}, l = 1, . . . , r,(4.3)

where r = ⌊log2 p⌋ + 1 (see, e.g. [10]). Define qij (i = 1, . . . ,m; j = 1, . . . , q)
by

qij = cih
⊤
i vj(4.4)

to obtain

C(c)vj =

m∑

i=1

hiqij .(4.5)
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We further rewrite qij in (4.4) as

qij = c̄

r∑

l=1

2l−1wijl(4.6)

with

wijl =

{
h⊤

i vj if til = 1,

0 if til = 0.
(4.7)

Then (4.7) can be rewritten as

|wijl| ≤ µtil,(4.8)

|wijl − h⊤
i vj | ≤ µ(1 − til),(4.9)

where µ ≫ 0 is a sufficiently large constant.
Consequently, problem (2.8) is reduced to the following form:

Minimize

q∑

j=1

yj(4.10a)

subject to yj ≥ ‖vj‖2, ∀j,(4.10b)

(K − ω̂2
jM)vj + iω̂j

m∑

i=1

hiqij = fa
j + if b

j , ∀j,(4.10c)

qij = c̄

r∑

l=1

2l−1wijl , ∀i; ∀j,(4.10d)

|wijl| ≤ µtil, ∀i; ∀j; ∀l,(4.10e)

|wijl − h⊤
i vj | ≤ µ(1 − til), ∀i; ∀j; ∀l,(4.10f)

ci = c̄
r∑

l=1

2l−1til, ∀i,(4.10g)

ci ≤ pc̄, ∀i,(4.10h)
m∑

i=1

ci ≤ cmax
sum ,(4.10i)

til ∈ {0, 1}, ∀i; ∀l.(4.10j)

Problem (4.10) includes complex variables vj , qj , and wijl . In practice, when
we solve problem (4.10), we convert these complex variables to real variables.
The resulting optimization problem is MISOCP.

5. Numerical illustration

In this section, we will illustrate the performance of all three approaches
presented in Sections 3.1, 3.2 and 4. For this, we will construct two examples
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which show differences in computational time, optimal damping positions and
optimal damping values between Algorithms 4 and 5 and the one described
in Section 4.

The first example is of small dimension and it illustrates behaviour of all
three approaches, while the second example is of larger dimension in which
we can see a significant difference in time needed for optimization, optimal
damping positions and optimal damping values. In both examples, for the
minimization process we used Matlab’s fmincon with tolerance 10−8. The
mixed-integer programming formulation was solved with CPLEX ver. 12.6.3
[17]. In numerical experiments, we adopt the indicator constraint formulation
of CPLEX to avoid the large constant µ in problem (4.10).

Example 5.1. In this example, we consider the system given by (1.1)
with dimension n = 6, where the mass matrix is defined as:

M = diag(80, 80, 80, 80, 80, 80).

The geometry of stiffness and damping matrices is defined by

C(c) =

m∑

l=1

cil
hil
h⊤

il
,(5.1)

K =

n∑

i=1

sihih
⊤
i ,(5.2)

where vectors hi , hil
are given as

h1 = e1, hj = ej − ej−1, j = 2, . . . , n,(5.3)

where ei are cannonical vectors in Rn and si is the i-th element of vector
s = [51.31, 40.1, 11.6, 20.76, 44.44, 51]⊤.

ss s ss s

Figure 1. 6-mass oscillator

The geometry of stiffness is shown in Figure 1. We took c̄ = 5, p = 15,
cmax

sum = 90 and the number of frequencies q = 2. All fj from equation (2.7)
are equal to −M · [1, 1, 1, 1, 1, 1]⊤. For grid parameters we took d1 = 2,
d2 = 1, d3 = 2 and d4 = 1. In the “discrete to continuous” approach and
the “multigrid-like” approach, we took 2 times the vector of ones and the
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vector of ones, respectively, both in correct dimension, as the starting point
for optimization.

In all three approaches we obtained that the optimal number of dampers
is two.

Table 1. Results obtained for Example 5.1 by each approach

“discrete to continuous” “multigrid-like” approach described in
Section 4

(ci1 , ci2 ) (75,15) (75,15) (75,15)
(i1, i2) (3,4) (3,4) (3,4)
fvalue 91320.8436 91320.8436 91320.8436
time 0.09 sec 0.28 sec 6.75 sec

Table 1 summarizes all approaches, with fvalue =
∑n

j=1 ‖vj‖2. One can
see that we have obtained the same results with all approaches and the only
(important) difference is in the time needed for calculation. Figure 1 also
shows the geometry of the damping matrix for the obtained results.

Example 5.2. In this example, we consider the system from (1.1) with
dimension n = 200, where the mass matrix is defined as:

M = 0.8 · I ∈ R
200×200.

The geometry of stiffness and damping matrices is defined by

C(c) =

m∑

l=1

cil
hil
h⊤

il
,(5.4)

K =

n∑

i=1

400 hih
⊤
i ,(5.5)

where vectors hi are given in (5.3). We took c̄ = 5, p = 7, cmax
sum = 40 and

the number of frequencies q = 2. All fj from equation (2.7) are equal to
−M · [1, . . . , 1]⊤. Grid parameters are d1 = 60, d2 = 1, d3 = 60 and d4 = 1.
In the “discrete to continuous” approach and the “multigrid-like” approach,
we took 2 times the vector of ones and the vector of ones, respectively, both
in correct dimension, as the starting point for optimization.

By means of the “discrete to continuous” and “multigrid-like” approaches
we obtained that the optimal number of dampers is two. In the mixed-integer
programming approach described in Section 4, CPLEX terminated abnor-
mally with error code 3019, which means that a routine in CPLEX failed to
solve one of the subproblems in the branch-and-cut tree [17]. The solution
reported in Table 2 is the best feasible solution found by CPLEX before termi-
nation, and hence it is not a global optimal solution. The number of dampers
in this solution is three.
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Table 2. Results obtained for Example 5.2 by each approach

“discrete to continuous” “multigrid-like” approach described
in Section 4

(ci1 , ci2 ) (25,15) (25,15) (5,10,25)
(i1, i2) (1,2) (1,2) (7,144,190)
fvalue 5.653170639 · 1012 5.653170639 · 1012 1.8258 · 1014

time 3.07 sec 2125.74 sec 34017.16 sec

In a manner similar to Example 5.1, Table 2 summarizes all approaches,
where fvalue =

∑n
j=1 ‖vj‖2.

We can see that the “discrete to continuous” approach is the fastest ap-
proach; it is almost 700 times faster than the “multigrid-like” approach, al-
though we obtained the same result. Also, we can see that the objective value
obtained by the “discrete to continuous” and “multigrid-like” approaches is
less than the best objective value obtained by the approach described in Sec-
tion 4.
We would like to note that generally the objective function is non-convex,
with more local minima. Since, in general, standard iterative minimization
methods converge only to the local minimum, in general, one could add sev-
eral starting points in order to improve robustness of the proposed approach.
In this particular example, we have used only one starting vector since with
additional numerical tests using various starting points a better solution was
not found.

We would like to note that, in general, the third approach can guarantee
the calculation of the global minimum (with appropriate terminal tolerances),
but as we have shown, the first two approaches can very efficiently calculate
the approximation of the minimum.

6. Conclusion

We have presented three different approaches for damping optimization in
mechanical system, including the number and positions of dampers. For that
purpose, we have considered the minimization of the “average displacement
amplitude”. Two of the above-mentioned approaches are approximate, in par-
ticular, “multigrid-like” and “discrete to continuous” approaches and the third
approach is based on the mixed-integer programming formulation. We have
illustrated that, although the mixed-integer programming formulation can
guarantee calculation of optimal parameters (with appropriate termination
tolerances), we can even more efficiently calculate approximation of optimal
parameters by an approximate approach. The efficiency and performance of
all three approaches are illustrated on numerical examples.
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Optimizacija pozicija prigušivača u mehaničkom sustavu

Yoshihiro Kanno, Matea Puvača, Zoran Tomljanović i Ninoslav Truhar

Sažetak. Rad se bavi optimizacijom prigušenja u
mehaničkim sustavima s obzirom na minimizaciju sume funkcija
prijenosa otklona od početnog položaja. Pokazano je da je pod
odredenim dodatnim pretpostavkama minimizacija tzv. “ampli-
tude prosječnog otklona” ekvivalentna minimizaciji sume funkcija
prijenosa. Nadalje, predložena su tri pristupa za rješavanje min-
imizacijskog problema te je njihova učinkovitost prikazana na
dvama primjerima.

Yoshihiro Kanno
Mathematics and Informatics Center
The University of Tokyo
Tokyo 113-8656, Japan
E-mail: kanno@mi.u-tokyo.ac.jp

Matea Puvača
Department of Mathematics
Josip Juraj Strossmayer University of Osijek
Trg Ljudevita Gaja 6, 31 000 Osijek, Croatia
E-mail: mpuvaca@mathos.hr

Zoran Tomljanović
Department of Mathematics
Josip Juraj Strossmayer University of Osijek
Trg Ljudevita Gaja 6, 31 000 Osijek, Croatia
E-mail: ztomljan@mathos.hr

Ninoslav Truhar
Department of Mathematics
Josip Juraj Strossmayer University of Osijek
Trg Ljudevita Gaja 6, 31 000 Osijek, Croatia
E-mail: ntruhar@mathos.hr

Received: 28.2.2019.

Revised: 18.6.2019.

Accepted: 17.9.2019.



158


