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Propagation of the gravity waves along a small-scale frontal surface is
considered. The simplified perturbation equations, which can be applied to
describe this phenomenon, are introduced and a method to solve them is ex-
posed.

The main difficulty in finding analytical solution to the resulting initial
value problem is in taking into account the frontal inclination towards ground.
It is shown how this problem can be overcome by an approximate solution in
form of a Bessel-Fourier series, provided the inclination is partially ignored
in the goveming equations. i

In order to demonstrate the role of the frontal inclination in the pro-
pagation of disturbances along the frontal surface, some properties of the
exact solution, which can be obtained after substitution of the wavelike solution
in the complete system, are analysed. It is shown that inclination leads to the
appearance of an instability of downstream propagating waves. This phenome-
non is further described and discussed.

Neka refenja za prostiranje gravitacionih talasa
duZ frontalne povriine malih razmera

Razmatrano je prostiranje gravitacionih talasa duZ frontalne povriine
malih razmera. Postavljen je jednostavan sistem poremecajnih jednaCina koje
opisuju ovaj fenomen i izloZen je metod za njihovo refavanje.

Telkoce koje se ovde susreéu, ukoliko se dati sistem Zeli refiti kao pro-
blem podetne vrednosti, povezane su sa uzimanjem u obzir nagiba frontalne
povrfine prema tlu. Pokazano je kako se ovaj problem moZe prevladati postavlja-
njem piibliZnog refenja u obliku Bessel-Fourierovog reda, pri éemu se nagib
. delimi¢no zanemaruje u polaznim jednacinama.

Sa ciljem da se detaljnije istraZi uloga frontalnog nagiba na nadcin pro-
stiranja poremecaja, analizirane su neke osobine ta¢nog refenja polaznog si-
stema. Tom prilikom pokazalo se da nagib zapravo dovodi do pojave nestabil-
nosti onih talasa koji se prostiru nizvodno. Ovaj fenomen je dalje opisan i pro-
diskutovan.
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I. Introduction

An evidence of the existence of gravity waves propagating along the frontal surfaces
are separate precipitation zones which can be observed behind some cold fronts (for
example Peng-Yun Wang et al., 1983). Namely, these waves, which are often interpreted
as a consequence of the vertical shearing instability, (Orlanski, 1960: Vitek, 1969), lead
to the development of organized cloudiness along the frontal surface. This, in turn, leads
to the appearance of mentioned separate precipitation zones.

In this paper, propagation of such gravity waves will be considered, using a simple
shallow water equations model. Some conclusions which may be of interest will be shown.

2. Governing equations

For the sake of simplicity, Coriolis parameter will be omitted here. This means
that our discussion will be restricted to the case of a meso-y front, (Orlanski, 1975),
or to the leading edge of a synoptic front. The equations describing homogeneous fluid,
with no vertical shear, will be applied to the lower, cold air. Thus, we shall use the mo-
dified value of gravity

A
g*=ng (1)

Here, Ap is the difference in density between the lower and the upper air, and
other symbols, when not stated explicitly, have their usual meaning. Furthermore, we
shall assume that the frontal surface, given in Fig. 1, moves with a constant velocity U.
We shall take this to represent our basic state. It can be described by the

oH
* T
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ot Uax 2
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a X

Figure 1. Considered meso-scale frontal surface and some of the notation used.
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where K is the Rayleigh ,friction” coefficient. Such an approximation to the friction
term in the shallow water equations model was discussed by Ranci¢ (1985). A solution
for the basic state height, H (x, t), satisfying this system, can be readily found in the
‘form

x - Ut
H=Hg(1__

p ), forx <a+Ur;

_ (3)
H=0, forx >a+ Ut,
where both Hp and @ depend on g*, U and K.
The behaviour of small perturbations of such a basic state will be considered.
They are described by the linearized equations in the form

a_u+UE_=_g* oh —Ku

or dIx ox @
oh oh du oH

—_—t = —uy—

ot dx ox dx

where u and h denote perturbation variables. The last term in (4)2 is underlined for later
convenience. It should be noted that the above system is valid only at some distance
away from the ground, where the assumption of the linearization procedure, # << H,
is justified.

3. Solution of the perturbation system
a) Ignoving of the term u 0H / ox

We shall first consider the case where the inclination of the frontal surface, 8H/d x.
is sufficiently small so that the last term in the continuity equation can be ignored in
comparison with other terms in this equation. Note that, thereby, inclination of the
frontal surface is not entirely ignored. Namely, dependance of the basic state height of
the free surface. H. on the x coordinate, is still retained in the remaining term on the
right hand side of the continuity equation.

In dealing with (4), it is convenient to introduce the system of coordinates which
moves with the basic state velocity U. Thus, we define

x'=x-Ut u'=u-U

=t h'=h.
Furthermore, nondimensional variables
X’ ¢ h
= E » —_ h " =—

* a’ T Ho
may be introduced, where

a

o (g* Ho)'/?
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Defining, in addition 2p = KT, and omitting the double prime signs, we arrive at
a%h oh 9%h
3 + 2p o =(1 - x) P ;)
With the help of
hix, t) = X(x) Y(t),

this equation can be transformed into

d2x Ny
X=0
dx?  (1-x)
d’yY dY 2
+2p—+ N, Y=
a TP g kY =0,

where \*j is a separation constant. We shall solve (6) under a somewhat restrictive
boundary. condition that the perturbation height is always equal to zero at the place
where frontal surface touches the ground (x = 1) and at one more place along the front,
say at x = 0. Thus, we require

h(0.0)=h(1,)=0 (7)
To solve now the first of Egs. (6), we shall make use of the substitution

E=(1-x)'/?
so that (6), takes the form

= +A% X=0 (8)

The solution of (8) is
X=§5J, (208) 9

where J; is the Bessel function of the first kind (Mitrinovié, 1975). We see that (9)
satisfies boundary condition (7),. To satisfy the remaining boundary condition, (7), , the
separation constant should be defined as

Rzk =Z;;X2

where zj is a positive zero of the Bessel function of the first kind.
In view of the ortogonality property of the Bessel functions, an arbitrary function
f(£), may be written as

)= T Ak @ed),
where the coefficients 4, are defined as
2

An = G Of RO @ib) d
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Here.J, is the Bessel function of the second kind.
Now, the general solution of the (5) can be written in the form

. 1/2 1/2
h(x.t) = T Agexp(—pt) cos wit - (1 —x)/*Jy [z&(1 —x)" /7], (10)
k=1 :
where
Wi =(zx /4 — p*)'/?
Ha

Figure 2. The initial height of the basic state, H(x/, and the perturbation, A(x), used
to calculate frontal shapes shown in Fig. 3.

For the numerical values H, = 1 km, @ = S km and g* = 0.2 m/s’, and the initial con-
dition field as given in Fig. 2, an example of the solution (10) is calculated. Results
obtained for several successive moments of time are shown in Fig. 3.

As can be seen, the perturbations propagaté along the frontal surface as a standing
wave, which is a consequence of the assumed boundary conditions. The oscillations
of the frontal surface are damped with time, as a consequence of the friction term.

Figure 3. The frontal surface in case when the basic state inclination of the frontal sur-
face is ignored. Curves marked by 1,2, 3 and 4, represent shapes of the frontal
surface after 5. 10. 15 and 25 minutes, respectively.

b) Analysis with the presence of the term u oH/0x

It is, however, interesting to see what happens when the term udH/dx is not
ignored in the governing equations; that is, what is the total effect of the inclination of
the frontal surface on the propagation of gravity waves.
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After substitution of the wavelike solutions, e (* = €%/ iy the complete system
(4), the phase velocity of the gravity waves can be found in the form

c=c, ticy, (11)
where

G=U+ta

ci=—K/2%+8, L)
and- .

20 = [(g*H — K* /4k?)? + tkwk)z 1'% + (g*H — K? /4k?) (13)
28 = [(g*H — K*/4k*)* + (KU/k)*]'/? — (g*H — K? /4k?)

Thus, the waves are seen to propagate upstream and downstream relative to the
basic wind. Moreover, the downstream propagating waves, (i. e., those which are con-
nected with the ,,+” sign of the solutions for & and B from the Eqs. (13)), become unsta-
ble, if the condition

B>K/2k (14)
is fulfilled. Inserting 8 from (13) into (14), it takes the form
F>1 (15)

where Fis the Froude number (F = U2 /g *H).

200k Cim
- F=12
F=11
) F=10 —
F=0.9
F=0.8

Figure 4. Nondimensional growth-rate, 200 kc;/K, as a function of non dimensional
wave number, KH/|0H/ dx|, for several values of the Froude number.
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. Thus, the downstreamn propagating waves always become unstable as they approach
“the ground, and attain a sufficiently small value of H. '
Note that if this analysis were to be performed after ignoring the term u dH/dx, p
would be reduced to zero, and no instability would exist. Thus, instability is just a con-
sequence of the frontal inclination, i. e., of the underlined term in Egs. (4), ignored in
the preceding subsection.
Nondimensional growth-rate, 8 = 2k¢;/K, is given by the expression

206 +1)* =[(4FX* — 1)* +16F*X*]"/? _ (4FX* —1), (16)

- where X = kH/|0H/03x|. This is shown in Fig. 4, for several values of the Froude number.
Note that § + 1 when X + oo, Thus, as can be seen, the shorter are the waves, the more is
increase (or decrease, depending on the value of the Froude number).

tt:t)f.,;;I e _
i | —— F=0.8
F=0.9
200 F=10
F=11
F=1.2
184 —
kH/ R_RH/faxI

Figure 5. Nondimensional propagation speed of unstable perturbations, ¢,/U, as a
function of nondimensional wavenumber, kH/|0H/0x|, for several values
of the Froude number.

Pmpagatidn speed of the unstable perturbations, ¢,/U, is given by the expression

_[(4FX® — 1) + 16F* X*}'/? + (4FX* - 1)
= Y3c : : 17

(crjU - l)2

and it is shown in Fig. 5. Note that ¢, /U » 1//F + 1 when X » %_ Thus, the downward
propagating waves deccelerate with the increase of the amplitudes.
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4. Concluding remarks

As has been shown, if the presumably small term udH/dx is ignored in the system
which describes propagation of gravity waves along the frontal surface, then an important
property of downward propagating waves is lost. Therefore, instability here is not a con-
sequence of the shear, but rather of the inclination of the frontal surface. Note that the
basic state height is in a dynamical balance. This balance is made by the equilibrium of
the pressure gradient force and the friction term. At the same time, basic state is not
energetically stable, i. e. it does not have the minimum of the potential energy. Conse-
quently, the perturbations which propagate along the frontal surface, tend to lead the
basic state to this minimum. The amplitudes of downstream (relative to the basic state
wind) propagating waves, increase and their phase speed deccelerates: the amplitudes of
upstream propagating waves, however, decrease and their phase speed accelerates.

In other words, the basic state has some available potential energy, which ampli-
tudes of downward propagating waves use for their growth.

To illustrate this energy transformation mechanism, we can consider a simple
model, similar to that used by Curié¢ (1980), and shown in Fig. 6. Potential energy of
the closed system shown in the figure is given by

E, = Mgz, (18)

where z. is the height of the center of the entire mass of the system, denoted by M. |

In a nondimensional form, it can be expressed as
2E, (A-1)
bgpa 12

(3+4x?)+1 : (19)

where x = n/b, n and b being defined in the figure, and A = p, /p,. Note that x takes
values in the interval (—1/2, 1/2). .

Figure 6. A simple model which represents closed system of two fluids with the dif-
ferent densities, and the inclined boundary surface between them. The system
has an availabe potential energy which perturbations use for their growth.

The available potential energy as a function of nondimensional parameter X is
shown in Fig. 7. As can be seen. it has a minimum for X = 0, i. ., for the horizontal
position of the boundary surface.
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1 |
-2 w2 x

Figure 7. Available potential energy of the system shown in Fig. 6, as a function of
nondimensional parameter n/b.

Thus, the gravity waves which propagate down the front, seem to tend to reduce
the slope of the boundary surface, forcing it to take the horizontal position, characterized
by the minimum of potential energy.

In that sense, the considered mechanism is the same as that of baroclinic instability,
well known and first described by Lorenz (1955). Typically, the baroclinic instability
mechanism is used in the context of the quasi-geostrophic equations to describe develop-
ment of the large scale systems. Here, it has been applied to the case of a small scale
perturbations, using a rather simple physical model.
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