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ON TRIANGLES WITH COORDINATES OF VERTICES
FROM THE TERMS OF THE SEQUENCES {Ukn} AND {Vkn}

Neşe Ömür, Gökhan Soydan, Yücel Türker Ulutaş and Yusuf
Doğru

Abstract. In this paper, we determine some results of the triangles
with coordinates of vertices involving the terms of the sequences {Ukn} and
{Vkn} where Ukn are terms of a second order recurrent sequence and Vkn
are terms in the companion sequence for odd positive integer k, generalizing
works of Čerin. For example, the cotangent of the Brocard angle of the
triangle ∆kn is

cot(Ω∆kn ) =
Uk(2n+3)V2k − Vk(2n+3)Uk

(−1)nU2k
.

1. Introduction

The second order sequence {Wn (a, b; p, q)} , or briefly {Wn} is defined for
n > 0 by

Wn+1 = pWn + qWn−1

in whichW0 = a, W1 = b, where a, b are arbitrary integers and p, q are nonzero
integers. We denote Wn (0, 1; p, 1), Wn (2, p; p, 1) by Un and Vn, respectively.
When p = 1, Un = Fn (the nth Fibonacci number) and Vn = Ln (the nth
Lucas number).

If α and β are the roots of equation x2 − px − 1 = 0, then the Binet
formulas of the sequences {Un} and {Vn} have the forms

Un = αn − βn

α− β
and Vn = αn + βn,

respectively.
In [9], the authors derived the following recurrence relations for the se-

quences {Ukn} and {Vkn} for k ≥ 0 and n > 1

Ukn = VkUk(n−1) + (−1)k+1Uk(n−2)
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and
Vkn = VkVk(n−1) + (−1)k+1Vk(n−2),

where the initial conditions of the sequences {Ukn} and {Vkn} are 0, Uk and
2, Vk, respectively.

If αk and βk are the roots of equation x2 − Vkx + (−1)k = 0, then the
Binet formulas of the sequences {Ukn} and {Vkn} are given by

Ukn = αkn − βkn

α− β
and Vkn = αkn + βkn,

respectively.
In [2], author defined triangles ∆k and Γk with vertices Ak = (Fk, Fk+1),

Bk = (Fk+1, Fk+2), Ck = (Fk+2, Fk+3) and Pk = (Lk, Lk+1)), Qk = (Lk+1,
Lk+2), Rk = (Lk+2, Lk+3), respectively. He gave some interesting results of
the triangles ∆k and Γk and introduced geometric properties of these triangles.
In [3], authors defined triangles ∆k and Γk with vertices Ak = (Pk, Pk+1),
Bk = (Pk+1, Pk+2), Ck = (Pk+2, Pk+3) and Xk = (Qk, Qk+1), Yk = (Qk+1,
Qk+2), Zk = (Qk+2, Qk+3), respectively, where Pk and Qk are Pell and Pell-
Lucas numbers, respectively. The numbers Qk make the integer sequence
A002203 from [11] while the numbers 1

2Pk make A000129. They explored some
common properties of the triangles ∆k and Γk. There is a great similarity
between these two papers in statements of some results in methods of their
proofs. But in [3], they gave some new observations like the possibility to
consider triangles with mixed coordinates of vertices and the involvement of
the homology relation.

ABC and A′B′C ′ are orthologic triangles if the perpendiculars at vertices
of ABC onto corresponding sides of A′B′C ′ are concurrent. [ABC,A′B′C ′]
is called the orthology center. It is well known that the relation of orthol-
ogy for triangles is reflexive and symmetric. Hence, perpendiculars at ver-
tices of A′B′C ′ onto corresponding sides of ABC are concurrent at the point
[A′B′C ′, ABC] (see [5] and [6]).

By replacing in the above definition perpendiculars with parallels, we
get the paralogic triangles and the point of concurrence is shown by <ABC,
A′B′C ′> (see [5]).

In this paper, for odd positive integer k and positive integer n, we define
the triangles ∆kn and Γkn with vertices

Akn = (Ukn, Uk(n+1)), Bkn = (Uk(n+1), Uk(n+2)), Ckn = (Uk(n+2), Uk(n+3))

and

A′kn = (Vkn, Vk(n+1)), B′kn = (Vk(n+1), Vk(n+2)), C ′kn = (Vk(n+2), Vk(n+3)),

respectively. We determine some results of the triangles with coordinates of
vertices from the sequences {Ukn} and {Vkn}, generalizing works of Čerin [2].
Some computations are done with MAPLE 13 [1].
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2. Main Results

In this section, we will obtain some results of the triangles with coordi-
nates of vertices involving second order recurrences {Ukn} and {Vkn}. Firstly,
we can give the following generalized Fibonacci identities in [10] used through-
out the proofs of Theorems:

Lemma 2.1. For every positive integers n and m, the following equalities
are satisfied:

i) Vk(m+n) + Vk(m−n) =
{

VkmVkn,(
V 2
k + 4

)
UkmUkn,

if n is even,
if n is odd,

ii) Vk(m+n) − Vk(m−n) =
{ (

V 2
k + 4

)
UkmUkn,

VkmVkn,
if n is even,
if n is odd,

iii) Uk(m+n) + Uk(m−n) =
{
UkmVkn,
VkmUkn,

if n is even,
if n is odd.

Theorem 2.2. For positive integers n and m, the pairs of triangles (∆km,
∆kn), (∆km,Γkn) and (Γkm,Γkn) are orthologic.

Proof. It is well-known [4] that the triangles ABC and A′B′C ′ with
coordinates of points (a1, a2), (b1, b2), (c1, c2) and (a′1, a′2), (b′1, b′2), (c′1, c′2)
are orthologic if and only if

(2.1)

∣∣∣∣∣∣
a1 b1 c1
a′1 b′1 c′1
1 1 1

∣∣∣∣∣∣+

∣∣∣∣∣∣
a2 b2 c2
a′2 b′2 c′2
1 1 1

∣∣∣∣∣∣ = 0.

Since Ukn = αkn−βkn
α−β and Vkn = αkn + βkn, when substitute the coordinates

of the vertices of ∆km and ∆kn in Equation (2.1), we have(
αk + βk

)
(αkβk + 1)(βk − αk) (αβ)km (αk(n−m) − βk(n−m))

(α− β)2 .

Since αk 6= βk, (−1)k = −1, the desired result is obtained. We obtain
similar results for (∆km,Γkn) and (Γkm,Γkn).

Theorem 2.3. For positive integer n, the following case for the orthocen-
ters H(∆kn) and H(Γkn), and the orthology centers [∆kn,Γkn] and [Γkn,∆kn]
of the triangles ∆kn and Γkn is valid:

|H(∆kn)[∆kn,Γkn]|
|H(Γkn)[Γkn,∆kn]| = Uk√

V 2
k + 4

.
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Proof. Using Binet formulas for sequences {Ukn} and {Vkn}, H(∆kn)
has the coordinates

[(−1)n+1(βk)12 + 2(−1)n(βk)11 − (−1)n(βk)10 − 2(αkn)2(βk)7

+ 2(−1)n(αkn)4(βk)5 − (αkn)6(βk)2 − 2(αkn)6(βk)− (αkn)6]
/[(βk)5(1 + (βk)2)(−1)n(α− β)(αkn)3]

and
[(−1)n(βk)10 − 2(−1)n(βk)9 + (−1)n(βk)8 − 2(αkn)2(βk)7

− 2(−1)n(αkn)4(βk)3 − (αkn)6(βk)2 − 2(αkn)6(βk)− (αkn)6]
/[(βk)4(1 + (βk)2)(−1)n(α− β)(αkn)3].

Similarly, the orthocenter H(Γkn) has coordinates
[(−1)n+1(βk)12 + 2(−1)n(βk)11 − (−1)n(βk)10 + 2(αkn)2(βk)7

+ 2(−1)n(αkn)4(βk)5 + (αkn)6(βk)2 + 2(αkn)6(βk) + (αkn)6]
/[(βk)5(1 + (βk)2)(−1)n(αkn)3]

and
[(−1)n(βk)10 − 2(−1)n(βk)9 + (−1)n(βk)8 + 2(αkn)2(βk)7

− 2(−1)n(αkn)4(βk)3 + (αkn)6(βk)2 + 2(αkn)6(βk) + (αkn)6]
/[(βk)4(1 + (βk)2)(−1)n(αkn)3].

The orthology center [∆kn,Γkn] has the coordinates
[(−1)n(βk)12 − 2(−1)n(βk)11 + (−1)n(βk)10 − 2(αkn)2(βk)7

+ 2(−1)n(αkn)4(βk)5 + (αkn)6(βk)2 + 2(αkn)6(βk) + (αkn)6]
/[(βk)5(1 + (βk)2)(−1)n(α− β)(αkn)3]

and
[(−1)n+1(βk)10 + 2(−1)n(βk)9 − (−1)n(βk)8 − 2(αkn)2(βk)7

− 2(−1)n(αkn)4(βk)3 + (αkn)6(βk)2 + 2(αkn)6(βk) + (αkn)6]
/[(βk)4(1 + (βk)2)(−1)n(α− β)(αkn)3].

Finally, the orthology center [Γkn,∆kn] has coordinates
[(−1)n(βk)12 − 2(−1)n(βk)11 + (−1)n(βk)10 + 2(αkn)2(βk)7

+ 2(−1)n(αkn)4(βk)5 − (αkn)6(βk)2 − 2(αkn)6(βk)− (αkn)6]
/[(βk)5(1 + (βk)2)(−1)n(αkn)3]

and
[(−1)n+1(βk)10 + 2(−1)n(βk)9 − (−1)n(βk)8 + 2(αkn)2(βk)7

− 2(−1)n(αkn)4(βk)3 − (αkn)6(βk)2 − 2(αkn)6(βk)− (αkn)6]
/[(βk)4(1 + (βk)2)(−1)n(αkn)3].
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The square of the distance between the points H(∆kn) and [∆kn,Γkn] is

|H(∆kn)[∆kn,Γkn]|2 = 4[(βk)22 − 4(βk)21 + 6(βk)20 − 4(βk)19

+ (βk)18 + (αkn)12(βk)4 + 4(αkn)12(βk)3

+ 6(αkn)12(βk)2 + 4(αkn)12(βk) + (αkn)12](2.2)
/[(αkn)6(1 + (βk)2)(βk)10],

and the square of the distance between the points H(Γkn) and [Γkn,∆kn] is

|H(Γkn)[Γkn,∆kn, ]|2 = 4[(βk)22 − 4(βk)21 + 6(βk)20 − 4(βk)19

+ (βk)18 + (αkn)12(βk)4 + 4(αkn)12(βk)3

+ 6(αkn)12(βk)2 + 4(αkn)12(βk) + (αkn)12]
/[(αkn)6(1 + (βk)2)(βk)10(α− β)2].(2.3)

Since (2.2) is exactly 1/(α− β)2 multiple of (2.3), the proof is obtained.

Theorem 2.4. For positive integer n, the oriented areas |∆kn| and |Γkn|of
the triangles ∆kn and Γkn are given as follows :

|∆kn| =
(−1)nU2

kVk
2 and |Γkn| =

(−1)n+1 (V 2
k + 4

)
Vk

2 .

Proof. Since the oriented area of the triangle with vertices whose coor-
dinates are (a1, a2), (b1, b2) and (c1, c2) is equal to

(c1 − b1)a2 + (a1 − c1)b2 + (b1 − a1)c2
2 ,

we get

|∆kn| = −
αknβkn(αk − 1)(βk − 1)(αk − βk)2

2(α− β)2 .

Using (αβ)kn = (−1)n, we get desired equality. Similarly, we obtain the
oriented area formula for Γkn.

Theorem 2.5. For every positive integer n, the triangles ∆kn and Γkn

are reversely similar and the sides of Γkn are
√
V 2
k + 4
Uk

times longer than
the corresponding sides of ∆kn.

Proof. Recall that two triangles are reversely similar if and only if they
are orthologic and paralogic (see [5]). By Theorem 2.2, we know that the
triangles ∆kn and Γkn are orthologic, it remains to see that they are paralogic.
It is well known that the triangles ABC and A′B′C ′ with coordinates of
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points (a1, a2), (b1, b2), (c1, c2) and (a′1, a′2), (b′1, b′2) and (c′1, c′2), respectively
are paralogic if and only if the expression X − Y is equal to zero, where

X =

∣∣∣∣∣∣
a1 b1 c1
a′2 b′2 c′2
1 1 1

∣∣∣∣∣∣ , Y =

∣∣∣∣∣∣
a2 b2 c2
a′1 b′1 c′1
1 1 1

∣∣∣∣∣∣ .
Using coordinates of vertices of triangles ∆kn and Γkn, we get that X −

Y = 0. Therefore these triangles are paralogic. In similar way, one can clearly
show that |A′knB′kn|2 = (α− β)2|AknBkn|2. Thus, the proof is completed.

Theorem 2.6. For every positive integer n, the centers [∆kn,Γkn] and
<∆kn, Γkn > are antipodal points on the circumcircle of ∆kn. The centers
[Γkn,∆kn] and <Γkn,∆kn> are antipodal points on the circumcircle of Γkn.

Proof. We shall prove that the orthology center [∆kn,Γkn] lies on the
circumcircle of ∆kn.We show that it has the same distance from its circumcen-
ter O(∆kn) as the vertex Akn and that the reflection of the point <∆kn,Γkn>
in the circumcenter O(∆kn) agrees with the point [∆kn,Γkn].

The circumcenter O(∆kn) has coordinates

[(−1)n(βk)12 − 2(−1)n(βk)11 + (−1)n(βk)10 − (αkn)2(βk)9

− (αkn)2(βk)8 + (−1)n(βk)7(αkn)4 − (αkn)2(βk)6

− (−1)n(αkn)4(βk)6 − (αkn)2(βk)5 − (−1)n(αkn)4(βk)4

+ (−1)n(αkn)4(βk)3 + (αkn)6(βk)2 + 2(αkn)6(βk) + (αkn)6]
/[2(−1)n(βk)5(αkn)3((βk)2 + 1)(α− β)]

and

[−(−1)n(βk)10 − (αkn)2(βk)9 + 2(−1)n(βk)9 − (−1)n(βk)8

− (αkn)2(βk)8 − (βk)6(αkn)2 − (−1)n(αkn)4(βk)5

− (αkn)2(βk)5 + (−1)n(αkn)4(βk)4 + (−1)n(αkn)4(βk)2

+ (αkn)6(βk)2 + 2(αkn)6(βk)− (−1)n(αkn)4(βk) + (αkn)6]
/[2(−1)n(βk)4(αkn)3((βk)2 + 1)(α− β)].

We give the coordinates of the center [∆kn,Γkn] in the proof of Theorem 2.3.
The coordinates of the center <∆kn,Γkn> are

−[−(αkn)2 + (αkn)2(βk) + 2(αkn)2(βk)2 + (−1)n(βk)3 − 2(−1)n(βk)4

+ (αkn)2(βk)3 + (−1)n(βk)2 + (−1)n(βk)5 − (αkn)2(βk)4 + (−1)n(βk)6]
/[(βk)2(αkn)((βk)2 + 1)(α− β)]
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and
−[(−1)n(βk)8 + (−1)n(βk)7 − 2(−1)n(βk)6 + (−1)n(βk)5 + (−1)n(βk)4

− 2(αkn)2(βk)2 + (αkn)2(βk)4 − (αkn)2(βk)3 − (αkn)2(βk) + (αkn)2]
/[(βk)3(αkn)((βk)2 + 1)(α− β)].

Now, we have
|[∆kn,Γkn]O(∆kn)|2 − |O(∆kn)Akn|2 = 0.

On the other hand, if R denotes the reflection of the point <∆kn,Γkn > in
the circumcenter O(∆kn) (i.e. R divides the segment <∆kn,Γkn > O(∆kn)
in ratio −2), then |W [∆kn,Γkn]|2 = 0. The second claim has a similar proof.

Define the first Brocard point as the interior point Ω of a triangle ABC
for which the angles ∠ΩAB,∠ΩBC,∠ΩCA are equal to an angle ω. Similarly,
define the second Brocard point as the interior point Ω′ for which the angles
∠Ω′AC,∠Ω′CB,∠Ω′BA are equal to an angle ω′. Thus, ω = ω′, and this
angle is called the Brocard angle [8].

Theorem 2.7. The cotangent of the Brocard angle of the triangle ∆kn is
equal to

cot (Ω∆kn
) =

Uk(2n+3)V2k − Vk(2n+3)Uk

(−1)nU2k
.

Proof. Since the cotangent of the Brocard angle of the triangle with
vertices A(a1, a2), B(b1, b2) and C(c1, c2) is equal to

(a1 − b1)2 + (a1 − c1)2 + (b1 − c1)2 + (a2 − b2)2 + (a2 − c2)2 + (b2 − c2)2

2

∣∣∣∣∣∣
a1 b1 c1
a2 b2 c2
1 1 1

∣∣∣∣∣∣
,

we get
cot (Ω∆kn

) = [α2kn(1− αk + α2k − 2α3k + α4k − α5k + α6k) + β2kn(1− βk

+ β2k − 2β3k + β4k − β5k + β6k)]/[(−1)n(αk − βk)2(αk + βk)].
Using Binet formulas of sequences {Ukn} and {Vkn} and Lemma 2.1 (i) and
(ii), we have
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cot(Ω∆kn
) = (V2kn − Vk(2n+1) + Vk(2n+2) − 2Vk(2n+3) + Vk(2n+4)

− Vk(2n+5) + Vk(2n+6)/[(−1)nVk(V 2
k + 4)]

=

(
V 2
k + 4

)
Uk

(
Uk(2n+1) − Uk(2n+2) + Uk(2n+5) − Uk(2n+4)

)
(−1)n Vk (V 2

k + 4)

=

(
V 2
k + 4

)
Uk

(
Uk(2n+3)V2k − Vk(2n+3)Uk

)
(−1)n Vk (V 2

k + 4)

=
Uk(2n+3)V2k − Vk(2n+3)Uk

(−1)n U2k
.

Thus the proof is complete.

For odd positive integer k and every positive integers n, let Φkn and
Ψkn be the triangles with vertices

Dkn = (−Ukn, Vkn), Ekn = (−Uk(n+2), Vk(n+2)), Fkn = (−Uk(n+4), Vk(n+4))

and

D′kn=(Uk(n+2), Vk(n+2)), E′kn=(Uk(n+4), Vk(n+4)), F ′kn = (Uk(n+6), Vk(n+6))

respectively. Recall that triangles ABC and XY Z are homologic provided
lines AX, BY and CZ are concurrent. The point P in which they concur
is called their homology center and the line l containing intersection points
BC ∩ Y Z, CA ∩ ZX and AB ∩XY is called their homology axis.

Theorem 2.8. For every positive integer n, the lines DknD
′
kn, EknE

′
kn

and FknF ′kn are parallel to the line y = V 2
k +4
U2k

x so that the triangles Φkn and
Ψkn are homologic. Their homology center is the point at infinity and their
homology axis is the line y = V 2

k +4
U2k

x. They are paralogic but not orthologic.
The oriented areas of the triangles Φkn and Ψkn are 2(−1)n(2− V2k)U2k and
2(−1)n+1(2− V2k)U2k, respectively.

Proof. The lines DknD
′
kn, EknE′kn and FknF ′kn have equations

Vkx− Uky + 2Uk(n+1) = 0,

Vkx− Uky + 2Uk(n+3) = 0,
and

Vkx− Uky + 2Uk(n+5) = 0.

It is clearly seen that they are parallel to the line y = V 2
k +4
U2k

x.
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Intersection points are

DknEkn ∩D′knE′kn =
(

(−1)knU2k

Vk(n+2)
,

(−1)kn(V 2
k + 4)

Vk(n+2)

)
,

EknFkn ∩ E′knF ′kn =
(

(−1)knU2k

Vk(n+4)
,

(−1)kn(V 2
k + 4)

Vk(n+4)

)
and

FknDkn ∩ F ′knD′kn =
(
− vkd

2(V 2
k + 4)Uk(n+3)

,− d

2UkUk(n+3)

)
,

where d = 2(−1)n+1 2V2k+V4k+2
V 2
k

+4 U2
k . We conclude that the homology axis of

the triangles Φkn and Ψkn is the line y = V 2
k +4
U2k

x. From simple calculations, it
is seen that the triangles Φkn and Ψkn are paralogic but not orthologic. Also
the oriented areas of the triangles Φkn and Ψkn are easily obtained from the
area formula.

For odd positive integer k and every positive integer n, let Θkn and Λkn be
the triangles with vertices

Rkn = (Ukn, Uk(n+4)), Skn = (Uk(n+2), Uk(n+6)), Tkn = (Uk(n+4), Uk(n+8))

and

R′kn = (UkVk(n+1), UkVk(n+3)), S′kn = (UkVk(n+3), UkVk(n+5)),
T ′kn = (UkVk(n+5), UkVk(n+7)),

respectively.

Theorem 2.9. For every positive integer n, the lines RknR′kn, SknS′kn
and TknT

′
kn are parallel to the line y = −x so that the triangles Θkn and

Λkn are homologic. Their homology center is the point at infinity and their
homology axis is the line y = −x. They are orthologic but not paralogic. The
oriented areas of the triangles Θkn and Λkn are (−1)n+1(2− V2k)U4kU2k and
(−1)n+1(4− V 2

2k)U2k, respectively.

Proof. The lines RknR′kn, SknS′kn and TknT ′kn have equations

x− y +U2kVk(n+2) = 0, x− y +U2kVk(n+4) = 0 and x− y +U2kVk(n+6) = 0.

It is clearly seen that they are parallel to line y = −x.
Since the intersection points are

RknSkn ∩R′knS′kn =
(

(−1)n+1U2kUk
Uk(n+3)

,
(−1)nVkU2

k )
Uk(n+3)

)
,

SknTkn ∩ S′knT ′kn =
(

(−1)n+1U2kUk
Uk(n+5)

,
(−1)nVkU2

k

Uk(n+5)

)
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and

TknRkn ∩ T ′knR′kn =
(

(−1)n+1U2kV2k

Vk(n+4)
,

(−1)nU2kV2k

Vk(n+4)

)
,

we conclude that the homology axis of the triangles Θkn and Λkn is the line
y = −x. From simple calculations, it is seen that the triangles Θkn and Λkn
are orthologic but not paralogic. Also the oriented areas of the triangles Θkn

and Λkn are easily obtained from the area formula.

Theorem 2.10. For every positive integer n, we have
(i) The distance between the centroids G(∆n) and G(Γn) of the triangles

∆n and Γn is equal to
(p2 + 3)

3
√
U2n+3.

(ii) The square of the diameter of the circumcircle of the triangle ∆m is
equal to

U2n+3((p2 + 8)U2
2n+3 − 4 + p2 − 4U2(2n+3))

4 .

Proof. (i) Using Binet formulas of sequences {Un} and {Vn}, we have

G(∆n) =
(
Un + Un+1 + Un+2

3 ,
Un+1 + Un+2 + Un+3

3

)
=
(
βn − αn − αn+1 + βn+1 − αn+2 + βn+2

3(β − α) ,

βn+1 − αn+1 − αn+3 + βn+3 − αn+2 + βn+2

3(β − α)

)
.

and

G(Γn) =
(
Vn + Vn+1 + Vn+2

3 ,
Vn+1 + Vn+2 + Vn+3

3

)
=
(
βn + αn + αn+1 + βn+1 + αn+2 + βn+2

3 ,

βn+1 + αn+1 + αn+3 + βn+3 + αn+2 + βn+2

3

)
.

From the distance formula between two points, we get

|G(∆n)G(Γn)| = [α2n(α8 + 3α6 + 5α4 + 5α2 + β2 + 3) + β2n(β8

+ 3β6 + 5β4 + 5β2 + α2 + 3)]/[9(α− β)2]

= V2n+8 + 3V2n+6 + 5V2n+4 + 5V2n+2 + V2n−2 + 3V2n

9(α− β)2 .
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From the Binet formulas of sequences {Un} and {Vn}, and using Lemma 2.1,
we get

|G(∆n)G(Γn)| = [5U2n+3U1 (α− β)2 + U2n−1U1 (α− β)2

+ U2n+7U1 (α− β)2 + 2V2n + 2V2n+6]/[9 (α− β)2]
= [5U2n+3U1 (α− β)2 + U1 (α− β)2

U2n+3V4

+ 2U2n+3U3 (α− β)2]/[9 (α− β)2]

= (α− β)2
U2n+3 [5U1 + U1V4 + 2U3]

9 (α− β)2

= U2n+3 [5U1 + U1V4 + 2U3]
9 = (p2 + 3)

3
√
U2n+3.

(ii) The circumcenter O( ∆n) has the coordinates

[(αn)2(αn(α8 − 2α7 + α6 − α4 + 2α3 − α2) + βn(−α5 − α4 − α2

− β3 + β2 + 1))− (βn)2(βn(β8 − 2β7 + β6 − β4 + 2β3 − β2)
+ αn(−β5 − β4 − β2 − α3 + α2 + 1))]/(2(α− β)3(−1)n+1(α+ β))

and

[(αn)2(αn(α7 − 2α6 + α5 − α3 + 2α2 − α) + βn(α6 + α5 + α3 − α
− β2 + β))− (βn)2(βn(β7 − 2β6 + β5 − β3 + 2β2 − β) + αn(β6 + β5

+ β3 − β − α2 + α))]/(2(α− β)3(−1)n(α+ β)).

Hence, the square of the distance between circumcenterO( ∆n) and vertex
An is

|O(∆n)An|2 = ((βn)2(β4 − 2β3 + 2β2 − 2β + 1) + (αn)2(α4 − 2α3 + 2α2

− 2α+ 1))((βn)2(β6 − β4 − β2 + 1) + (αn)2(α6 − α4 − α2

+ 1))((βn)2(β6 − 2β5 + 2β4 − 2β3 + β2) + (αn)2(α6 − 2α5

+ 2α4 − 2α3 + α2))/(4(α− β)6(β − 1)2(α− 1)2).

From the Binet formulas of sequences {Un} and {Vn}, we get

|O(∆n)An|2 = [(V2n+4 − 2V2n+3 + 2V2n+2 − 2V2n+1 + V2n)
× (V2n+6 − V2n+4 − V2n+2 + V2n)
× (V2n+6 − 2V2n+5 + 2V2n+4 − 2V2n+3 + V2n+2)]

/[4 (α− β)6 (β − 1)2 (α− 1)2].

By Lemma 2.1, we get

|O(∆n)An|2 = [
((
p2 + 4

)
U2n+3 + V2n+2 − 2

(
p2 + 4

)
U2n+2 + V2n

)
× p(V2n+5 − V2n+1)((p2 + 4)U2n+5 + V2n+4

− 2(p2 + 4)U2n+4 + V2n+2)]/[4p2(p2 + 4)3]
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= [
(
p2 + 4

)
(U2n+3 − 2U2n+2 + U2n+1) p

((
p2 + 4

)
U2n+3U2

) (
p2 + 4

)
× (U2n+5 − 2U2n+4 + U2n+3)]/[4p2 (p2 + 4

)3]

= (V2n+2 − 2U2n+2)U2n+3(V2n+4 − 2U2n+4)
4

= U2n+3 (V2n+2V2n+4 − 4U4n+6 + 4U2n+2U2n+4)
4

=
U2n+3

(
2V2(2n+3) − p2U2

2n+3 + p2 − 4U2(2n+3)
)

4

=
U2n+3

(
2
((
p2 + 4

)
U2

2n+3 − 2
)
− p2U2

2n+3 + p2 − 4U2(2n+3)
)

4 ,

as claimed.

Acknowledgements.
We would like to thank to the referee for carefully reading our paper and

for giving such constructive comments which substantially helped to improve
the quality of the paper.

References
[1] B. Çelik, Maple ve Maple ile Matematik, Dora Yayın Dağıtım, Bursa, 2014.
[2] Z. Čerin, On triangles with Fibonacci and Lucas numbers as coordinates, Sarajevo J.

Math. 3 (2007), 3–7.
[3] Z. Čerin and G. M. Gianella, Triangles with coordinates of vertices from Pell and

Pell-Lucas numbers, Rend. Circ. Mat. Palermo (2) Suppl. 80 (2008), 65–73.
[4] Z. Čerin, Hyperbolas, orthology, and antipedal triangles, Glasnik Mat. Ser. III 33

(1998), 143–160.
[5] Z. Čerin, On propellers from triangles, Beitr. Algebra Geom. 42 (2001), 575–582.
[6] W. Gallatly, The modern geometry of the triangle, Second Edition, Hodgson, London,

1913.
[7] R. Honsberger, Episodes in nineteenth and twentieth century Euclidean geometry, New

Mathematical Library, The Mathematical Association of America, 1995.
[8] R. A. Johnson, Advanced Euclidean geometry, Dover Publications, 1960.
[9] E. Kılıç and P. Stănica, Factorizations and representations of second order linear

recurrences with indices in arithmetic progressions, Bol. Soc. Mat. Mex. (3) 15 (2010),
23–36.

[10] E. Kılıç, Y. Türker Ulutaş and N. Ömür, Sums of products of the terms of the gener-
alized Lucas sequence {Vkn}, Hacettepe J. Math. Stat. 4 (2011), 147–161.

[11] N. J. A. Sloane, On-Line Encyclopedia of Integer Sequences,
http://www2.research.att.com/~njas/sequences/.



ON TRIANGLES WITH COORDINATES FROM THE TERMS OF SEQUENCES 27

O trokutima s koordinatama vrhova u nizovima {Ukn} i {Vkn}

Neşe Ömür, Gökhan Soydan, Yücel Türker Ulutaş i Yusuf Doğru

Sažetak. U ovom članku su dobiveni neki rezultati o troku-
tima čije su koordinate vrhova članovi nizova {Ukn} i {Vkn}, gdje
su Ukn članovi rekurzivnog niza drugog reda, a Vkn su članovi
njemu pridruženog niza, za neparan prirodan broj k, čime su
poopćeni rezultati Z. Čerina. Primjerice, kogantens Brocardovog
kuta trokuta ∆kn je cot(Ω∆kn) = Uk(2n+3)V2k−Vk(2n+3)Uk

(−1)nU2k
.
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