LAPLACIAN COEFFICIENTS OF TREES

Ali Ghalavand and Ali Reza Ashrafi

Abstract

Let G be a simple and undirected graph with Laplacian polynomial $\psi(G, \lambda)=\sum_{k=0}^{n}(-1)^{n-k} c_{k}(G) \lambda^{k}$. In this paper, exact formulas for the coefficient c_{n-4} and the number of 4 -matchings with respect to the Zagreb indices of a given tree are presented. The chemical trees with first through the fifteenth greatest c_{n-4}-values are also determined.

1. Introduction

A graph G consists of two sets $V=V(G)$ and $E=E(G)$. The elements of V are called the vertices of G and the elements of E are edges of this graph. Each edge is a 2 -element subset of vertices $\{x, y\}$ which is denoted by $x y$. A chemical graph is a graph in which $\Delta(G) \leq 4$, where $\Delta(G)$ is the maximum degree of vertices in G and a tree is a connected graph without cycles. The vertex degree of $v \in V(G), \operatorname{deg}_{G}(v)$, is defined as the number of edges incident to v and $N_{G}(v)$ denotes the set of all vertices adjacent to v. The distance between two vertices $x, y \in V(G), d(x, y)$, is defined as the number of edges in a shortest path connecting them. The summation of all such numbers is called the Wiener index of G denoted by $W(G)$.

For subset E^{\prime} of $E(G)$, we denote the subgraph of G obtained by deleting the edges of E^{\prime} by $G-E^{\prime}$. If $E^{\prime}=\{u v\}$, then the subgraph $G-E^{\prime}$ will be written as $G-u v$ for short. In addition, for any two nonadjacent vertices x and y of G, let $G+x y$ be the graph obtained from G by adding an $x y$ edge. If two vertices x and y are adjacent then we write $x \sim y$. The path and star on n-vertices are denoted by P_{n} and S_{n}, respectively. The set of all n-vertex chemical trees is denoted by $\mathcal{C T}(n)$.

Suppose \mathcal{G} denotes the set of all graphs and $G, H \in \mathcal{G}$. If $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$, then we say that H is a subgraph of G and use the notation $H \subseteq G$. The number of subgraphs of G isomorphic to a fixed subgraph H is denoted by $\eta(G, H)$. It is easy to see that $\eta\left(G, S_{2}\right)=m$, the number of edges in G. The number of vertices of degree i in G will be denoted by $n_{i}=n_{i}(G)$.

Key words and phrases. Laplacian coefficient, matching, Zagreb index, tree.

It is easy to see that $\sum_{i=1}^{\Delta(G)} n_{i}=|V(G)|$. A map $T o p$ from \mathcal{G} into the set of all non-negative real numbers is called a graph invariant if $G \cong H$ implies that $\operatorname{Top}(G)=\operatorname{Top}(H)$. Topological indices are graph invariants applicable in chemistry.

The graph invariants Wiener index [14], first Zagreb index and second Zagreb index [9], forgotten topological index [6] and the first general Zagreb index [16], are defined as:

$$
\begin{aligned}
W(G) & =\sum_{\{u, v\} \subset V(G)} d d_{G}(u, v) \\
M_{1}(G) & =\sum_{v \in V(G)} d e g_{G}(v)^{2} \\
M_{2}(G) & =\sum_{u v \in E(G)} d e g_{G}(u) d e g_{G}(v) \\
F(G) & =\sum_{v \in V(G)} d e g_{G}(v)^{3}=\sum_{u v \in E(G)}\left[d e g_{G}(u)^{2}+d e g_{G}(v)^{2}\right] \\
M_{1}^{\alpha}(G) & =\sum_{u \in V(G)} d e g_{G}(u)^{\alpha}
\end{aligned}
$$

respectively. Here, $\alpha \neq 0,1$ is an arbitrary real number. Furthermore, the first Zagreb index and the forgotten topological index are just the case of $\alpha=2,3$ in the first general Zagreb index, respectively.

The first and second reformulated Zagreb indices of graphs were introduced by Milićević et al. [12]. These graph invariants are edge counterparts of the first and second Zagreb indices, respectively. These numbers can be defined as:

$$
\begin{aligned}
E M_{1}(G) & =\sum_{e \sim f}\left[d e g_{G}(e)+d e g_{G}(f)\right]=\sum_{e \in E(G)} d e g_{G}(e)^{2} \\
E M_{2}(G) & =\sum_{e \sim f} \operatorname{deg}_{G}(e) d e g_{G}(f)
\end{aligned}
$$

In this formulas, if $e=u v$ then $\operatorname{deg}_{G}(e)=\operatorname{deg}_{G}(u)+\operatorname{deg}_{G}(v)-2$. Moreover, $e \sim f$ means that the edges e and f are incident.

Suppose G is a simple graph with vertex set $\left\{v_{1}, \cdots, v_{n}\right\}$. The adjacency matrix of G is an $n \times n 0-1$ matrix $A=\left(a_{i j}\right)$ such that $a_{i j}$ is one if and only if there is an edge connecting v_{i} and v_{j}. The degree matrix, $D(G)$, is a square matrix of order n whose its $i^{t h}$ diagonal entry is equal to $\operatorname{deg}_{G}\left(v_{i}\right)$ and whose off-diagonal elements are zero. The Laplacian matrix of G is defined as $L(G)=D(G)-A(G)$. The characteristic polynomial of the Laplacian matrix, $\psi(G, \lambda)=\operatorname{det}\left(\lambda I_{n}-L(G)\right)$, is said to be the Laplacian polynomial of the graph G. In this paper we write this polynomial in the form of $\psi(G, \lambda)=$ $\sum_{k=0}^{n}(-1)^{n-k} c_{k}(G) \lambda^{k}$. It is well-known that $c_{k}(G) \geq 0$, for all k.

Suppose G is a simple and undirected graph. The relationship between the coefficients of $\psi(G, \lambda)$ and the structure of G was established many years ago by Kel'mans [3, p. 38]. He proved that $c_{k}(G)=\sum_{F \in \mathcal{F}_{k}(G)} \gamma(F)$, where F is a spanning forest and the summation goes over the set $\mathcal{F}_{k}(G)$ of all spanning forests of G, possessing exactly k components and $\gamma(F)$ is the product of the number of vertices of the components of F. If T is an n-vertex tree, then for $k \geq 1$, the elements of $\mathcal{F}_{k}(T)$ can be obtained by deleting $k-1$ distinct edges from T. So, it is easy to see that, $c_{1}(T)=n, c_{n}(T)=1$ and $c_{n-1}(T)=2(n-1)$. Yan et al. [15], proved that $c_{2}(T)=W(T)$. Oliveira et al. [13], obtained closed formulas for the coefficient $c_{n-2}(T)$ and $c_{n-3}(T)$ in terms of the number of vertices, the first Zagreb and forgotten indices as $c_{n-2}(T)=2 n^{2}-5 n+3-\frac{1}{2} M_{1}(T)$ and $c_{n-3}(T)=\frac{1}{3}\left[4 n^{3}-18 n^{2}+24 n-10+\right.$ $\left.F(T)-3(n-2) M_{1}(T)\right]$.

A matching K in a simple graph G is a set of pairwise non-adjacent edges, that is, no two edges of K share a common vertex. If $|K|=k$ then K is called a k-matching of G. The matching polynomial of G is a generating function for counting the number of k-matchings in G. Let $p(G, k)$ denote the number of k-matchings in G. Then the matching polynomial of G is defined as $M(G)=\sum_{k \geq 0}(-1)^{k} p(G, k) x^{n-2 k}$, where $n=|V(G)|$. Farrell and Guo [5], established a formula for the number of 3-matchings in terms of the size, degree sequence and number of triangles in given graph G, and Behmaram [2] continued this work to present a formula for the number of 4-matchings of triangular-free graphs with respect to the number of vertices, edges, degrees and 4-cycles.

2. Preliminary Results

The aim of this section is to state some results which are crucial throughout the paper. We encourage the interested readers to consult papers $[1,7]$ for more details.

The common vertex of two incident edges e and f is denoted by $e \cap f$. Define the graph invariants $\alpha(T)$ and $\beta(T)$ as follows:

$$
\begin{aligned}
& \alpha(T)=\sum_{u \sim v} \operatorname{deg}_{T}(u) \operatorname{deg}_{T}(v)\left(\operatorname{deg}_{T}(u)+\operatorname{deg}_{T}(v)\right), \\
& \beta(T)=\sum_{e \sim f} \operatorname{deg}_{T}(e \cap f)\left(\operatorname{deg}_{T}(e)+\operatorname{deg}_{T}(f)\right) .
\end{aligned}
$$

Suppose T is a tree. In some of our results we need to have $\eta(T, H)$ for some special subgraphs of T. In the following lemma we record some cases which are important in our calculations. The following lemma is a restatement of Lemmas 2.1, 2.2 and 2.3 of [7] in which the number of paths of length 3, 4 and 5 are given.

Lemma 2.1. Let T be an n-vertex tree. Then,

$$
\begin{aligned}
& \eta\left(T, P_{3}\right)=\frac{1}{2} M_{1}(T)-n+1 \\
& \eta\left(T, P_{4}\right)=M_{2}(T)-M_{1}(T)+n-1 \\
& \eta\left(T, P_{5}\right)=E M_{2}(T)+E M_{1}(T)+\frac{3}{2} M_{1}(T)+\frac{1}{2} M_{1}^{4}(T)-\frac{3}{2} F(T)-n+1-\beta(T) .
\end{aligned}
$$

The number of stars with exactly four and five vertices in a given tree T are presented in the following lemma which is Lemma 2.2 in [1].

Lemma 2.2. Let T be an n-vertex graph. Then,

$$
\begin{aligned}
& \eta\left(T, S_{4}\right)=\frac{1}{6} F(T)-\frac{1}{2} M_{1}(T)+\frac{2}{3} m \\
& \eta\left(T, S_{5}\right)=\frac{1}{24} M_{1}^{4}(T)-\frac{1}{4} F(T)+\frac{11}{24} M_{1}(T)-\frac{1}{2} m
\end{aligned}
$$

Let T be an arbitrary tree and $T_{1}, T_{2}, \ldots, T_{5}$ be graphs depicted in Figure 1. The number of subtrees of T isomorphic to one of these tress are given in the following lemma. These are restatements of Lemmas 2.3, 2.5., 2.7 and 2.15 in [1].

Lemma 2.3. Let T be an n-vertex tree. Then we have,

$$
\begin{aligned}
\eta\left(T, T_{1}\right)= & n \cdot \eta\left(T, P_{4}\right)+2 M_{2}(T)+F(T)-M_{1}(T)-2 \eta\left(T, P_{5}\right)-\alpha(T) \\
\eta\left(T, T_{2}\right)= & \frac{1}{2} \alpha(T)+\frac{5}{2} M_{1}(T)-3 M_{2}(T)-\frac{1}{2} F(T)-2 m . \\
\eta\left(T, T_{3}\right)= & \eta\left(T, P_{3}\right)\left(\frac{1}{2} M_{1}(T)-n-3\right)-\frac{5}{4} M_{1}^{4}(T)+\frac{11}{2} F(T)+6 M_{2}(T) \\
& -\frac{33}{4} M_{1}(T)-2 E M_{2}(T)+4 m-\alpha(T)+2 \beta(T)-3 E M_{1}(T) . \\
\eta\left(T, T_{4}\right)= & \frac{1}{2} \eta\left(T, P_{3}\right)\left((n+1)(n+2)-M_{1}(T)+4\right)+\frac{1}{4}(6 n+52) M_{1}(T) \\
& -\frac{1}{4}(2 n+36) F(T)+2 M_{1}^{4}(T)-(2 n+9) M_{2}(T)+3 E M_{2}(T) \\
& -8(n-1)+\frac{5}{2} \alpha(T)-3 \beta(T)+5 E M_{1}(T) . \\
\eta\left(T, T_{5}\right)= & (n+2) \eta\left(T, S_{4}\right)-\frac{1}{2} \alpha(T)+\frac{1}{2} F(T)+3 M_{2}(T)-\frac{1}{6} M_{1}^{4}(T)-\frac{4}{3} M_{1}(T) .
\end{aligned}
$$

In [1], the authors proved a useful formula for computing the 4-matching of a tree which is important in our calculations.

Theorem 2.4. Let T be a tree with n vertices. Then,

$$
\begin{aligned}
p(T, 4)= & \frac{1}{24}(n-1)\left(n^{3}+3 n^{2}+22 n+4\right)-\frac{1}{4}\left(n^{2}+5 n+\frac{27}{6}\right) M_{1}(T)+\frac{1}{4} M_{1}(T)^{2} \\
& +(n+1) M_{2}(T)+\frac{1}{6}\left(2 n+\frac{29}{2}\right) F(T)-\frac{21}{24} M_{1}^{4}(T)-E M_{2}(T) \\
& -E M_{1}(T)+\beta(T)-\alpha(T)-\sum_{\{u, v\} \subset V(T)}\binom{d e g_{T}(u)}{2}\binom{d e g_{T}(v)}{2} .
\end{aligned}
$$

Lemma 2.5. Let T be an n-vertex tree. Then

$$
\beta(T)-\alpha(T)=M_{1}^{4}(T)-3 F(T)+2 M_{1}(T)-2 M_{2}(T)
$$

Proof. By definition,

$$
\begin{aligned}
\beta(T)= & \sum_{e \sim f, e=u v, f=v x} \operatorname{deg}_{T}(v)\left(\operatorname{deg}_{T}(e)+\operatorname{deg}_{T}(f)\right) \\
= & \sum_{u \sim v \sim x} \operatorname{deg}_{T}(v)\left(\operatorname{deg}_{T}(u)+\operatorname{deg}_{T}(v)-2+\operatorname{deg}_{T}(v)+\operatorname{deg}_{T}(x)-2\right) \\
= & 2 \sum_{u \sim v \sim x} \operatorname{deg}_{T}(v)^{2}-4 \sum_{u \sim v \sim x} \operatorname{deg}_{T}(v)+\sum_{u \sim v \sim x} \operatorname{deg}_{T}(v)\left(\operatorname{deg}_{T}(u)+\operatorname{deg}_{T}(x)\right) \\
= & 2 \sum_{v \in V(T)}\binom{\operatorname{deg}_{T}(v)}{2} d e g_{T}(v)^{2}-4 \sum_{v \in V(T)}\binom{\operatorname{deg}_{T}(v)}{2} d e g_{T}(v) \\
& +\sum_{u v \in E(T)} \operatorname{deg}_{T}(u) d e g_{T}(v)\left(\operatorname{deg}_{T}(u)+\operatorname{deg}_{T}(v)-2\right) \\
= & \sum_{v \in V(T)}\left(\operatorname{deg}_{T}(v)^{4}-\operatorname{deg}_{T}(v)^{3}\right)-2 \sum_{v \in V(T)}\left(\operatorname{deg}_{T}(v)^{3}-\operatorname{deg}_{T}(v)^{2}\right) \\
& -2 M_{2}(T)+\alpha(T) .
\end{aligned}
$$

Therefore, $\beta(T)-\alpha(T)=M_{1}^{4}(T)-3 F(T)+2 M_{1}(T)-2 M_{2}(T)$, which completes the proof.

Lemma 2.6. Let T be a tree with n vertices. Then

$$
\begin{aligned}
\eta\left(T, P_{5}\right) & =6 n-\frac{1}{4} F(T)-\frac{39}{8} M_{1}(T)+\frac{1}{2} n M_{1}(T)-\frac{1}{8}\left(M_{1}(T)\right)^{2}-\frac{1}{2} n^{2} \\
& +\frac{5}{8} M_{1}^{4}(T)+E M_{2}(T)+3 M_{2}(T)-\frac{11}{2}-\frac{1}{2} E M_{1}(T)-\beta(T) \\
& +\sum_{\{u, v\} \subset V(T)}\binom{d e g_{T}(u)}{2}\binom{d e g_{T}(v)}{2} .
\end{aligned}
$$

Proof. By definition,

$$
\begin{aligned}
\eta\left(T, P_{5}\right)= & \binom{n-1}{4}-\left(\eta\left(T, T_{1}\right)+\eta\left(T, T_{2}\right)+\eta\left(T, T_{3}\right)+\eta\left(T, T_{4}\right)+\eta\left(T, T_{5}\right)\right. \\
& \left.+\eta\left(T, S_{5}\right)+p(T, 4)\right)
\end{aligned}
$$

Now, we apply Lemmas 2.2, 2.3, Theorem 2.4 and above discussion to deduce that

$$
\begin{aligned}
\eta\left(T, P_{5}\right)= & 6 n-\frac{1}{4} F(T)-\frac{39}{8} M_{1}(T)+\frac{1}{2} n M_{1}(T)-\frac{1}{8}\left(M_{1}(T)\right)^{2}-\frac{1}{2} n^{2} \\
& +\frac{5}{8} M_{1}^{4}(T)+E M_{2}(T)+3 M_{2}(T)-\frac{11}{2}-\frac{1}{2} E M_{1}(T)-\beta(T) \\
& +\sum_{\{u, v\} \subset V(T)}\binom{d e g_{T}(u)}{2}\binom{d e g_{T}(v)}{2},
\end{aligned}
$$

proving the lemma.

LEmma 2.7. Let T be a tree with n vertices and $A(T)=\sum_{\{u, v\} \subset V(T)}$ $\binom{\operatorname{deg}_{T}(u)}{2}\left(\begin{array}{c}\operatorname{deg}_{T}(v)\end{array}\right)$. Then

$$
\begin{aligned}
A(T)= & \frac{3}{2} E M_{1}(T)+\frac{51}{8} M_{1}(T)-\frac{1}{8} M_{1}^{4}(T)-\frac{5}{4} F(T)-7 n+\frac{13}{2}-\frac{1}{2} n M_{1}(T) \\
& +\frac{1}{8}\left(M_{1}(T)\right)^{2}+\frac{1}{2} n^{2}-3 M_{2}(T)
\end{aligned}
$$

Proof. By two formulas for $\eta\left(T, P_{5}\right)$ given Lemmas 2.1, 2.6, and a simple calculation we have

$$
\begin{aligned}
A(T)= & \frac{3}{2} E M_{1}(T)+\frac{51}{8} M_{1}(T)-\frac{1}{8} M_{1}^{4}(T)-\frac{5}{4} F(T)-7 n+\frac{13}{2}-\frac{1}{2} n M_{1}(T) \\
& +\frac{1}{8}\left(M_{1}(T)\right)^{2}+\frac{1}{2} n^{2}-3 M_{2}(T)
\end{aligned}
$$

proving the lemma.
Lemma 2.8. Let G be a graph with m edges. Then $E M_{1}(T)=F(G)+$ $2 M_{2}(G)-4 M_{1}(G)+4 m$.

Proof. By definition,

$$
\begin{aligned}
E M_{1}(T)= & \sum_{e=u v \in E(G)} \operatorname{deg}_{G}(e)^{2}=\sum_{e=u v \in E(G)}\left(\operatorname{deg}_{G}(u)+\operatorname{deg}_{G}(v)-2\right)^{2} \\
= & \sum_{e=u v \in E(G)}\left(\operatorname{deg}_{G}(u)^{2}+\operatorname{deg}_{G}(v)^{2}+2 d e g_{G}(u) \operatorname{deg}_{G}(v)\right. \\
& \left.-4\left(\operatorname{deg}_{G}(u)+\operatorname{deg}_{G}(v)\right)+4\right)=F(G)+2 M_{2}(G)-4 M_{1}(T)+4 m,
\end{aligned}
$$

as desired.

Theorem 2.9 (See [1]). Let T be a tree with n vertices. Then

$$
\begin{aligned}
c_{n-4}(T)= & (n-1)\left(\frac{16}{24} n^{3}-4 n^{2}+\frac{348}{24} n-\frac{532}{6}\right)+\frac{17}{8} M_{1}(T)^{2} \\
& +\left(\frac{4}{6} n-\frac{412}{24}\right) F(T)+\frac{39}{2} E M_{1}(T)-\frac{108}{48} M_{1}^{4}(T)-40 M_{2}(T) \\
& -\left(n^{2}+\frac{7}{2} n-\frac{1920}{24}\right) M_{1}(T)-16 \sum_{\{u, v\} \subset V(T)}\binom{d e g_{T}(u)}{2}\binom{d e g_{T}(v)}{2} .
\end{aligned}
$$

Figure 1. The graphs T_{1}, \ldots, T_{5} and S_{5}.

3. Main Results

Suppose T is a tree. It is well known that the Laplacian coefficient $c_{n-2}(T)$ is equal to the Wiener index of T, while $c_{n-3}(T)$ is equal to the modified hyper-Wiener index of T. We refer to [11] for more information on this topic. So, it is natural to think about the coefficient $c_{n-4}(T)$ and its relationship with some other topological indices of T.

The following environments are predefined:
Theorem 3.1. Let T be a tree with n vertices. Then,

$$
\begin{aligned}
p(T, 4)= & \frac{1}{24}(n-1)\left(n^{3}+3 n^{2}+10 n-80\right)+\frac{1}{8} M_{1}(T)\left(-2 n^{2}+M_{1}(T)-6 n+36\right) \\
& +M_{2}(T)(n-3)+\frac{1}{6} F(T)(2 n-11)+\frac{1}{4} M_{1}^{4}(T)-E M_{2}(T) .
\end{aligned}
$$

Proof. By Theorem 2.4,

$$
\begin{aligned}
p(T, 4)= & \frac{1}{24}(n-1)\left(n^{3}+3 n^{2}+22 n+4\right)-\frac{1}{4}\left(n^{2}+5 n+\frac{27}{6}\right) M_{1}(T)+\frac{1}{4} M_{1}(T)^{2} \\
& +(n+1) M_{2}(T)+\frac{1}{6}\left(2 n+\frac{29}{2}\right) F(T)-\frac{21}{24} M_{1}^{4}(T)-E M_{2}(T)-E M_{1}(T) \\
& +\beta(T)-\alpha(T)-\sum_{\{u, v\} \subset V(T)}\binom{d e g_{T}(u)}{2}\binom{d e g_{T}(v)}{2} .
\end{aligned}
$$

Now, by Lemmas 2.5 and 2.7, we have

$$
\begin{aligned}
p(T, 4)= & \frac{1}{24}(n-1)\left(n^{3}+3 n^{2}+10 n+160\right)+\frac{1}{8} M_{1}(T)\left(-2 n^{2}+M_{1}(T)-6 n-44\right) \\
& +M_{2}(T)(n+2)+\frac{1}{3} F(T)(n+2)+\frac{1}{4} M_{1}^{4}(T)-E M_{2}(T)-\frac{5}{2} E M_{1}(T),
\end{aligned}
$$

and by Lemma 2.8,

$$
\begin{aligned}
p(T, 4)= & \frac{1}{24}(n-1)\left(n^{3}+3 n^{2}+10 n-80\right)+\frac{1}{8} M_{1}(T)\left(-2 n^{2}+M_{1}(T)-6 n+36\right) \\
& +M_{2}(T)(n-3)+\frac{1}{6} F(T)(2 n-11)+\frac{1}{4} M_{1}^{4}(T)-E M_{2}(T)
\end{aligned}
$$

This completes the proof.
Theorem 3.2. Let T be a tree with n vertices. Then

$$
\begin{aligned}
c_{n-4}(T)= & \frac{1}{6}(n-1)\left(4 n^{3}-24 n^{2}+39 n-16\right)+\frac{1}{3} F(G)(2 n-5) \\
& +\frac{1}{8} M_{1}(T)\left(-8 n^{2}+M_{1}(T)+36 n-32\right)-\frac{1}{4} M_{1}^{4}(T)-M_{2}(T)
\end{aligned}
$$

Proof. By Lemmas 2.7, 2.8, Theorem 2.9, and simple calculations we have

$$
\begin{aligned}
c_{n-4}(T) & =\frac{1}{6}(n-1)\left(4 n^{3}-24 n^{2}+39 n-16\right)+\frac{1}{3} F(G)(2 n-5) \\
& +\frac{1}{8} M_{1}(T)\left(-8 n^{2}+M_{1}(T)+36 n-32\right)-\frac{1}{4} M_{1}^{4}(T)-M_{2}(T)
\end{aligned}
$$

Hence the result.
A pendant path of a graph G is a path P, in which one terminal vertex is of degree at least three, another terminal vertex is a pendant vertex, and all internal vertices (if any exists) are of degree two in G. It is clear that the number of pendant paths in G is equal to the number of pendant vertices in G. An internal path of G is a path I, in which two terminal vertices are of degree at least three and each internal vertex (if any exists) is of degree two in G. We also assume that $\alpha_{i}, 1 \leq i \leq 6$, are classes of chemical trees presented in Table 1.

Transformation A. Suppose G is a chemical tree with two given pendant paths $P:=v_{1} v_{2} \ldots v_{k}$ and $Q:=u_{1} u_{2} \ldots u_{l}$ such that $k, l \geq 3$ and $\operatorname{deg}_{G}\left(v_{k}\right)=$ $\operatorname{deg}_{G}\left(u_{l}\right)=1$. Define $G^{\prime}=G-v_{2} v_{3}+v_{3} u_{l}$.

TABLE 1. Degree distributions of chemical trees with $2 \leq$ $n_{1}(T) \leq 5$.

E.C.	n_{4}	n_{3}	n_{2}	n_{1}	E.C.	n_{4}	n_{3}	n_{2}	n_{1}
α_{1}	0	0	$n-2$	2	α_{4}	1	0	$n-5$	4
α_{2}	0	1	$n-4$	3	α_{5}	1	1	$n-7$	5
α_{3}	0	2	$n-6$	4	α_{6}	0	3	$n-8$	5

Lemma 3.3. Let G and G^{\prime} be two chemical trees as described in Transformation A, with $n(\geq 4)$ vertices. Then $c_{n-4}(G)<c_{n-4}\left(G^{\prime}\right)$.

Proof. By definitions of G and G^{\prime}, we have

$$
M_{1}(G)=M_{1}\left(G^{\prime}\right), F(G)=F\left(G^{\prime}\right), M_{1}^{4}(G)=M_{1}^{4}\left(G^{\prime}\right)
$$

Therefore by Theorem 3.2,

$$
c_{n-4}(G)-c_{n-4}\left(G^{\prime}\right)=M_{2}\left(G^{\prime}\right)-M_{2}(G)=2-\operatorname{deg}_{G}\left(v_{1}\right)
$$

Now, $\operatorname{deg}_{G}\left(v_{1}\right) \in\{3,4\}$ and so, $c_{n-4}(G)-c_{n-4}\left(G^{\prime}\right)<0$.

Transformation B. Suppose G is a chemical tree with a given internal path $P_{2}:=v_{1} v_{2}$. In addition, we assume that $Q:=u_{1} u_{2} \ldots u_{l}$ is a pendant or internal path in G, such that $l \geq 4$. Define $G^{\prime}=G-\left\{v_{1} v_{2}, u_{1} u_{2}, u_{2} u_{3}\right\}+$ $\left\{v_{1} u_{2}, u_{2} v_{2}, u_{1} u_{3}\right\}$.

Lemma 3.4. Let G and G^{\prime} be two chemical trees as described in Transformation B, with $n(\geq 8)$ vertices. Then $c_{n-4}(G)<c_{n-4}\left(G^{\prime}\right)$.

Proof. By definitions of G and $G^{\prime}, M_{1}(G)=M_{1}\left(G^{\prime}\right), F(G)=F\left(G^{\prime}\right)$ and $M_{1}^{4}(G)=M_{1}^{4}\left(G^{\prime}\right)$. We now apply Theorem 3.2 to deduce that $c_{n-4}(G)-$ $c_{n-4}\left(G^{\prime}\right)=M_{2}\left(G^{\prime}\right)-M_{2}(G)=2 \operatorname{deg}_{G}\left(v_{1}\right)+2 \operatorname{deg}_{G}\left(v_{1}\right)-\operatorname{deg}_{G}\left(v_{1}\right) \operatorname{deg}_{G}\left(v_{2}\right)-4$. Therefore, $\operatorname{deg}_{G}\left(v_{1}\right), \operatorname{deg} g_{G}\left(v_{2}\right) \in\{3,4\}$ and so $c_{n-4}(G)-c_{n-4}\left(G^{\prime}\right)<0$.

Transformation C. Suppose G is a chemical tree with a given pendant path $P_{2}:=v_{1} v_{2} \ldots v_{k}$ such that $k \geq 3$ and $\operatorname{deg}_{G}\left(v_{k}\right)=1$. In addition, we assume that $Q:=u_{1} u_{2} \ldots u_{l}$ is an internal path in G, such that $l \geq 3$. Define $G^{\prime}=G-\left\{v_{2} v_{3}, u_{1} u_{2}\right\}+\left\{u_{1} v_{3}, v_{k} u_{2}\right\}$.

Lemma 3.5. Let G_{1} and G_{2} be two chemical trees as explained in Transformation C, with $n(\geq 8)$ vertices. Then $c_{n-4}(G)<c_{n-4}\left(G^{\prime}\right)$.

Proof. By definitions of G and $G^{\prime}, M_{1}(G)=M_{1}\left(G^{\prime}\right), F(G)=F\left(G^{\prime}\right)$ and $M_{1}^{4}(G)=M_{1}^{4}\left(G^{\prime}\right)$. Apply Theorem 3.2 to prove that $c_{n-4}(G)-c_{n-4}\left(G^{\prime}\right)$ $=M_{2}\left(G^{\prime}\right)-M_{2}(G)=4+\operatorname{deg}_{G}\left(v_{1}\right)-\left[2+2 \operatorname{deg}_{G}\left(v_{1}\right)\right]=2-\operatorname{deg}_{G}\left(v_{1}\right)$. Since $\operatorname{deg}_{G}\left(v_{1}\right) \in\{3,4\}, c_{n-4}(G)-c_{n-4}\left(G^{\prime}\right)<0$.

Transformation D. Suppose G is a chemical tree with two given pendant paths $P:=v_{1} v_{2} \ldots v_{k}$ and $Q:=u_{1} u_{2} \ldots u_{l}$ such that $\operatorname{deg}_{G}\left(v_{k}\right)=\operatorname{deg}_{G}\left(u_{l}\right)=$ 1. Define $G^{\prime}=G-v_{1} v_{2}+u_{l} v_{2}$.

Let T be a tree on n vertices. Then Gutman and Das in [10] have proved that

$$
\begin{equation*}
M_{1}(T) \leq n(n-1) \tag{3.1}
\end{equation*}
$$

with equality if and only if $T \cong S_{n}$.
Lemma 3.6. Let G and G^{\prime} be two chemical trees as in Transformation D, with $n(\geq 8)$ vertices. Then $c_{n-4}(G)<c_{n-4}\left(G^{\prime}\right)$.

Proof. By definitions, if $\operatorname{deg}_{G}\left(v_{1}\right)=3$, then

$$
M_{1}(G)=M_{1}\left(G^{\prime}\right)+2, F(G)=F\left(G^{\prime}\right)+12, M_{1}^{4}(G)=M_{1}^{4}\left(G^{\prime}\right)+50
$$

Therefore, by Theorem 3.2 and a simple calculation we have,

$$
c_{n-4}(G)-c_{n-4}\left(G^{\prime}\right) \geq \frac{1}{2} M_{1}(G)-2 n^{2}+17 n-41-M_{2}(G)+M_{2}\left(G^{\prime}\right)
$$

By Equation (3), $M_{1}(G) \leq n(n-1)$ and so,

$$
c_{n-4}(G)-c_{n-4}\left(G^{\prime}\right) \leq \frac{1}{2}\left(33 n-3 n^{2}\right)-41-M_{2}(G)+M_{2}\left(G^{\prime}\right)
$$

Next by [4, Lemma 2.1], $M_{2}\left(G^{\prime}\right) \leq M_{2}(G)$. This proves that

$$
c_{n-4}(G)-c_{n-4}\left(G^{\prime}\right) \leq \frac{1}{2}\left(33 n-3 n^{2}\right)-41<0 .
$$

The proof of the case that $\operatorname{deg}_{G}\left(v_{1}\right)=4$, is similar.
Lemma 3.7. [8, Lemma 2.3] If T is a chemical tree with n vertices, then
$n_{1}(T)=2+n_{3}(T)+2 n_{4}(T)$ and $n_{2}(T)=n-\left[2+2 n_{3}(T)+3 n_{4}(T)\right]$.
Lemma 3.8. There exists a chemical tree of order n with $2 \leq n_{1}(T) \leq 5$, if and only if T belongs to one of the equivalence classes (E.C.) given in Table 1.

Proof. We distinguish the following four cases:
(1) $n_{1}(T)=2$.
(2) $n_{1}(T)=3$.
(3) $n_{1}(T)=4$.
(4) $n_{1}(T)=5$.

To prove case (1), let $n_{1}(T)=2$. Then by Lemma 3.7, there is a tree T with $n_{1}(T)=2$ if and only if $n_{3}(T)+2 n_{4}(T)=0$, if and only if $n_{3}(T)=n_{4}(T)=0$ if and only if $n_{2}(T)=n-2$ if and only if $T \in \alpha_{1}$. The proofs of the other cases are similar and we omit them.

The number of edges connecting vertices of degree i and j in a graph A is denoted by $m_{i, j}(A)$. For a positive integer $n \geq 10$, we define:
$B_{1}=\left\{T \in \alpha_{5} \mid m_{1,3}(T)=2, m_{1,4}(T)=3, m_{2,3}(T)=m_{2,4}(T)=1, m_{2,2}(T)=n-8\right\}$.
$B_{2}=\left\{T \in \alpha_{6}: m_{1,3}(T)=5, m_{2,3}(T)=4\right.$, and $\left.m_{2,2}(T)=n-10\right\}$.
By Theorem 3.2, it is easy to see that for each $T \in B_{1}$ and $T^{\prime} \in B_{2}$ we have

$$
\begin{array}{ll}
c_{n-4}(T)= & \frac{1}{6}(2 n-9)\left(2 n^{3}-17 n^{2}+25 n+86\right) \\
c_{n-4}\left(T^{\prime}\right)= & \frac{2}{3} n^{4}-\frac{26}{3} n^{3}+\frac{215}{6} n^{2}-\frac{191}{6} n-63 \tag{3.3}
\end{array}
$$

Lemma 3.9. Let T be a chemical tree with $n_{1}(T) \geq 5$. Then,

$$
c_{n-4}(T) \leq \frac{2}{3} n^{4}-\frac{26}{3} n^{3}+\frac{215}{6} n^{2}-\frac{191}{6} n-63
$$

with equality if and only if $T \in B_{2}$.
Proof. If $n_{1}(T)=5$, then Lemmas 3.3, 3.4, 3.5, 3.8, and Equations $3.2,3.3$ give us the result. If $n_{1}(T) \geq 6$, then by repeated application of Transformation D we obtain a tree, say T^{\prime}, such that $n_{1}\left(T^{\prime}\right)=5$, and by Lemma 3.6, $c_{n-4}\left(T^{\prime}\right)>c_{n-4}(T)$. But $c_{n-4}\left(T^{\prime}\right) \leq \frac{2}{3} n^{4}-\frac{26}{3} n^{3}+\frac{215}{6} n^{2}-$ $\frac{191}{6} n-63$, proving the lemma.

We now apply Lemma 3.8 and Theorem 3.2, to compute the coefficient c_{n-4} for all chemical trees with $n \geq 10$ vertices and $2 \leq n_{1} \leq 4$.

$$
\begin{aligned}
A_{1} & =\left\{T \in \alpha_{1} \mid m_{1,2}(T)=2, m_{2,2}(T)=n-3\right\} \\
A_{2} & =\left\{T \in \alpha_{2} \mid m_{1,2}(T)=1, m_{1,3}(T)=2, m_{2,3}(T)=1, m_{2,2}(T)=n-5\right\}, \\
A_{3} & =\left\{T \in \alpha_{2} \mid m_{1,2}(T)=2, m_{1,3}(T)=1, m_{2,3}(T)=2, m_{2,2}(T)=n-6\right\}, \\
A_{4} & =\left\{T \in \alpha_{2} \mid m_{1,2}(T)=3, m_{2,3}(T)=3, m_{2,2}(T)=n-7\right\}, \\
A_{5} & =\left\{T \in \alpha_{3} \mid m_{1,3}(T)=4, m_{2,3}(T)=2, m_{2,2}(T)=n-7\right\}, \\
A_{6} & =\left\{T \in \alpha_{3} \mid m_{1,2}(T)=1, m_{1,3}(T)=3, m_{2,3}(T)=3, m_{2,2}(T)=n-8\right\}, \\
A_{7} & =\left\{T \in \alpha_{3} \mid m_{1,2}(T)=2, m_{1,3}(T)=2, m_{2,3}(T)=4, m_{2,2}(T)=n-9\right\}, \\
A_{8} & =\left\{T \in \alpha_{3} \mid m_{1,2}(T)=3, m_{1,3}(T)=1, m_{2,3}(T)=5, m_{2,2}(T)=n-10\right\}, \\
A_{9} & =\left\{T \in \alpha_{3} \mid m_{1,2}(T)=4, m_{2,3}(T)=6, m_{2,2}(T)=n-11\right\}, \\
A_{10} & =\left\{T \in \alpha_{3} \mid m_{1,2}(T)=m_{2,3}(T)=m_{3,3}(T)=1, m_{1,3}(T)=3, m_{2,2}(T)=n-7\right\}, \\
A_{11} & =\left\{T \in \alpha_{3} \mid m_{1,2}(T)=m_{1,3}(T)=m_{2,3}(T)=2, m_{3,3}(T)=1, m_{2,2}(T)=n-8\right\}, \\
A_{12} & =\left\{T \in \alpha_{3} \mid m_{1,2}(T)=m_{2,3}(T)=3, m_{1,3}(T)=m_{3,3}(T)=1, m_{2,2}(T)=n-9\right\}, \\
A_{13} & =\left\{T \in \alpha_{3} \mid m_{1,2}(T)=4, m_{2,3}(T)=4, m_{3,3}(T)=1, m_{2,2}(T)=n-10\right\}, \\
A_{14} & =\left\{T \in \alpha_{4} \mid m_{1,2}(T)=1, m_{1,4}(T)=3, m_{2,4}(T)=1, m_{2,2}(T)=n-6\right\}, \\
A_{15} & =\left\{T \in \alpha_{4} \mid m_{1,2}(T)=2, m_{1,4}(T)=2, m_{2,4}(T)=2, m_{2,2}(T)=n-7\right\}, \\
A_{16} & =\left\{T \in \alpha_{4} \mid m_{1,2}(T)=3, m_{1,4}(T)=1, m_{2,4}(T)=3, m_{2,2}(T)=n-8\right\}, \\
A_{17} & =\left\{T \in \alpha_{4} \mid m_{1,2}(T)=4, m_{2,4}(T)=4, m_{2,2}(T)=n-9\right\} .
\end{aligned}
$$

Let $T_{i} \in A_{i}$, for $i=1,2, \ldots, 17$. Then by Theorem 3.2, we have:

$$
\begin{align*}
& c_{n-4}\left(T_{1}\right)=\frac{1}{6}(2 n-5)(2 n-7)(n-3)(n-4), \tag{3.4}\\
& c_{n-4}\left(T_{2}\right)=\frac{2}{3} n^{4}-\frac{26}{3} n^{3}+\frac{239}{6} n^{2}-\frac{419}{6} n+25, \\
& c_{n-4}\left(T_{3}\right)=\frac{1}{6}(2 n-9)\left(2 n^{3}-17 n^{2}+43 n-16\right), \\
& c_{n-4}\left(T_{4}\right)=\frac{2}{3} n^{4}-\frac{26}{3} n^{3}+\frac{239}{6} n^{2}-\frac{419}{6} n+23, \\
& c_{n-4}\left(T_{5}\right)=\frac{2}{3} n^{4}-\frac{26}{3} n^{3}+\frac{227}{6} n^{2}-\frac{305}{6} n-19, \\
& c_{n-4}\left(T_{6}\right)=\frac{2}{3} n^{4}-\frac{26}{3} n^{3}+\frac{227}{6} n^{2}-\frac{305}{6} n-20, \\
& c_{n-4}\left(T_{7}\right)=c_{n-4}\left(T_{10}\right)=\frac{1}{6}(2 n-9)\left(2 n^{3}-17 n^{2}+37 n+14\right), \\
& c_{n-4}\left(T_{8}\right)=c_{n-4}\left(T_{11}\right)=\frac{2}{3} n^{4}-\frac{26}{3} n^{3}+\frac{227}{6} n^{2}-\frac{305}{6} n-22, \\
& c_{n-4}\left(T_{9}\right)=c_{n-4}\left(T_{12}\right)=\frac{2}{3} n^{4}-\frac{26}{3} n^{3}+\frac{227}{6} n^{2}-\frac{305}{6} n-23, \\
& c_{n-4}\left(T_{13}\right)=\frac{2}{3} n^{4}-\frac{26}{3} n^{3}+\frac{227}{6} n^{2}-\frac{305}{6} n-24, \\
& c_{n-4}\left(T_{14}\right)=\frac{2}{3} n^{4}-\frac{26}{3} n^{3}+\frac{215}{6} n^{2}-\frac{167}{6} n-87, \\
& c_{n-4}\left(T_{15}\right)=\frac{2}{3} n^{4}-\frac{26}{3} n^{3}+\frac{215}{6} n^{2}-\frac{167}{6} n-89, \\
& c_{n-4}\left(T_{16}\right)=\frac{2}{3} n^{4}-\frac{26}{3} n^{3}+\frac{215}{6} n^{2}-\frac{167}{6} n-91, \\
& c_{n-4}\left(T_{17}\right)=\frac{2}{3} n^{4}-\frac{26}{3} n^{3}+\frac{215}{6} n^{2}-\frac{167}{6} n-93 .
\end{align*}
$$

Theorem 3.10. If $n \geq 11, T_{i} \in A_{i}$, for $i=1,2, \ldots, 17, T_{18} \in B_{2}$, and $T \in \mathcal{C} \mathcal{T}(n) \backslash\left\{T_{1}, T_{2}, \ldots, T_{18}\right\}$, then $c_{n-4}\left(T_{1}\right)>c_{n-4}\left(T_{2}\right)>c_{n-4}\left(T_{3}\right)>$ $c_{n-4}\left(T_{4}\right)>c_{n-4}\left(T_{5}\right)>c_{n-4}\left(T_{6}\right)>c_{n-4}\left(T_{7}\right)=c_{n-4}\left(T_{10}\right)>c_{n-4}\left(T_{8}\right)=$ $c_{n-4}\left(T_{11}\right)>c_{n-4}\left(T_{9}\right)=c_{n-4}\left(T_{12}\right)>c_{n-4}\left(T_{13}\right)>c_{n-4}\left(T_{14}\right)>c_{n-4}\left(T_{15}\right)>$ $c_{n-4}\left(T_{16}\right)>c_{n-4}\left(T_{17}\right)>c_{n-4}\left(T_{18}\right)>c_{n-4}(T)$.

Proof. By Equations 3.3 and 3.4, $c_{n-4}\left(T_{1}\right)>c_{n-4}\left(T_{2}\right)>c_{n-4}\left(T_{3}\right)>$ $c_{n-4}\left(T_{4}\right)>c_{n-4}\left(T_{5}\right)>c_{n-4}\left(T_{6}\right)>c_{n-4}\left(T_{7}\right)=c_{n-4}\left(T_{10}\right)>c_{n-4}\left(T_{8}\right)=$ $c_{n-4}\left(T_{11}\right)>c_{n-4}\left(T_{9}\right)=c_{n-4}\left(T_{12}\right)>c_{n-4}\left(T_{13}\right)>c_{n-4}\left(T_{14}\right)>c_{n-4}\left(T_{15}\right)>$ $c_{n-4}\left(T_{16}\right)>c_{n-4}\left(T_{17}\right)>c_{n-4}\left(T_{18}\right)$. Since $T \notin\left\{T_{1}, T_{2}, \ldots, T_{18}\right\}, n_{1}(T) \geq 5$ and Lemma 3.9, gives the result.

Remark 3.11.

1. If $n=10$, then $c_{n-4}\left(T_{1}\right)>c_{n-4}\left(T_{2}\right)>c_{n-4}\left(T_{3}\right)>c_{n-4}\left(T_{4}\right)>$ $c_{n-4}\left(T_{5}\right)>c_{n-4}\left(T_{6}\right)>c_{n-4}\left(T_{7}\right)=c_{n-4}\left(T_{10}\right)>c_{n-4}\left(T_{8}\right)=c_{n-4}\left(T_{11}\right)$

$$
\begin{aligned}
& >c_{n-4}\left(T_{12}\right)>c_{n-4}\left(T_{13}\right)>c_{n-4}\left(T_{14}\right)>c_{n-4}\left(T_{15}\right)>c_{n-4}\left(T_{16}\right)> \\
& c_{n-4}\left(T_{17}\right)>c_{n-4}\left(T_{18}\right)>c_{n-4}(T) .
\end{aligned}
$$

2. If $n=9$, then $c_{n-4}\left(T_{1}\right)>c_{n-4}\left(T_{2}\right)>c_{n-4}\left(T_{3}\right)>c_{n-4}\left(T_{4}\right)>c_{n-4}\left(T_{5}\right)$ $>c_{n-4}\left(T_{6}\right)>c_{n-4}\left(T_{7}\right)=c_{n-4}\left(T_{10}\right)>c_{n-4}\left(T_{11}\right)>c_{n-4}\left(T_{12}\right)>$ $c_{n-4}\left(T_{14}\right)>c_{n-4}\left(T_{15}\right)>c_{n-4}\left(T_{16}\right)>c_{n-4}\left(T_{17}\right)>c_{n-4}(T)$.
3. If $n=8$, then $c_{n-4}\left(T_{1}\right)>c_{n-4}\left(T_{2}\right)>c_{n-4}\left(T_{3}\right)>c_{n-4}\left(T_{4}\right)>c_{n-4}\left(T_{5}\right)$ $>c_{n-4}\left(T_{6}\right)>c_{n-4}\left(T_{10}\right)>c_{n-4}\left(T_{11}\right)>c_{n-4}\left(T_{14}\right)>c_{n-4}\left(T_{15}\right)>$ $c_{n-4}\left(T_{16}\right)>c_{n-4}(T)$.
4. If $n=7$, then $c_{n-4}\left(T_{1}\right)>c_{n-4}\left(T_{2}\right)>c_{n-4}\left(T_{3}\right)>c_{n-4}\left(T_{4}\right)>c_{n-4}\left(T_{5}\right)$ $>c_{n-4}\left(T_{10}\right)>c_{n-4}\left(T_{14}\right)>c_{n-4}\left(T_{15}\right)>c_{n-4}(T)$.
5. If $n=6$, then $c_{n-4}\left(T_{1}\right)>c_{n-4}\left(T_{2}\right)>c_{n-4}\left(T_{3}\right)>c_{n-4}\left(T_{14}\right)>$ $c_{n-4}(T)$.
6. If $n=5$, then $c_{n-4}\left(T_{1}\right)=c_{n-4}\left(T_{2}\right)=c_{n-4}\left(S_{5}\right)$.

Acknowledgements.

The authors are indebted to an anonymous referee that his/her suggestions and helpful remarks leaded us to improve this paper. The research of the authors is partially supported by the University of Kashan under grant no $364988 / 169$.

References

[1] A. R. Ashrafi, M. Eliasi and A. Ghalavand, Laplacian coefficients and Zagreb indices of trees, Linear Multilinear Algebra 67 (2019), 1736-1749.
[2] A. Behmaram, On the number of 4-matchings in graphs, MATCH Commun. Math. Comput. Chem. 62 (2009), 381-388.
[3] D. Cvetković, M. Doob and H. Sachs, Spectra of Graphs - Theory and Application, Barth, Heidelberg, 1995.
[4] M. Eliasi and A. Ghalavand, Trees with the minimal second Zagreb index, Kragujevac J. Math. 42 (2018), 325-333.
[5] E. J. Farrell, J. M. Guo and G. M. Constantine, On matching coefficients, Discrete Math. 89 (1991), 203-210.
[6] B. Furtula and I. Gutman, A forgotten topological index, J. Math. Chem. 53 (2015), 1184-1190.
[7] A. Ghalavand, M. Eliasi and A. R. Ashrafi, Relations between Wiener, hyper-Wiener and some Zagreb type indices, Kragujevac J. Sci. 41 (2019), 37-42.
[8] I. Gutman, A. Ghalavand, T. Dehghan-Zadeh and A. R. Ashrafi, Graphs with smallest forgotten index, Iranian J. Math. Chem. 8 (2017), 259-273.
[9] I. Gutman and N. Trinajstić, Graph theory and molecular orbitals. Total φ-electron energy of alternant hydrocarbons, Chem. Phys. Lett. 17 (1972), 535-538.
[10] I. Gutman and K. Ch. Das, The first Zagreb indices 30 years after, MATCH Commun. Math. Comput. Chem. 50 (2004), 83-92.
[11] A. Ilić, Trees with minimal Laplacian coefficients, Comput. Math. Appl. 59 (2010), 2776-2783.
[12] A. Miličević, S. Nikolić and N. Trinajstić, On reformulated Zagreb indices, Mol. Divers. 8 (2004), 393-399.
[13] C. S. Oliveira, N. M. M. de Abreu and S. Jurkewicz, The characteristic polynomial of the Laplacian of graphs in (a, b)-linear classes, Linear Algebra Appl. 356 (2002) 113-121.
[14] H. Wiener, Structural determination of paraffin boiling points, J. Am. Chem. Soc. 69 (1947) 17-20.
[15] W. Yan and Y.-N. Yeh, Connections between Wiener index and matchings, J. Math. Chem. 39 (2006) 389-399.
[16] S. Zhang and H. Zhang, Unicyclic graphs with the first three smallest and largest first general Zagreb index, MATCH Commun. Math. Comput. Chem. 55 (2006), 427-438.

Laplaceovi koeficijenti stabala

Ali Ghalavand i Ali Reza Ashrafi

SAžEtak. Neka je G jednostavan neusmjereni graf s Laplaceovim polinomom $\psi(G, \lambda)=\sum_{k=0}^{n}(-1)^{n-k} c_{k}(G) \lambda^{k}$. U ovom članku, izvedene su egzaktne formule za koeficijent c_{n-4} te za broj 4 -sparivanja s obzirom na zagrebačke indekse danog stabla. Također su određena kemijska stabla koji imaju petnaest najvećih vrijednosti od c_{n-4}.

Ali Ghalavand
Department of Pure Mathematics
Faculty of Mathematical Sciences
University of Kashan
Kashan 87317-53153, I. R. Iran
E-mail: alighalavand@grad.kashanu.ac.ir
Ali Reza Ashrafi
Department of Pure Mathematics
Faculty of Mathematical Sciences
University of Kashan
Kashan 87317-53153, I. R. Iran
E-mail: ashrafi@kashanu.ac.ir
Received: 29.6.2019.
Revised: 6.10.2019.; 10.1.2020.
Accepted: 11.2.2020.

