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LAPLACIAN COEFFICIENTS OF TREES

Ali Ghalavand and Ali Reza Ashrafi

Abstract. Let G be a simple and undirected graph with Laplacian
polynomial ψ(G,λ) =

∑n

k=0(−1)n−kck(G)λk. In this paper, exact formu-
las for the coefficient cn−4 and the number of 4-matchings with respect to
the Zagreb indices of a given tree are presented. The chemical trees with
first through the fifteenth greatest cn−4-values are also determined.

1. Introduction

A graph G consists of two sets V = V (G) and E = E(G). The elements
of V are called the vertices of G and the elements of E are edges of this graph.
Each edge is a 2-element subset of vertices {x, y} which is denoted by xy. A
chemical graph is a graph in which ∆(G) ≤ 4, where ∆(G) is the maximum
degree of vertices in G and a tree is a connected graph without cycles. The
vertex degree of v ∈ V (G), degG(v), is defined as the number of edges incident
to v and NG(v) denotes the set of all vertices adjacent to v. The distance
between two vertices x, y ∈ V (G), d(x, y), is defined as the number of edges
in a shortest path connecting them. The summation of all such numbers is
called the Wiener index of G denoted by W (G).

For subset E′ of E(G), we denote the subgraph of G obtained by deleting
the edges of E′ by G − E′. If E′ = {uv}, then the subgraph G − E′ will be
written as G − uv for short. In addition, for any two nonadjacent vertices x
and y of G, let G+ xy be the graph obtained from G by adding an xy edge.
If two vertices x and y are adjacent then we write x ∼ y. The path and star
on n-vertices are denoted by Pn and Sn, respectively. The set of all n-vertex
chemical trees is denoted by CT (n).

Suppose G denotes the set of all graphs and G,H ∈ G. If V (H) ⊆ V (G)
and E(H) ⊆ E(G), then we say thatH is a subgraph of G and use the notation
H ⊆ G. The number of subgraphs of G isomorphic to a fixed subgraph H is
denoted by η(G,H). It is easy to see that η(G,S2) = m, the number of edges
in G. The number of vertices of degree i in G will be denoted by ni = ni(G).
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It is easy to see that
∑∆(G)
i=1 ni = |V (G)|. A map Top from G into the set

of all non-negative real numbers is called a graph invariant if G ∼= H implies
that Top(G) = Top(H). Topological indices are graph invariants applicable
in chemistry.

The graph invariants Wiener index [14], first Zagreb index and second
Zagreb index [9], forgotten topological index [6] and the first general Zagreb
index [16], are defined as:

W (G) =
∑

{u,v}⊂V (G)

dG(u, v),

M1(G) =
∑

v∈V (G)

degG(v)2,

M2(G) =
∑

uv∈E(G)

degG(u)degG(v),

F (G) =
∑

v∈V (G)

degG(v)3 =
∑

uv∈E(G)

[degG(u)2 + degG(v)2],

Mα
1 (G) =

∑
u∈V (G)

degG(u)α,

respectively. Here, α 6= 0, 1 is an arbitrary real number. Furthermore, the
first Zagreb index and the forgotten topological index are just the case of
α = 2, 3 in the first general Zagreb index, respectively.

The first and second reformulated Zagreb indices of graphs were intro-
duced by Milićević et al. [12]. These graph invariants are edge counterparts
of the first and second Zagreb indices, respectively. These numbers can be
defined as:

EM1(G) =
∑
e∼f

[degG(e) + degG(f)] =
∑

e∈E(G)

degG(e)2,

EM2(G) =
∑
e∼f

degG(e)degG(f).

In this formulas, if e = uv then degG(e) = degG(u) + degG(v)− 2. Moreover,
e ∼ f means that the edges e and f are incident.

Suppose G is a simple graph with vertex set {v1, · · · , vn}. The adjacency
matrix of G is an n × n 0 − 1 matrix A = (aij) such that aij is one if and
only if there is an edge connecting vi and vj . The degree matrix, D(G), is a
square matrix of order n whose its ith diagonal entry is equal to degG(vi) and
whose off-diagonal elements are zero. The Laplacian matrix of G is defined
as L(G) = D(G) − A(G). The characteristic polynomial of the Laplacian
matrix, ψ(G,λ) = det(λIn−L(G)), is said to be the Laplacian polynomial of
the graph G. In this paper we write this polynomial in the form of ψ(G,λ) =∑n
k=0(−1)n−kck(G)λk. It is well-known that ck(G) ≥ 0, for all k.
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SupposeG is a simple and undirected graph. The relationship between the
coefficients of ψ(G,λ) and the structure of G was established many years ago
by Kel’mans [3, p. 38]. He proved that ck(G) =

∑
F∈Fk(G) γ(F ), where F is

a spanning forest and the summation goes over the set Fk(G) of all spanning
forests of G, possessing exactly k components and γ(F ) is the product of
the number of vertices of the components of F . If T is an n-vertex tree,
then for k ≥ 1, the elements of Fk(T ) can be obtained by deleting k − 1
distinct edges from T . So, it is easy to see that, c1(T ) = n, cn(T ) = 1 and
cn−1(T ) = 2(n − 1). Yan et al. [15], proved that c2(T ) = W (T ). Oliveira
et al. [13], obtained closed formulas for the coefficient cn−2(T ) and cn−3(T )
in terms of the number of vertices, the first Zagreb and forgotten indices as
cn−2(T ) = 2n2− 5n+ 3− 1

2M1(T ) and cn−3(T ) = 1
3 [4n3− 18n2 + 24n− 10 +

F (T )− 3(n− 2)M1(T )].
A matching K in a simple graph G is a set of pairwise non-adjacent

edges, that is, no two edges of K share a common vertex. If |K| = k then K
is called a k-matching of G. The matching polynomial of G is a generating
function for counting the number of k-matchings in G. Let p(G, k) denote the
number of k-matchings in G. Then the matching polynomial of G is defined
as M(G) =

∑
k≥0(−1)kp(G, k)xn−2k, where n = |V (G)|. Farrell and Guo

[5], established a formula for the number of 3-matchings in terms of the size,
degree sequence and number of triangles in given graph G, and Behmaram
[2] continued this work to present a formula for the number of 4-matchings of
triangular-free graphs with respect to the number of vertices, edges, degrees
and 4-cycles.

2. Preliminary Results

The aim of this section is to state some results which are crucial through-
out the paper. We encourage the interested readers to consult papers [1, 7]
for more details.

The common vertex of two incident edges e and f is denoted by e ∩ f .
Define the graph invariants α(T ) and β(T ) as follows:

α(T ) =
∑
u∼v

degT (u)degT (v)(degT (u) + degT (v)),

β(T ) =
∑
e∼f

degT (e ∩ f)(degT (e) + degT (f)).

Suppose T is a tree. In some of our results we need to have η(T,H) for
some special subgraphs of T . In the following lemma we record some cases
which are important in our calculations. The following lemma is a restatement
of Lemmas 2.1, 2.2 and 2.3 of [7] in which the number of paths of length 3, 4
and 5 are given.
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Lemma 2.1. Let T be an n-vertex tree. Then,

η(T, P3) = 1
2M1(T )− n+ 1,

η(T, P4) = M2(T )−M1(T ) + n− 1,

η(T, P5) = EM2(T ) + EM1(T ) + 3
2M1(T ) + 1

2M
4
1 (T )− 3

2F (T )− n+ 1− β(T ).

The number of stars with exactly four and five vertices in a given tree T
are presented in the following lemma which is Lemma 2.2 in [1].

Lemma 2.2. Let T be an n-vertex graph. Then,

η(T, S4) = 1
6F (T )− 1

2M1(T ) + 2
3m,

η(T, S5) = 1
24M

4
1 (T )− 1

4F (T ) + 11
24M1(T )− 1

2m.

Let T be an arbitrary tree and T1, T2, . . . , T5 be graphs depicted in Figure
1. The number of subtrees of T isomorphic to one of these tress are given
in the following lemma. These are restatements of Lemmas 2.3, 2.5., 2.7 and
2.15 in [1].

Lemma 2.3. Let T be an n-vertex tree. Then we have,
η(T, T1) = n.η(T, P4) + 2M2(T ) + F (T )−M1(T )− 2η(T, P5)− α(T ).

η(T, T2) = 1
2α(T ) + 5

2M1(T )− 3M2(T )− 1
2F (T )− 2m.

η(T, T3) = η(T, P3)(1
2M1(T )− n− 3)− 5

4M
4
1 (T ) + 11

2 F (T ) + 6M2(T )

− 33
4 M1(T )− 2EM2(T ) + 4m− α(T ) + 2β(T )− 3EM1(T ).

η(T, T4) = 1
2η(T, P3)

(
(n+ 1)(n+ 2)−M1(T ) + 4

)
+ 1

4(6n+ 52)M1(T )

− 1
4(2n+ 36)F (T ) + 2M4

1 (T )− (2n+ 9)M2(T ) + 3EM2(T )

− 8(n− 1) + 5
2α(T )− 3β(T ) + 5EM1(T ).

η(T, T5) = (n+ 2)η(T, S4)− 1
2α(T ) + 1

2F (T ) + 3M2(T )− 1
6M

4
1 (T )− 4

3M1(T ).

In [1], the authors proved a useful formula for computing the 4-matching
of a tree which is important in our calculations.

Theorem 2.4. Let T be a tree with n vertices. Then,

p(T, 4) = 1
24(n− 1)(n3 + 3n2 + 22n+ 4)− 1

4(n2 + 5n+ 27
6 )M1(T ) + 1

4M1(T )2

+ (n+ 1)M2(T ) + 1
6(2n+ 29

2 )F (T )− 21
24M

4
1 (T )− EM2(T )

− EM1(T ) + β(T )− α(T )−
∑

{u,v}⊂V (T )

(
degT (u)

2

)(
degT (v)

2

)
.
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Lemma 2.5. Let T be an n-vertex tree. Then

β(T )− α(T ) = M4
1 (T )− 3F (T ) + 2M1(T )− 2M2(T ).

Proof. By definition,

β(T ) =
∑

e∼f,e=uv,f=vx

degT (v)(degT (e) + degT (f))

=
∑
u∼v∼x

degT (v)
(
degT (u) + degT (v)− 2 + degT (v) + degT (x)− 2

)
= 2

∑
u∼v∼x

degT (v)2 − 4
∑
u∼v∼x

degT (v) +
∑
u∼v∼x

degT (v)(degT (u) + degT (x))

= 2
∑

v∈V (T )

(
degT (v)

2

)
degT (v)2 − 4

∑
v∈V (T )

(
degT (v)

2

)
degT (v)

+
∑

uv∈E(T )

degT (u)degT (v)(degT (u) + degT (v)− 2)

=
∑

v∈V (T )

(degT (v)4 − degT (v)3)− 2
∑

v∈V (T )

(degT (v)3 − degT (v)2)

− 2M2(T ) + α(T ).

Therefore, β(T )−α(T ) =M4
1 (T )−3F (T )+2M1(T )−2M2(T ), which completes

the proof.

Lemma 2.6. Let T be a tree with n vertices. Then

η(T, P5) = 6n− 1
4F (T )− 39

8 M1(T ) + 1
2nM1(T )− 1

8(M1(T ))2 − 1
2n

2

+ 5
8M

4
1 (T ) + EM2(T ) + 3M2(T )− 11

2 −
1
2EM1(T )− β(T )

+
∑

{u,v}⊂V (T )

(
degT (u)

2

)(
degT (v)

2

)
.

Proof. By definition,

η(T, P5) =
(
n− 1

4

)
−
(
η(T, T1) + η(T, T2) + η(T, T3) + η(T, T4) + η(T, T5)

+ η(T, S5) + p(T, 4)
)
.
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Now, we apply Lemmas 2.2, 2.3, Theorem 2.4 and above discussion to deduce
that

η(T, P5) = 6n− 1
4F (T )− 39

8 M1(T ) + 1
2nM1(T )− 1

8(M1(T ))2 − 1
2n

2

+ 5
8M

4
1 (T ) + EM2(T ) + 3M2(T )− 11

2 −
1
2EM1(T )− β(T )

+
∑

{u,v}⊂V (T )

(
degT (u)

2

)(
degT (v)

2

)
,

proving the lemma.

Lemma 2.7. Let T be a tree with n vertices and A(T ) =
∑
{u,v}⊂V (T )(

degT (u)
2

) (
degT (v)

2
)
. Then

A(T ) = 3
2EM1(T ) + 51

8 M1(T )− 1
8M

4
1 (T )− 5

4F (T )− 7n+ 13
2 −

1
2nM1(T )

+ 1
8(M1(T ))2 + 1

2n
2 − 3M2(T ).

Proof. By two formulas for η(T, P5) given Lemmas 2.1, 2.6, and a simple
calculation we have

A(T ) = 3
2EM1(T ) + 51

8 M1(T )− 1
8M

4
1 (T )− 5

4F (T )− 7n+ 13
2 −

1
2nM1(T )

+ 1
8(M1(T ))2 + 1

2n
2 − 3M2(T ),

proving the lemma.

Lemma 2.8. Let G be a graph with m edges. Then EM1(T ) = F (G) +
2M2(G) − 4M1(G) + 4m.

Proof. By definition,

EM1(T ) =
∑

e=uv∈E(G)

degG(e)2 =
∑

e=uv∈E(G)

(degG(u) + degG(v)− 2)2

=
∑

e=uv∈E(G)

(
degG(u)2 + degG(v)2 + 2degG(u)degG(v)

− 4(degG(u) + degG(v)) + 4
)

= F (G) + 2M2(G)− 4M1(T ) + 4m,

as desired.
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Theorem 2.9 (See [1]). Let T be a tree with n vertices. Then

cn−4(T ) = (n− 1)(16
24n

3 − 4n2 + 348
24 n−

532
6 ) + 17

8 M1(T )2

+ (4
6n−

412
24 )F (T ) + 39

2 EM1(T )− 108
48 M

4
1 (T )− 40M2(T )

− (n2 + 7
2n−

1920
24 )M1(T )− 16

∑
{u,v}⊂V (T )

(
degT (u)

2

)(
degT (v)

2

)
.

Figure 1. The graphs T1, . . . , T5 and S5.

3. Main Results

Suppose T is a tree. It is well known that the Laplacian coefficient cn−2(T )
is equal to the Wiener index of T , while cn−3(T ) is equal to the modified
hyper-Wiener index of T . We refer to [11] for more information on this topic.
So, it is natural to think about the coefficient cn−4(T ) and its relationship
with some other topological indices of T .

The following environments are predefined:

Theorem 3.1. Let T be a tree with n vertices. Then,

p(T, 4) = 1
24(n− 1)(n3 + 3n2 + 10n− 80) + 1

8M1(T )(−2n2 +M1(T )− 6n+ 36)

+M2(T )(n− 3) + 1
6F (T )(2n− 11) + 1

4M
4
1 (T )− EM2(T ).
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Proof. By Theorem 2.4,

p(T, 4) = 1
24(n− 1)(n3 + 3n2 + 22n+ 4)− 1

4(n2 + 5n+ 27
6 )M1(T ) + 1

4M1(T )2

+ (n+ 1)M2(T ) + 1
6(2n+ 29

2 )F (T )− 21
24M

4
1 (T )− EM2(T )− EM1(T )

+ β(T )− α(T )−
∑

{u,v}⊂V (T )

(
degT (u)

2

)(
degT (v)

2

)
.

Now, by Lemmas 2.5 and 2.7, we have

p(T, 4) = 1
24(n− 1)(n3 + 3n2 + 10n+ 160) + 1

8M1(T )(−2n2 +M1(T )− 6n− 44)

+M2(T )(n+ 2) + 1
3F (T )(n+ 2) + 1

4M
4
1 (T )− EM2(T )− 5

2EM1(T ),

and by Lemma 2.8,

p(T, 4) = 1
24(n− 1)(n3 + 3n2 + 10n− 80) + 1

8M1(T )(−2n2 +M1(T )− 6n+ 36)

+M2(T )(n− 3) + 1
6F (T )(2n− 11) + 1

4M
4
1 (T )− EM2(T ).

This completes the proof.

Theorem 3.2. Let T be a tree with n vertices. Then

cn−4(T ) = 1
6(n− 1)(4n3 − 24n2 + 39n− 16) + 1

3F (G)(2n− 5)

+ 1
8M1(T )(−8n2 +M1(T ) + 36n− 32)− 1

4M
4
1 (T )−M2(T ).

Proof. By Lemmas 2.7, 2.8, Theorem 2.9, and simple calculations we
have

cn−4(T ) = 1
6(n− 1)(4n3 − 24n2 + 39n− 16) + 1

3F (G)(2n− 5)

+ 1
8M1(T )(−8n2 +M1(T ) + 36n− 32)− 1

4M
4
1 (T )−M2(T ).

Hence the result.

A pendant path of a graph G is a path P , in which one terminal vertex
is of degree at least three, another terminal vertex is a pendant vertex, and
all internal vertices (if any exists) are of degree two in G. It is clear that the
number of pendant paths in G is equal to the number of pendant vertices in
G. An internal path of G is a path I, in which two terminal vertices are of
degree at least three and each internal vertex (if any exists) is of degree two in
G. We also assume that αi, 1 ≤ i ≤ 6, are classes of chemical trees presented
in Table 1.

Transformation A. Suppose G is a chemical tree with two given pendant
paths P := v1v2 . . . vk and Q := u1u2 . . . ul such that k, l ≥ 3 and degG(vk) =
degG(ul) = 1. Define G′ = G− v2v3 + v3ul.
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Table 1. Degree distributions of chemical trees with 2 ≤
n1(T ) ≤ 5.

E.C. n4 n3 n2 n1 E.C. n4 n3 n2 n1

α1 0 0 n− 2 2 α4 1 0 n− 5 4
α2 0 1 n− 4 3 α5 1 1 n− 7 5
α3 0 2 n− 6 4 α6 0 3 n− 8 5

Lemma 3.3. Let G and G′ be two chemical trees as described in Trans-
formation A, with n (≥ 4) vertices. Then cn−4(G) < cn−4(G′).

Proof. By definitions of G and G′, we have

M1(G) = M1(G′), F (G) = F (G′), M4
1 (G) = M4

1 (G′).

Therefore by Theorem 3.2,

cn−4(G)− cn−4(G′) = M2(G′)−M2(G) = 2− degG(v1).

Now, degG(v1) ∈ {3, 4} and so, cn−4(G)− cn−4(G′) < 0.

Transformation B. Suppose G is a chemical tree with a given internal path
P2 := v1v2. In addition, we assume that Q := u1u2 . . . ul is a pendant or
internal path in G, such that l ≥ 4. Define G′ = G − {v1v2, u1u2, u2u3} +
{v1u2, u2v2, u1u3}.

Lemma 3.4. Let G and G′ be two chemical trees as described in Trans-
formation B, with n (≥ 8) vertices. Then cn−4(G) < cn−4(G′).

Proof. By definitions of G and G′, M1(G) = M1(G′), F (G) = F (G′)
andM4

1 (G) = M4
1 (G′). We now apply Theorem 3.2 to deduce that cn−4(G)−

cn−4(G′) = M2(G′)−M2(G) = 2degG(v1)+2degG(v1)−degG(v1)degG(v2)−4.
Therefore, degG(v1), degG(v2) ∈ {3, 4} and so cn−4(G)− cn−4(G′) < 0.

Transformation C. Suppose G is a chemical tree with a given pendant
path P2 := v1v2 . . . vk such that k ≥ 3 and degG(vk) = 1. In addition, we
assume that Q := u1u2 . . . ul is an internal path in G, such that l ≥ 3. Define
G′ = G− {v2v3, u1u2}+ {u1v3, vku2}.

Lemma 3.5. Let G1 and G2 be two chemical trees as explained in Trans-
formation C, with n (≥ 8) vertices. Then cn−4(G) < cn−4(G′).

Proof. By definitions of G and G′, M1(G) = M1(G′), F (G) = F (G′)
and M4

1 (G) = M4
1 (G′). Apply Theorem 3.2 to prove that cn−4(G)− cn−4(G′)

= M2(G′) −M2(G) = 4 + degG(v1) − [2 + 2degG(v1)] = 2 − degG(v1). Since
degG(v1) ∈ {3, 4}, cn−4(G)− cn−4(G′) < 0.
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Transformation D. Suppose G is a chemical tree with two given pendant
paths P := v1v2 . . . vk and Q := u1u2 . . . ul such that degG(vk) = degG(ul) =
1. Define G′ = G− v1v2 + ulv2.

Let T be a tree on n vertices. Then Gutman and Das in [10] have proved
that

(3.1) M1(T ) ≤ n(n− 1),

with equality if and only if T ∼= Sn.

Lemma 3.6. Let G and G′ be two chemical trees as in Transformation D,
with n (≥ 8) vertices. Then cn−4(G) < cn−4(G′).

Proof. By definitions, if degG(v1) = 3, then

M1(G) = M1(G′) + 2, F (G) = F (G′) + 12, M4
1 (G) = M4

1 (G′) + 50.

Therefore, by Theorem 3.2 and a simple calculation we have,

cn−4(G)− cn−4(G′) ≥ 1
2M1(G)− 2n2 + 17n− 41−M2(G) +M2(G′).

By Equation (3), M1(G) ≤ n(n− 1) and so,

cn−4(G)− cn−4(G′) ≤ 1
2(33n− 3n2)− 41−M2(G) +M2(G′).

Next by [4, Lemma 2.1], M2(G′) ≤M2(G). This proves that

cn−4(G)− cn−4(G′) ≤ 1
2(33n− 3n2)− 41 < 0.

The proof of the case that degG(v1) = 4, is similar.

Lemma 3.7. [8, Lemma 2.3] If T is a chemical tree with n vertices, then

n1(T ) = 2 + n3(T ) + 2n4(T ) and n2(T ) = n− [2 + 2n3(T ) + 3n4(T )].

Lemma 3.8. There exists a chemical tree of order n with 2 ≤ n1(T ) ≤ 5,
if and only if T belongs to one of the equivalence classes (E.C.) given in Table
1.

Proof. We distinguish the following four cases:
(1) n1(T ) = 2.
(2) n1(T ) = 3.
(3) n1(T ) = 4.
(4) n1(T ) = 5.

To prove case (1), let n1(T ) = 2. Then by Lemma 3.7, there is a tree T with
n1(T ) = 2 if and only if n3(T )+2n4(T ) = 0, if and only if n3(T ) = n4(T ) = 0
if and only if n2(T ) = n − 2 if and only if T ∈ α1. The proofs of the other
cases are similar and we omit them.
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The number of edges connecting vertices of degree i and j in a graph A
is denoted by mi,j(A). For a positive integer n ≥ 10, we define:
B1 = {T ∈ α5 | m1,3(T ) = 2,m1,4(T ) = 3,m2,3(T ) = m2,4(T ) = 1,m2,2(T ) = n− 8}.
B2 = {T ∈ α6 : m1,3(T ) = 5, m2,3(T ) = 4, and m2,2(T ) = n− 10}.

By Theorem 3.2, it is easy to see that for each T ∈ B1 and T ′ ∈ B2 we have

cn−4(T ) = 1
6(2n− 9)(2n3 − 17n2 + 25n+ 86),(3.2)

cn−4(T ′) = 2
3n

4 − 26
3 n

3 + 215
6 n2 − 191

6 n− 63.(3.3)

Lemma 3.9. Let T be a chemical tree with n1(T ) ≥ 5. Then,

cn−4(T ) ≤ 2
3n

4 − 26
3 n

3 + 215
6 n2 − 191

6 n− 63,

with equality if and only if T ∈ B2.

Proof. If n1(T ) = 5, then Lemmas 3.3, 3.4, 3.5, 3.8, and Equations
3.2, 3.3 give us the result. If n1(T ) ≥ 6, then by repeated application of
Transformation D we obtain a tree, say T ′, such that n1(T ′) = 5, and by
Lemma 3.6, cn−4(T ′) > cn−4(T ). But cn−4(T ′) ≤ 2

3n
4 − 26

3 n
3 + 215

6 n2 −
191
6 n− 63, proving the lemma.

We now apply Lemma 3.8 and Theorem 3.2, to compute the coefficient
cn−4 for all chemical trees with n ≥ 10 vertices and 2 ≤ n1 ≤ 4.
A1 = {T ∈ α1 | m1,2(T ) = 2,m2,2(T ) = n− 3},
A2 = {T ∈ α2 | m1,2(T ) = 1,m1,3(T ) = 2,m2,3(T ) = 1,m2,2(T ) = n− 5},
A3 = {T ∈ α2 | m1,2(T ) = 2,m1,3(T ) = 1,m2,3(T ) = 2,m2,2(T ) = n− 6},
A4 = {T ∈ α2 | m1,2(T ) = 3,m2,3(T ) = 3,m2,2(T ) = n− 7},
A5 = {T ∈ α3 | m1,3(T ) = 4,m2,3(T ) = 2,m2,2(T ) = n− 7},
A6 = {T ∈ α3 | m1,2(T ) = 1,m1,3(T ) = 3,m2,3(T ) = 3,m2,2(T ) = n− 8},
A7 = {T ∈ α3 | m1,2(T ) = 2,m1,3(T ) = 2,m2,3(T ) = 4,m2,2(T ) = n− 9},
A8 = {T ∈ α3 | m1,2(T ) = 3,m1,3(T ) = 1,m2,3(T ) = 5,m2,2(T ) = n− 10},
A9 = {T ∈ α3 | m1,2(T ) = 4,m2,3(T ) = 6,m2,2(T ) = n− 11},
A10 = {T ∈ α3 | m1,2(T ) = m2,3(T ) = m3,3(T ) = 1,m1,3(T ) = 3,m2,2(T ) = n− 7},
A11 = {T ∈ α3 | m1,2(T ) = m1,3(T ) = m2,3(T ) = 2,m3,3(T ) = 1,m2,2(T ) = n− 8},
A12 = {T ∈ α3 | m1,2(T ) = m2,3(T ) = 3,m1,3(T ) = m3,3(T ) = 1,m2,2(T ) = n− 9},
A13 = {T ∈ α3 | m1,2(T ) = 4,m2,3(T ) = 4,m3,3(T ) = 1,m2,2(T ) = n− 10},
A14 = {T ∈ α4 | m1,2(T ) = 1,m1,4(T ) = 3,m2,4(T ) = 1,m2,2(T ) = n− 6},
A15 = {T ∈ α4 | m1,2(T ) = 2,m1,4(T ) = 2,m2,4(T ) = 2,m2,2(T ) = n− 7},
A16 = {T ∈ α4 | m1,2(T ) = 3,m1,4(T ) = 1,m2,4(T ) = 3,m2,2(T ) = n− 8},
A17 = {T ∈ α4 | m1,2(T ) = 4,m2,4(T ) = 4,m2,2(T ) = n− 9}.
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Let Ti ∈ Ai, for i = 1, 2, . . . , 17. Then by Theorem 3.2, we have:

cn−4(T1) = 1
6(2n− 5)(2n− 7)(n− 3)(n− 4),(3.4)

cn−4(T2) = 2
3n

4 − 26
3 n

3 + 239
6 n2 − 419

6 n+ 25,

cn−4(T3) = 1
6(2n− 9)(2n3 − 17n2 + 43n− 16),

cn−4(T4) = 2
3n

4 − 26
3 n

3 + 239
6 n2 − 419

6 n+ 23,

cn−4(T5) = 2
3n

4 − 26
3 n

3 + 227
6 n2 − 305

6 n− 19,

cn−4(T6) = 2
3n

4 − 26
3 n

3 + 227
6 n2 − 305

6 n− 20,

cn−4(T7) = cn−4(T10) = 1
6(2n− 9)(2n3 − 17n2 + 37n+ 14),

cn−4(T8) = cn−4(T11) = 2
3n

4 − 26
3 n

3 + 227
6 n2 − 305

6 n− 22,

cn−4(T9) = cn−4(T12) = 2
3n

4 − 26
3 n

3 + 227
6 n2 − 305

6 n− 23,

cn−4(T13) = 2
3n

4 − 26
3 n

3 + 227
6 n2 − 305

6 n− 24,

cn−4(T14) = 2
3n

4 − 26
3 n

3 + 215
6 n2 − 167

6 n− 87,

cn−4(T15) = 2
3n

4 − 26
3 n

3 + 215
6 n2 − 167

6 n− 89,

cn−4(T16) = 2
3n

4 − 26
3 n

3 + 215
6 n2 − 167

6 n− 91,

cn−4(T17) = 2
3n

4 − 26
3 n

3 + 215
6 n2 − 167

6 n− 93.

Theorem 3.10. If n ≥ 11, Ti ∈ Ai, for i = 1, 2, . . . , 17, T18 ∈ B2,
and T ∈ CT (n)�{T1, T2, . . . , T18}, then cn−4(T1) > cn−4(T2) > cn−4(T3) >
cn−4(T4) > cn−4(T5) > cn−4(T6) > cn−4(T7) = cn−4(T10) > cn−4(T8) =
cn−4(T11) > cn−4(T9) = cn−4(T12) > cn−4(T13) > cn−4(T14) > cn−4(T15) >
cn−4(T16) > cn−4(T17) > cn−4(T18) > cn−4(T ).

Proof. By Equations 3.3 and 3.4, cn−4(T1) > cn−4(T2) > cn−4(T3) >
cn−4(T4) > cn−4(T5) > cn−4(T6) > cn−4(T7) = cn−4(T10) > cn−4(T8) =
cn−4(T11) > cn−4(T9) = cn−4(T12) > cn−4(T13) > cn−4(T14) > cn−4(T15) >
cn−4(T16) > cn−4(T17) > cn−4(T18). Since T 6∈ {T1, T2, . . . , T18}, n1(T ) ≥ 5
and Lemma 3.9, gives the result.

Remark 3.11.
1. If n = 10, then cn−4(T1) > cn−4(T2) > cn−4(T3) > cn−4(T4) >
cn−4(T5) > cn−4(T6) > cn−4(T7) = cn−4(T10) > cn−4(T8) = cn−4(T11)
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> cn−4(T12) > cn−4(T13) > cn−4(T14) > cn−4(T15) > cn−4(T16) >
cn−4(T17) > cn−4(T18) > cn−4(T ).

2. If n = 9, then cn−4(T1) > cn−4(T2) > cn−4(T3) > cn−4(T4) > cn−4(T5)
> cn−4(T6) > cn−4(T7) = cn−4(T10) > cn−4(T11) > cn−4(T12) >
cn−4(T14) > cn−4(T15) > cn−4(T16) > cn−4(T17) > cn−4(T ).

3. If n = 8, then cn−4(T1) > cn−4(T2) > cn−4(T3) > cn−4(T4) > cn−4(T5)
> cn−4(T6) > cn−4(T10) > cn−4(T11) > cn−4(T14) > cn−4(T15) >
cn−4(T16) > cn−4(T ).

4. If n = 7, then cn−4(T1) > cn−4(T2) > cn−4(T3) > cn−4(T4) > cn−4(T5)
> cn−4(T10) > cn−4(T14) > cn−4(T15) > cn−4(T ).

5. If n = 6, then cn−4(T1) > cn−4(T2) > cn−4(T3) > cn−4(T14) >
cn−4(T ).

6. If n = 5, then cn−4(T1) = cn−4(T2) = cn−4(S5).
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Laplaceovi koeficijenti stabala

Ali Ghalavand i Ali Reza Ashrafi

Sažetak. Neka je G jednostavan neusmjereni graf s
Laplaceovim polinomom ψ(G,λ) =

∑n

k=0(−1)n−kck(G)λk. U
ovom članku, izvedene su egzaktne formule za koeficijent cn−4

te za broj 4-sparivanja s obzirom na zagrebačke indekse danog
stabla. Takoder su odredena kemijska stabla koji imaju petnaest
najvećih vrijednosti od cn−4.
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