ON TRIANGLES WITH COORDINATES OF VERTICES FROM THE TERMS OF THE SEQUENCES $\left\{U_{k n}\right\}$ AND $\left\{V_{k n}\right\}$

Neşe Ömür, Gökhan Soydan, Yücel Türker Ulutaş and Yusuf DoĞRU

Abstract

In this paper, we determine some results of the triangles with coordinates of vertices involving the terms of the sequences $\left\{U_{k n}\right\}$ and $\left\{V_{k n}\right\}$ where $U_{k n}$ are terms of a second order recurrent sequence and $V_{k n}$ are terms in the companion sequence for odd positive integer k, generalizing works of Čerin. For example, the cotangent of the Brocard angle of the triangle $\Delta_{k n}$ is $$
\cot \left(\Omega_{\Delta_{k n}}\right)=\frac{U_{k(2 n+3)} V_{2 k}-V_{k(2 n+3)} U_{k}}{(-1)^{n} U_{2 k}}
$$

1. Introduction

The second order sequence $\left\{W_{n}(a, b ; p, q)\right\}$, or briefly $\left\{W_{n}\right\}$ is defined for $n>0$ by

$$
W_{n+1}=p W_{n}+q W_{n-1}
$$

in which $W_{0}=a, W_{1}=b$, where a, b are arbitrary integers and p, q are nonzero integers. We denote $W_{n}(0,1 ; p, 1), W_{n}(2, p ; p, 1)$ by U_{n} and V_{n}, respectively. When $p=1, U_{n}=F_{n}$ (the nth Fibonacci number) and $V_{n}=L_{n}$ (the nth Lucas number).

If α and β are the roots of equation $x^{2}-p x-1=0$, then the Binet formulas of the sequences $\left\{U_{n}\right\}$ and $\left\{V_{n}\right\}$ have the forms

$$
U_{n}=\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta} \quad \text { and } \quad V_{n}=\alpha^{n}+\beta^{n}
$$

respectively.
In [9], the authors derived the following recurrence relations for the sequences $\left\{U_{k n}\right\}$ and $\left\{V_{k n}\right\}$ for $k \geq 0$ and $n>1$

$$
U_{k n}=V_{k} U_{k(n-1)}+(-1)^{k+1} U_{k(n-2)}
$$

[^0]and
$$
V_{k n}=V_{k} V_{k(n-1)}+(-1)^{k+1} V_{k(n-2)},
$$
where the initial conditions of the sequences $\left\{U_{k n}\right\}$ and $\left\{V_{k n}\right\}$ are $0, U_{k}$ and $2, V_{k}$, respectively.

If α^{k} and β^{k} are the roots of equation $x^{2}-V_{k} x+(-1)^{k}=0$, then the Binet formulas of the sequences $\left\{U_{k n}\right\}$ and $\left\{V_{k n}\right\}$ are given by

$$
U_{k n}=\frac{\alpha^{k n}-\beta^{k n}}{\alpha-\beta} \text { and } V_{k n}=\alpha^{k n}+\beta^{k n}
$$

respectively.
In [2], author defined triangles Δ_{k} and Γ_{k} with vertices $A_{k}=\left(F_{k}, F_{k+1}\right)$, $B_{k}=\left(F_{k+1}, F_{k+2}\right), C_{k}=\left(F_{k+2}, F_{k+3}\right)$ and $P_{k}=\left(L_{k}, L_{k+1)}\right), Q_{k}=\left(L_{k+1}\right.$, $\left.L_{k+2}\right), R_{k}=\left(L_{k+2}, L_{k+3}\right)$, respectively. He gave some interesting results of the triangles Δ_{k} and Γ_{k} and introduced geometric properties of these triangles. In [3], authors defined triangles Δ_{k} and Γ_{k} with vertices $A_{k}=\left(P_{k}, P_{k+1}\right)$, $B_{k}=\left(P_{k+1}, P_{k+2}\right), C_{k}=\left(P_{k+2}, P_{k+3}\right)$ and $X_{k}=\left(Q_{k}, Q_{k+1}\right), Y_{k}=\left(Q_{k+1}\right.$, $\left.Q_{k+2}\right), Z_{k}=\left(Q_{k+2}, Q_{k+3}\right)$, respectively, where P_{k} and Q_{k} are Pell and PellLucas numbers, respectively. The numbers Q_{k} make the integer sequence $A 002203$ from [11] while the numbers $\frac{1}{2} P_{k}$ make $A 000129$. They explored some common properties of the triangles Δ_{k} and Γ_{k}. There is a great similarity between these two papers in statements of some results in methods of their proofs. But in [3], they gave some new observations like the possibility to consider triangles with mixed coordinates of vertices and the involvement of the homology relation.
$A B C$ and $A^{\prime} B^{\prime} C^{\prime}$ are orthologic triangles if the perpendiculars at vertices of $A B C$ onto corresponding sides of $A^{\prime} B^{\prime} C^{\prime}$ are concurrent. [$\left.A B C, A^{\prime} B^{\prime} C^{\prime}\right]$ is called the orthology center. It is well known that the relation of orthology for triangles is reflexive and symmetric. Hence, perpendiculars at vertices of $A^{\prime} B^{\prime} C^{\prime}$ onto corresponding sides of $A B C$ are concurrent at the point $\left[A^{\prime} B^{\prime} C^{\prime}, A B C\right]$ (see [5] and [6]).

By replacing in the above definition perpendiculars with parallels, we get the paralogic triangles and the point of concurrence is shown by $<A B C$, $A^{\prime} B^{\prime} C^{\prime}>($ see $[5])$.

In this paper, for odd positive integer k and positive integer n, we define the triangles $\Delta_{k n}$ and $\Gamma_{k n}$ with vertices

$$
A_{k n}=\left(U_{k n}, U_{k(n+1)}\right), B_{k n}=\left(U_{k(n+1)}, U_{k(n+2)}\right), C_{k n}=\left(U_{k(n+2)}, U_{k(n+3)}\right)
$$

and

$$
A_{k n}^{\prime}=\left(V_{k n}, V_{k(n+1)}\right), B_{k n}^{\prime}=\left(V_{k(n+1)}, V_{k(n+2)}\right), C_{k n}^{\prime}=\left(V_{k(n+2)}, V_{k(n+3)}\right),
$$

respectively. We determine some results of the triangles with coordinates of vertices from the sequences $\left\{U_{k n}\right\}$ and $\left\{V_{k n}\right\}$, generalizing works of Čerin [2]. Some computations are done with MAPLE 13 [1].

2. Main Results

In this section, we will obtain some results of the triangles with coordinates of vertices involving second order recurrences $\left\{U_{k n}\right\}$ and $\left\{V_{k n}\right\}$. Firstly, we can give the following generalized Fibonacci identities in [10] used throughout the proofs of Theorems:

Lemma 2.1. For every positive integers n and m, the following equalities are satisfied:

$$
\begin{aligned}
\text { i) } V_{k(m+n)}+V_{k(m-n)} & =\left\{\begin{array}{cc}
V_{k m} V_{k n}, & \text { if } n \text { is even, }, \\
\left(V_{k}^{2}+4\right) U_{k m} U_{k n}, & \text { if } n \text { is odd, }
\end{array}\right. \\
\text { ii) } V_{k(m+n)}-V_{k(m-n)} & =\left\{\begin{array}{cc}
\left(V_{k}^{2}+4\right) U_{k m} U_{k n}, & \text { if } n \text { is even }, \\
V_{k m} V_{k n}, & \text { if } n \text { is odd, }
\end{array}\right. \\
\text { iii) } U_{k(m+n)}+U_{k(m-n)} & =\left\{\begin{array}{cc}
U_{k m} V_{k n}, & \text { if } n \text { is even, } \\
V_{k m} U_{k n}, & \text { if } n \text { is odd. } .
\end{array}\right.
\end{aligned}
$$

Theorem 2.2. For positive integers n and m, the pairs of triangles $\left(\Delta_{k m}\right.$, $\left.\Delta_{k n}\right),\left(\Delta_{k m}, \Gamma_{k n}\right)$ and $\left(\Gamma_{k m}, \Gamma_{k n}\right)$ are orthologic.

Proof. It is well-known [4] that the triangles $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$ with coordinates of points $\left(a_{1}, a_{2}\right),\left(b_{1}, b_{2}\right),\left(c_{1}, c_{2}\right)$ and $\left(a_{1}^{\prime}, a_{2}^{\prime}\right),\left(b_{1}^{\prime}, b_{2}^{\prime}\right),\left(c_{1}^{\prime}, c_{2}^{\prime}\right)$ are orthologic if and only if

$$
\left|\begin{array}{ccc}
a_{1} & b_{1} & c_{1} \tag{2.1}\\
a_{1}^{\prime} & b_{1}^{\prime} & c_{1}^{\prime} \\
1 & 1 & 1
\end{array}\right|+\left|\begin{array}{ccc}
a_{2} & b_{2} & c_{2} \\
a_{2}^{\prime} & b_{2}^{\prime} & c_{2}^{\prime} \\
1 & 1 & 1
\end{array}\right|=0
$$

Since $U_{k n}=\frac{\alpha^{k n}-\beta^{k n}}{\alpha-\beta}$ and $V_{k n}=\alpha^{k n}+\beta^{k n}$, when substitute the coordinates of the vertices of $\Delta_{k m}$ and $\Delta_{k n}$ in Equation (2.1), we have

$$
\frac{\left(\alpha^{k}+\beta^{k}\right)\left(\alpha^{k} \beta^{k}+1\right)\left(\beta^{k}-\alpha^{k}\right)(\alpha \beta)^{k m}\left(\alpha^{k(n-m)}-\beta^{k(n-m)}\right)}{(\alpha-\beta)^{2}} .
$$

Since $\alpha^{k} \neq \beta^{k},(-1)^{k}=-1$, the desired result is obtained. We obtain similar results for $\left(\Delta_{k m}, \Gamma_{k n}\right)$ and $\left(\Gamma_{k m}, \Gamma_{k n}\right)$.

Theorem 2.3. For positive integer n, the following case for the orthocenters $H\left(\Delta_{k n}\right)$ and $H\left(\Gamma_{k n}\right)$, and the orthology centers $\left[\Delta_{k n}, \Gamma_{k n}\right]$ and $\left[\Gamma_{k n}, \Delta_{k n}\right]$ of the triangles $\Delta_{k n}$ and $\Gamma_{k n}$ is valid:

$$
\frac{\left|H\left(\Delta_{k n}\right)\left[\Delta_{k n}, \Gamma_{k n}\right]\right|}{\left|H\left(\Gamma_{k n}\right)\left[\Gamma_{k n}, \Delta_{k n}\right]\right|}=\frac{U_{k}}{\sqrt{V_{k}^{2}+4}} .
$$

Proof. Using Binet formulas for sequences $\left\{U_{k n}\right\}$ and $\left\{V_{k n}\right\}, H\left(\Delta_{k n}\right)$ has the coordinates

$$
\begin{aligned}
& {\left[(-1)^{n+1}\left(\beta^{k}\right)^{12}+2(-1)^{n}\left(\beta^{k}\right)^{11}-(-1)^{n}\left(\beta^{k}\right)^{10}-2\left(\alpha^{k n}\right)^{2}\left(\beta^{k}\right)^{7}\right.} \\
& \left.\quad+2(-1)^{n}\left(\alpha^{k n}\right)^{4}\left(\beta^{k}\right)^{5}-\left(\alpha^{k n}\right)^{6}\left(\beta^{k}\right)^{2}-2\left(\alpha^{k n}\right)^{6}\left(\beta^{k}\right)-\left(\alpha^{k n}\right)^{6}\right] \\
& /\left[\left(\beta^{k}\right)^{5}\left(1+\left(\beta^{k}\right)^{2}\right)(-1)^{n}(\alpha-\beta)\left(\alpha^{k n}\right)^{3}\right]
\end{aligned}
$$

and

$$
\begin{aligned}
& {\left[(-1)^{n}\left(\beta^{k}\right)^{10}-2(-1)^{n}\left(\beta^{k}\right)^{9}+(-1)^{n}\left(\beta^{k}\right)^{8}-2\left(\alpha^{k n}\right)^{2}\left(\beta^{k}\right)^{7}\right.} \\
& \left.\quad-2(-1)^{n}\left(\alpha^{k n}\right)^{4}\left(\beta^{k}\right)^{3}-\left(\alpha^{k n}\right)^{6}\left(\beta^{k}\right)^{2}-2\left(\alpha^{k n}\right)^{6}\left(\beta^{k}\right)-\left(\alpha^{k n}\right)^{6}\right] \\
& /\left[\left(\beta^{k}\right)^{4}\left(1+\left(\beta^{k}\right)^{2}\right)(-1)^{n}(\alpha-\beta)\left(\alpha^{k n}\right)^{3}\right]
\end{aligned}
$$

Similarly, the orthocenter $H\left(\Gamma_{k n}\right)$ has coordinates

$$
\begin{aligned}
& {\left[(-1)^{n+1}\left(\beta^{k}\right)^{12}+2(-1)^{n}\left(\beta^{k}\right)^{11}-(-1)^{n}\left(\beta^{k}\right)^{10}+2\left(\alpha^{k n}\right)^{2}\left(\beta^{k}\right)^{7}\right.} \\
& \left.\quad+2(-1)^{n}\left(\alpha^{k n}\right)^{4}\left(\beta^{k}\right)^{5}+\left(\alpha^{k n}\right)^{6}\left(\beta^{k}\right)^{2}+2\left(\alpha^{k n}\right)^{6}\left(\beta^{k}\right)+\left(\alpha^{k n}\right)^{6}\right] \\
& /\left[\left(\beta^{k}\right)^{5}\left(1+\left(\beta^{k}\right)^{2}\right)(-1)^{n}\left(\alpha^{k n}\right)^{3}\right]
\end{aligned}
$$

and

$$
\begin{aligned}
& {\left[(-1)^{n}\left(\beta^{k}\right)^{10}-2(-1)^{n}\left(\beta^{k}\right)^{9}+(-1)^{n}\left(\beta^{k}\right)^{8}+2\left(\alpha^{k n}\right)^{2}\left(\beta^{k}\right)^{7}\right.} \\
& \left.\quad-2(-1)^{n}\left(\alpha^{k n}\right)^{4}\left(\beta^{k}\right)^{3}+\left(\alpha^{k n}\right)^{6}\left(\beta^{k}\right)^{2}+2\left(\alpha^{k n}\right)^{6}\left(\beta^{k}\right)+\left(\alpha^{k n}\right)^{6}\right] \\
& /\left[\left(\beta^{k}\right)^{4}\left(1+\left(\beta^{k}\right)^{2}\right)(-1)^{n}\left(\alpha^{k n}\right)^{3}\right]
\end{aligned}
$$

The orthology center $\left[\Delta_{k n}, \Gamma_{k n}\right]$ has the coordinates

$$
\begin{aligned}
& {\left[(-1)^{n}\left(\beta^{k}\right)^{12}-2(-1)^{n}\left(\beta^{k}\right)^{11}+(-1)^{n}\left(\beta^{k}\right)^{10}-2\left(\alpha^{k n}\right)^{2}\left(\beta^{k}\right)^{7}\right.} \\
& \left.\quad+2(-1)^{n}\left(\alpha^{k n}\right)^{4}\left(\beta^{k}\right)^{5}+\left(\alpha^{k n}\right)^{6}\left(\beta^{k}\right)^{2}+2\left(\alpha^{k n}\right)^{6}\left(\beta^{k}\right)+\left(\alpha^{k n}\right)^{6}\right] \\
& /\left[\left(\beta^{k}\right)^{5}\left(1+\left(\beta^{k}\right)^{2}\right)(-1)^{n}(\alpha-\beta)\left(\alpha^{k n}\right)^{3}\right]
\end{aligned}
$$

and

$$
\begin{aligned}
& {\left[(-1)^{n+1}\left(\beta^{k}\right)^{10}+2(-1)^{n}\left(\beta^{k}\right)^{9}-(-1)^{n}\left(\beta^{k}\right)^{8}-2\left(\alpha^{k n}\right)^{2}\left(\beta^{k}\right)^{7}\right.} \\
& \left.\quad-2(-1)^{n}\left(\alpha^{k n}\right)^{4}\left(\beta^{k}\right)^{3}+\left(\alpha^{k n}\right)^{6}\left(\beta^{k}\right)^{2}+2\left(\alpha^{k n}\right)^{6}\left(\beta^{k}\right)+\left(\alpha^{k n}\right)^{6}\right] \\
& /\left[\left(\beta^{k}\right)^{4}\left(1+\left(\beta^{k}\right)^{2}\right)(-1)^{n}(\alpha-\beta)\left(\alpha^{k n}\right)^{3}\right] .
\end{aligned}
$$

Finally, the orthology center $\left[\Gamma_{k n}, \Delta_{k n}\right]$ has coordinates

$$
\begin{aligned}
& {\left[(-1)^{n}\left(\beta^{k}\right)^{12}-2(-1)^{n}\left(\beta^{k}\right)^{11}+(-1)^{n}\left(\beta^{k}\right)^{10}+2\left(\alpha^{k n}\right)^{2}\left(\beta^{k}\right)^{7}\right.} \\
& \left.\quad+2(-1)^{n}\left(\alpha^{k n}\right)^{4}\left(\beta^{k}\right)^{5}-\left(\alpha^{k n}\right)^{6}\left(\beta^{k}\right)^{2}-2\left(\alpha^{k n}\right)^{6}\left(\beta^{k}\right)-\left(\alpha^{k n}\right)^{6}\right] \\
& /\left[\left(\beta^{k}\right)^{5}\left(1+\left(\beta^{k}\right)^{2}\right)(-1)^{n}\left(\alpha^{k n}\right)^{3}\right]
\end{aligned}
$$

and

$$
\begin{aligned}
& {\left[(-1)^{n+1}\left(\beta^{k}\right)^{10}+2(-1)^{n}\left(\beta^{k}\right)^{9}-(-1)^{n}\left(\beta^{k}\right)^{8}+2\left(\alpha^{k n}\right)^{2}\left(\beta^{k}\right)^{7}\right.} \\
& \left.\quad-2(-1)^{n}\left(\alpha^{k n}\right)^{4}\left(\beta^{k}\right)^{3}-\left(\alpha^{k n}\right)^{6}\left(\beta^{k}\right)^{2}-2\left(\alpha^{k n}\right)^{6}\left(\beta^{k}\right)-\left(\alpha^{k n}\right)^{6}\right] \\
& /\left[\left(\beta^{k}\right)^{4}\left(1+\left(\beta^{k}\right)^{2}\right)(-1)^{n}\left(\alpha^{k n}\right)^{3}\right]
\end{aligned}
$$

The square of the distance between the points $H\left(\Delta_{k n}\right)$ and $\left[\Delta_{k n}, \Gamma_{k n}\right]$ is

$$
\begin{aligned}
\left|H\left(\Delta_{k n}\right)\left[\Delta_{k n}, \Gamma_{k n}\right]\right|^{2}=4[& \left(\beta^{k}\right)^{22}-4\left(\beta^{k}\right)^{21}+6\left(\beta^{k}\right)^{20}-4\left(\beta^{k}\right)^{19} \\
& +\left(\beta^{k}\right)^{18}+\left(\alpha^{k n}\right)^{12}\left(\beta^{k}\right)^{4}+4\left(\alpha^{k n}\right)^{12}\left(\beta^{k}\right)^{3} \\
& \left.+6\left(\alpha^{k n}\right)^{12}\left(\beta^{k}\right)^{2}+4\left(\alpha^{k n}\right)^{12}\left(\beta^{k}\right)+\left(\alpha^{k n}\right)^{12}\right] \\
2) & /\left[\left(\alpha^{k n}\right)^{6}\left(1+\left(\beta^{k}\right)^{2}\right)\left(\beta^{k}\right)^{10}\right]
\end{aligned}
$$

and the square of the distance between the points $H\left(\Gamma_{k n}\right)$ and $\left[\Gamma_{k n}, \Delta_{k n}\right]$ is

$$
\begin{array}{rl}
\left|H\left(\Gamma_{k n}\right)\left[\Gamma_{k n}, \Delta_{k n},\right]\right|^{2}=4 & 4\left[\left(\beta^{k}\right)^{22}-4\left(\beta^{k}\right)^{21}+6\left(\beta^{k}\right)^{20}-4\left(\beta^{k}\right)^{19}\right. \\
& +\left(\beta^{k}\right)^{18}+\left(\alpha^{k n}\right)^{12}\left(\beta^{k}\right)^{4}+4\left(\alpha^{k n}\right)^{12}\left(\beta^{k}\right)^{3} \\
& \left.+6\left(\alpha^{k n}\right)^{12}\left(\beta^{k}\right)^{2}+4\left(\alpha^{k n}\right)^{12}\left(\beta^{k}\right)+\left(\alpha^{k n}\right)^{12}\right] \\
3) \quad & /\left[\left(\alpha^{k n}\right)^{6}\left(1+\left(\beta^{k}\right)^{2}\right)\left(\beta^{k}\right)^{10}(\alpha-\beta)^{2}\right] .
\end{array}
$$

Since (2.2) is exactly $1 /(\alpha-\beta)^{2}$ multiple of (2.3), the proof is obtained.

Theorem 2.4. For positive integer n, the oriented areas $\left|\Delta_{k n}\right|$ and $\left|\Gamma_{k n}\right|$ of the triangles $\Delta_{k n}$ and $\Gamma_{k n}$ are given as follows :

$$
\left|\Delta_{k n}\right|=\frac{(-1)^{n} U_{k}^{2} V_{k}}{2} \text { and }\left|\Gamma_{k n}\right|=\frac{(-1)^{n+1}\left(V_{k}^{2}+4\right) V_{k}}{2} .
$$

Proof. Since the oriented area of the triangle with vertices whose coordinates are $\left(a_{1}, a_{2}\right),\left(b_{1}, b_{2}\right)$ and $\left(c_{1}, c_{2}\right)$ is equal to

$$
\frac{\left(c_{1}-b_{1}\right) a_{2}+\left(a_{1}-c_{1}\right) b_{2}+\left(b_{1}-a_{1}\right) c_{2}}{2}
$$

we get

$$
\left|\Delta_{k n}\right|=-\frac{\alpha^{k n} \beta^{k n}\left(\alpha^{k}-1\right)\left(\beta^{k}-1\right)\left(\alpha^{k}-\beta^{k}\right)^{2}}{2(\alpha-\beta)^{2}}
$$

Using $(\alpha \beta)^{k n}=(-1)^{n}$, we get desired equality. Similarly, we obtain the oriented area formula for $\Gamma_{k n}$.

Theorem 2.5. For every positive integer n, the triangles $\Delta_{k n}$ and $\Gamma_{k n}$ are reversely similar and the sides of $\Gamma_{k n}$ are $\frac{\sqrt{V_{k}^{2}+4}}{U_{k}}$ times longer than the corresponding sides of $\Delta_{k n}$.

Proof. Recall that two triangles are reversely similar if and only if they are orthologic and paralogic (see [5]). By Theorem 2.2, we know that the triangles $\Delta_{k n}$ and $\Gamma_{k n}$ are orthologic, it remains to see that they are paralogic. It is well known that the triangles $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$ with coordinates of
points $\left(a_{1}, a_{2}\right),\left(b_{1}, b_{2}\right),\left(c_{1}, c_{2}\right)$ and $\left(a_{1}^{\prime}, a_{2}^{\prime}\right),\left(b_{1}^{\prime}, b_{2}^{\prime}\right)$ and $\left(c_{1}^{\prime}, c_{2}^{\prime}\right)$, respectively are paralogic if and only if the expression $X-Y$ is equal to zero, where

$$
X=\left|\begin{array}{ccc}
a_{1} & b_{1} & c_{1} \\
a_{2}^{\prime} & b_{2}^{\prime} & c_{2}^{\prime} \\
1 & 1 & 1
\end{array}\right|, \quad Y=\left|\begin{array}{ccc}
a_{2} & b_{2} & c_{2} \\
a_{1}^{\prime} & b_{1}^{\prime} & c_{1}^{\prime} \\
1 & 1 & 1
\end{array}\right| .
$$

Using coordinates of vertices of triangles $\Delta_{k n}$ and $\Gamma_{k n}$, we get that $X-$ $Y=0$. Therefore these triangles are paralogic. In similar way, one can clearly show that $\left|A_{k n}^{\prime} B_{k n}^{\prime}\right|^{2}=(\alpha-\beta)^{2}\left|A_{k n} B_{k n}\right|^{2}$. Thus, the proof is completed.

Theorem 2.6. For every positive integer n, the centers $\left[\Delta_{k n}, \Gamma_{k n}\right]$ and $<\Delta_{k n}, \Gamma_{k n}>$ are antipodal points on the circumcircle of $\Delta_{k n}$. The centers $\left[\Gamma_{k n}, \Delta_{k n}\right]$ and $<\Gamma_{k n}, \Delta_{k n}>$ are antipodal points on the circumcircle of $\Gamma_{k n}$.

Proof. We shall prove that the orthology center $\left[\Delta_{k n}, \Gamma_{k n}\right]$ lies on the circumcircle of $\Delta_{k n}$. We show that it has the same distance from its circumcenter $O\left(\Delta_{k n}\right)$ as the vertex $A_{k n}$ and that the reflection of the point $<\Delta_{k n}, \Gamma_{k n}>$ in the circumcenter $O\left(\Delta_{k n}\right)$ agrees with the point $\left[\Delta_{k n}, \Gamma_{k n}\right.$].

The circumcenter $O\left(\Delta_{k n}\right)$ has coordinates

$$
\begin{aligned}
& {\left[(-1)^{n}\left(\beta^{k}\right)^{12}-2(-1)^{n}\left(\beta^{k}\right)^{11}+(-1)^{n}\left(\beta^{k}\right)^{10}-\left(\alpha^{k n}\right)^{2}\left(\beta^{k}\right)^{9}\right.} \\
& \quad-\left(\alpha^{k n}\right)^{2}\left(\beta^{k}\right)^{8}+(-1)^{n}\left(\beta^{k}\right)^{7}\left(\alpha^{k n}\right)^{4}-\left(\alpha^{k n}\right)^{2}\left(\beta^{k}\right)^{6} \\
& \quad-(-1)^{n}\left(\alpha^{k n}\right)^{4}\left(\beta^{k}\right)^{6}-\left(\alpha^{k n}\right)^{2}\left(\beta^{k}\right)^{5}-(-1)^{n}\left(\alpha^{k n}\right)^{4}\left(\beta^{k}\right)^{4} \\
& \left.\quad+(-1)^{n}\left(\alpha^{k n}\right)^{4}\left(\beta^{k}\right)^{3}+\left(\alpha^{k n}\right)^{6}\left(\beta^{k}\right)^{2}+2\left(\alpha^{k n}\right)^{6}\left(\beta^{k}\right)+\left(\alpha^{k n}\right)^{6}\right] \\
& /\left[2(-1)^{n}\left(\beta^{k}\right)^{5}\left(\alpha^{k n}\right)^{3}\left(\left(\beta^{k}\right)^{2}+1\right)(\alpha-\beta)\right]
\end{aligned}
$$

and

$$
\begin{aligned}
& {\left[-(-1)^{n}\left(\beta^{k}\right)^{10}-\left(\alpha^{k n}\right)^{2}\left(\beta^{k}\right)^{9}+2(-1)^{n}\left(\beta^{k}\right)^{9}-(-1)^{n}\left(\beta^{k}\right)^{8}\right.} \\
& \quad-\left(\alpha^{k n}\right)^{2}\left(\beta^{k}\right)^{8}-\left(\beta^{k}\right)^{6}\left(\alpha^{k n}\right)^{2}-(-1)^{n}\left(\alpha^{k n}\right)^{4}\left(\beta^{k}\right)^{5} \\
& \quad-\left(\alpha^{k n}\right)^{2}\left(\beta^{k}\right)^{5}+(-1)^{n}\left(\alpha^{k n}\right)^{4}\left(\beta^{k}\right)^{4}+(-1)^{n}\left(\alpha^{k n}\right)^{4}\left(\beta^{k}\right)^{2} \\
& \left.\quad+\left(\alpha^{k n}\right)^{6}\left(\beta^{k}\right)^{2}+2\left(\alpha^{k n}\right)^{6}\left(\beta^{k}\right)-(-1)^{n}\left(\alpha^{k n}\right)^{4}\left(\beta^{k}\right)+\left(\alpha^{k n}\right)^{6}\right] \\
& /\left[2(-1)^{n}\left(\beta^{k}\right)^{4}\left(\alpha^{k n}\right)^{3}\left(\left(\beta^{k}\right)^{2}+1\right)(\alpha-\beta)\right]
\end{aligned}
$$

We give the coordinates of the center $\left[\Delta_{k n}, \Gamma_{k n}\right]$ in the proof of Theorem 2.3. The coordinates of the center $<\Delta_{k n}, \Gamma_{k n}>$ are

$$
\begin{aligned}
& -\left[-\left(\alpha^{k n}\right)^{2}+\left(\alpha^{k n}\right)^{2}\left(\beta^{k}\right)+2\left(\alpha^{k n}\right)^{2}\left(\beta^{k}\right)^{2}+(-1)^{n}\left(\beta^{k}\right)^{3}-2(-1)^{n}\left(\beta^{k}\right)^{4}\right. \\
& \left.\quad+\left(\alpha^{k n}\right)^{2}\left(\beta^{k}\right)^{3}+(-1)^{n}\left(\beta^{k}\right)^{2}+(-1)^{n}\left(\beta^{k}\right)^{5}-\left(\alpha^{k n}\right)^{2}\left(\beta^{k}\right)^{4}+(-1)^{n}\left(\beta^{k}\right)^{6}\right] \\
& /\left[\left(\beta^{k}\right)^{2}\left(\alpha^{k n}\right)\left(\left(\beta^{k}\right)^{2}+1\right)(\alpha-\beta)\right]
\end{aligned}
$$

and

$$
\begin{aligned}
& -\left[(-1)^{n}\left(\beta^{k}\right)^{8}+(-1)^{n}\left(\beta^{k}\right)^{7}-2(-1)^{n}\left(\beta^{k}\right)^{6}+(-1)^{n}\left(\beta^{k}\right)^{5}+(-1)^{n}\left(\beta^{k}\right)^{4}\right. \\
& \left.\quad-2\left(\alpha^{k n}\right)^{2}\left(\beta^{k}\right)^{2}+\left(\alpha^{k n}\right)^{2}\left(\beta^{k}\right)^{4}-\left(\alpha^{k n}\right)^{2}\left(\beta^{k}\right)^{3}-\left(\alpha^{k n}\right)^{2}\left(\beta^{k}\right)+\left(\alpha^{k n}\right)^{2}\right] \\
& /\left[\left(\beta^{k}\right)^{3}\left(\alpha^{k n}\right)\left(\left(\beta^{k}\right)^{2}+1\right)(\alpha-\beta)\right] .
\end{aligned}
$$

Now, we have

$$
\left|\left[\Delta_{k n}, \Gamma_{k n}\right] O\left(\Delta_{k n}\right)\right|^{2}-\left|O\left(\Delta_{k n}\right) A_{k n}\right|^{2}=0
$$

On the other hand, if R denotes the reflection of the point $<\Delta_{k n}, \Gamma_{k n}>$ in the circumcenter $O\left(\Delta_{k n}\right)$ (i.e. R divides the segment $<\Delta_{k n}, \Gamma_{k n}>O\left(\Delta_{k n}\right)$ in ratio -2), then $\left|W\left[\Delta_{k n}, \Gamma_{k n}\right]\right|^{2}=0$. The second claim has a similar proof.

Define the first Brocard point as the interior point Ω of a triangle $A B C$ for which the angles $\angle \Omega A B, \angle \Omega B C, \angle \Omega C A$ are equal to an angle ω. Similarly, define the second Brocard point as the interior point Ω^{\prime} for which the angles $\angle \Omega^{\prime} A C, \angle \Omega^{\prime} C B, \angle \Omega^{\prime} B A$ are equal to an angle ω^{\prime}. Thus, $\omega=\omega^{\prime}$, and this angle is called the Brocard angle [8].

TheOrem 2.7. The cotangent of the Brocard angle of the triangle $\Delta_{k n}$ is equal to

$$
\cot \left(\Omega_{\Delta_{k n}}\right)=\frac{U_{k(2 n+3)} V_{2 k}-V_{k(2 n+3)} U_{k}}{(-1)^{n} U_{2 k}}
$$

Proof. Since the cotangent of the Brocard angle of the triangle with vertices $A\left(a_{1}, a_{2}\right), B\left(b_{1}, b_{2}\right)$ and $C\left(c_{1}, c_{2}\right)$ is equal to

$$
\frac{\left(a_{1}-b_{1}\right)^{2}+\left(a_{1}-c_{1}\right)^{2}+\left(b_{1}-c_{1}\right)^{2}+\left(a_{2}-b_{2}\right)^{2}+\left(a_{2}-c_{2}\right)^{2}+\left(b_{2}-c_{2}\right)^{2}}{2\left|\begin{array}{ccc}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2} \\
1 & 1 & 1
\end{array}\right|}
$$

we get

$$
\begin{aligned}
\cot \left(\Omega_{\Delta_{k n}}\right) & =\left[\alpha^{2 k n}\left(1-\alpha^{k}+\alpha^{2 k}-2 \alpha^{3 k}+\alpha^{4 k}-\alpha^{5 k}+\alpha^{6 k}\right)+\beta^{2 k n}\left(1-\beta^{k}\right.\right. \\
& \left.\left.+\beta^{2 k}-2 \beta^{3 k}+\beta^{4 k}-\beta^{5 k}+\beta^{6 k}\right)\right] /\left[(-1)^{n}\left(\alpha^{k}-\beta^{k}\right)^{2}\left(\alpha^{k}+\beta^{k}\right)\right]
\end{aligned}
$$

Using Binet formulas of sequences $\left\{U_{k n}\right\}$ and $\left\{V_{k n}\right\}$ and Lemma 2.1 (i) and (ii), we have

$$
\begin{aligned}
\cot \left(\Omega_{\Delta_{k n}}\right)= & \left(V_{2 k n}-V_{k(2 n+1)}+V_{k(2 n+2)}-2 V_{k(2 n+3)}+V_{k(2 n+4)}\right. \\
& -V_{k(2 n+5)}+V_{k(2 n+6)} /\left[(-1)^{n} V_{k}\left(V_{k}^{2}+4\right)\right] \\
= & \frac{\frac{\left(V_{k}^{2}+4\right)}{U_{k}}\left(U_{k(2 n+1)}-U_{k(2 n+2)}+U_{k(2 n+5)}-U_{k(2 n+4)}\right)}{(-1)^{n} V_{k}\left(V_{k}^{2}+4\right)} \\
= & \frac{\frac{\left(V_{k}^{2}+4\right)}{U_{k}}\left(U_{k(2 n+3)} V_{2 k}-V_{k(2 n+3)} U_{k}\right)}{(-1)^{n} V_{k}\left(V_{k}^{2}+4\right)} \\
= & \frac{U_{k(2 n+3)} V_{2 k}-V_{k(2 n+3)} U_{k}}{(-1)^{n} U_{2 k}} .
\end{aligned}
$$

Thus the proof is complete.
For odd positive integer k and every positive integers n, let $\Phi_{k n}$ and $\Psi_{k n}$ be the triangles with vertices

$$
D_{k n}=\left(-U_{k n}, V_{k n}\right), E_{k n}=\left(-U_{k(n+2)}, V_{k(n+2)}\right), F_{k n}=\left(-U_{k(n+4)}, V_{k(n+4)}\right)
$$

and

$$
D_{k n}^{\prime}=\left(U_{k(n+2)}, V_{k(n+2)}\right), E_{k n}^{\prime}=\left(U_{k(n+4)}, V_{k(n+4)}\right), F_{k n}^{\prime}=\left(U_{k(n+6)}, V_{k(n+6)}\right)
$$

respectively. Recall that triangles $A B C$ and $X Y Z$ are homologic provided lines $A X, B Y$ and $C Z$ are concurrent. The point P in which they concur is called their homology center and the line l containing intersection points $B C \cap Y Z, C A \cap Z X$ and $A B \cap X Y$ is called their homology axis.

Theorem 2.8. For every positive integer n, the lines $D_{k n} D_{k n}^{\prime}, E_{k n} E_{k n}^{\prime}$ and $F_{k n} F_{k n}^{\prime}$ are parallel to the line $y=\frac{V_{k}^{2}+4}{U_{2 k}} x$ so that the triangles $\Phi_{k n}$ and $\Psi_{k n}$ are homologic. Their homology center is the point at infinity and their homology axis is the line $y=\frac{V_{k}^{2}+4}{U_{2 k}} x$. They are paralogic but not orthologic. The oriented areas of the triangles $\Phi_{k n}$ and $\Psi_{k n}$ are $2(-1)^{n}\left(2-V_{2 k}\right) U_{2 k}$ and $2(-1)^{n+1}\left(2-V_{2 k}\right) U_{2 k}$, respectively.

Proof. The lines $D_{k n} D_{k n}^{\prime}, E_{k n} E_{k n}^{\prime}$ and $F_{k n} F_{k n}^{\prime}$ have equations

$$
\begin{aligned}
& V_{k} x-U_{k} y+2 U_{k(n+1)}=0 \\
& V_{k} x-U_{k} y+2 U_{k(n+3)}=0
\end{aligned}
$$

and

$$
V_{k} x-U_{k} y+2 U_{k(n+5)}=0
$$

It is clearly seen that they are parallel to the line $y=\frac{V_{k}^{2}+4}{U_{2 k}} x$.

Intersection points are

$$
\begin{aligned}
D_{k n} E_{k n} \cap D_{k n}^{\prime} E_{k n}^{\prime} & =\left(\frac{(-1)^{k n} U_{2 k}}{V_{k(n+2)}}, \frac{(-1)^{k n}\left(V_{k}^{2}+4\right)}{V_{k(n+2)}}\right) \\
E_{k n} F_{k n} \cap E_{k n}^{\prime} F_{k n}^{\prime} & =\left(\frac{(-1)^{k n} U_{2 k}}{V_{k(n+4)}}, \frac{(-1)^{k n}\left(V_{k}^{2}+4\right)}{V_{k(n+4)}}\right)
\end{aligned}
$$

and

$$
F_{k n} D_{k n} \cap F_{k n}^{\prime} D_{k n}^{\prime}=\left(-\frac{v_{k} d}{2\left(V_{k}^{2}+4\right) U_{k(n+3)}},-\frac{d}{2 U_{k} U_{k(n+3)}}\right)
$$

where $d=2(-1)^{n+1} \frac{2 V_{2 k}+V_{4 k}+2}{V_{k}^{2}+4} U_{k}^{2}$. We conclude that the homology axis of the triangles $\Phi_{k n}$ and $\Psi_{k n}$ is the line $y=\frac{V_{k}^{2}+4}{U_{2 k}} x$. From simple calculations, it is seen that the triangles $\Phi_{k n}$ and $\Psi_{k n}$ are paralogic but not orthologic. Also the oriented areas of the triangles $\Phi_{k n}$ and $\Psi_{k n}$ are easily obtained from the area formula.

For odd positive integer k and every positive integer n, let $\Theta_{k n}$ and $\Lambda_{k n}$ be the triangles with vertices

$$
R_{k n}=\left(U_{k n}, U_{k(n+4)}\right), S_{k n}=\left(U_{k(n+2)}, U_{k(n+6)}\right), T_{k n}=\left(U_{k(n+4)}, U_{k(n+8)}\right)
$$

and

$$
\begin{gathered}
R_{k n}^{\prime}=\left(U_{k} V_{k(n+1)}, U_{k} V_{k(n+3)}\right), S_{k n}^{\prime}=\left(U_{k} V_{k(n+3)}, U_{k} V_{k(n+5)}\right), \\
T_{k n}^{\prime}=\left(U_{k} V_{k(n+5)}, U_{k} V_{k(n+7)}\right),
\end{gathered}
$$

respectively.
Theorem 2.9. For every positive integer n, the lines $R_{k n} R_{k n}^{\prime}, S_{k n} S_{k n}^{\prime}$ and $T_{k n} T_{k n}^{\prime}$ are parallel to the line $y=-x$ so that the triangles $\Theta_{k n}$ and $\Lambda_{k n}$ are homologic. Their homology center is the point at infinity and their homology axis is the line $y=-x$. They are orthologic but not paralogic. The oriented areas of the triangles $\Theta_{k n}$ and $\Lambda_{k n}$ are $(-1)^{n+1}\left(2-V_{2 k}\right) U_{4 k} U_{2 k}$ and $(-1)^{n+1}\left(4-V_{2 k}^{2}\right) U_{2 k}$, respectively.

Proof. The lines $R_{k n} R_{k n}^{\prime}, S_{k n} S_{k n}^{\prime}$ and $T_{k n} T_{k n}^{\prime}$ have equations
$x-y+U_{2 k} V_{k(n+2)}=0, x-y+U_{2 k} V_{k(n+4)}=0$ and $x-y+U_{2 k} V_{k(n+6)}=0$.
It is clearly seen that they are parallel to line $y=-x$.
Since the intersection points are

$$
\begin{aligned}
R_{k n} S_{k n} \cap R_{k n}^{\prime} S_{k n}^{\prime} & =\left(\frac{(-1)^{n+1} U_{2 k} U_{k}}{U_{k(n+3)}}, \frac{\left.(-1)^{n} V_{k} U_{k}^{2}\right)}{U_{k(n+3)}}\right) \\
S_{k n} T_{k n} \cap S_{k n}^{\prime} T_{k n}^{\prime} & =\left(\frac{(-1)^{n+1} U_{2 k} U_{k}}{U_{k(n+5)}}, \frac{(-1)^{n} V_{k} U_{k}^{2}}{U_{k(n+5)}}\right)
\end{aligned}
$$

and

$$
T_{k n} R_{k n} \cap T_{k n}^{\prime} R_{k n}^{\prime}=\left(\frac{(-1)^{n+1} U_{2 k} V_{2 k}}{V_{k(n+4)}}, \frac{(-1)^{n} U_{2 k} V_{2 k}}{V_{k(n+4)}}\right),
$$

we conclude that the homology axis of the triangles $\Theta_{k n}$ and $\Lambda_{k n}$ is the line $y=-x$. From simple calculations, it is seen that the triangles $\Theta_{k n}$ and $\Lambda_{k n}$ are orthologic but not paralogic. Also the oriented areas of the triangles $\Theta_{k n}$ and $\Lambda_{k n}$ are easily obtained from the area formula.

Theorem 2.10. For every positive integer n, we have
(i) The distance between the centroids $G\left(\Delta_{n}\right)$ and $G\left(\Gamma_{n}\right)$ of the triangles Δ_{n} and Γ_{n} is equal to

$$
\frac{\left(p^{2}+3\right)}{3} \sqrt{U_{2 n+3}}
$$

(ii) The square of the diameter of the circumcircle of the triangle Δ_{m} is equal to

$$
\frac{U_{2 n+3}\left(\left(p^{2}+8\right) U_{2 n+3}^{2}-4+p^{2}-4 U_{2(2 n+3)}\right)}{4}
$$

Proof. (i) Using Binet formulas of sequences $\left\{U_{n}\right\}$ and $\left\{V_{n}\right\}$, we have

$$
\begin{aligned}
G\left(\Delta_{n}\right)= & \left(\frac{U_{n}+U_{n+1}+U_{n+2}}{3}, \frac{U_{n+1}+U_{n+2}+U_{n+3}}{3}\right) \\
= & \left(\frac{\beta^{n}-\alpha^{n}-\alpha^{n+1}+\beta^{n+1}-\alpha^{n+2}+\beta^{n+2}}{3(\beta-\alpha)}\right. \\
& \left.\frac{\beta^{n+1}-\alpha^{n+1}-\alpha^{n+3}+\beta^{n+3}-\alpha^{n+2}+\beta^{n+2}}{3(\beta-\alpha)}\right) .
\end{aligned}
$$

and

$$
\begin{aligned}
G\left(\Gamma_{n}\right)= & \left(\frac{V_{n}+V_{n+1}+V_{n+2}}{3}, \frac{V_{n+1}+V_{n+2}+V_{n+3}}{3}\right) \\
= & \left(\frac{\beta^{n}+\alpha^{n}+\alpha^{n+1}+\beta^{n+1}+\alpha^{n+2}+\beta^{n+2}}{3},\right. \\
& \left.\frac{\beta^{n+1}+\alpha^{n+1}+\alpha^{n+3}+\beta^{n+3}+\alpha^{n+2}+\beta^{n+2}}{3}\right) .
\end{aligned}
$$

From the distance formula between two points, we get

$$
\begin{aligned}
\left|G\left(\Delta_{n}\right) G\left(\Gamma_{n}\right)\right|= & {\left[\begin{array}{l}
\alpha^{2 n}\left(\alpha^{8}+3 \alpha^{6}+5 \alpha^{4}+5 \alpha^{2}+\beta^{2}+3\right)+\beta^{2 n}\left(\beta^{8}\right. \\
\\
\\
\left.\left.+3 \beta^{6}+5 \beta^{4}+5 \beta^{2}+\alpha^{2}+3\right)\right] /\left[9(\alpha-\beta)^{2}\right]
\end{array}\right.} \\
= & \frac{V_{2 n+8}+3 V_{2 n+6}+5 V_{2 n+4}+5 V_{2 n+2}+V_{2 n-2}+3 V_{2 n}}{9(\alpha-\beta)^{2}}
\end{aligned}
$$

From the Binet formulas of sequences $\left\{U_{n}\right\}$ and $\left\{V_{n}\right\}$, and using Lemma 2.1, we get

$$
\begin{aligned}
\left|G\left(\Delta_{n}\right) G\left(\Gamma_{n}\right)\right|= & {\left[5 U_{2 n+3} U_{1}(\alpha-\beta)^{2}+U_{2 n-1} U_{1}(\alpha-\beta)^{2}\right.} \\
& \left.\quad+U_{2 n+7} U_{1}(\alpha-\beta)^{2}+2 V_{2 n}+2 V_{2 n+6}\right] /\left[9(\alpha-\beta)^{2}\right] \\
= & {\left[5 U_{2 n+3} U_{1}(\alpha-\beta)^{2}+U_{1}(\alpha-\beta)^{2} U_{2 n+3} V_{4}\right.} \\
& \left.+2 U_{2 n+3} U_{3}(\alpha-\beta)^{2}\right] /\left[9(\alpha-\beta)^{2}\right] \\
= & \frac{(\alpha-\beta)^{2} U_{2 n+3}\left[5 U_{1}+U_{1} V_{4}+2 U_{3}\right]}{9(\alpha-\beta)^{2}} \\
= & \frac{U_{2 n+3}\left[5 U_{1}+U_{1} V_{4}+2 U_{3}\right]}{9}=\frac{\left(p^{2}+3\right)}{3} \sqrt{U_{2 n+3}}
\end{aligned}
$$

(ii) The circumcenter $O\left(\Delta_{n}\right)$ has the coordinates

$$
\begin{aligned}
& {\left[(\alpha ^ { n }) ^ { 2 } \left(\alpha^{n}\left(\alpha^{8}-2 \alpha^{7}+\alpha^{6}-\alpha^{4}+2 \alpha^{3}-\alpha^{2}\right)+\beta^{n}\left(-\alpha^{5}-\alpha^{4}-\alpha^{2}\right.\right.\right.} \\
& \left.\left.\quad-\beta^{3}+\beta^{2}+1\right)\right)-\left(\beta^{n}\right)^{2}\left(\beta^{n}\left(\beta^{8}-2 \beta^{7}+\beta^{6}-\beta^{4}+2 \beta^{3}-\beta^{2}\right)\right. \\
& \left.\left.\quad+\alpha^{n}\left(-\beta^{5}-\beta^{4}-\beta^{2}-\alpha^{3}+\alpha^{2}+1\right)\right)\right] /\left(2(\alpha-\beta)^{3}(-1)^{n+1}(\alpha+\beta)\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& {\left[(\alpha ^ { n }) ^ { 2 } \left(\alpha^{n}\left(\alpha^{7}-2 \alpha^{6}+\alpha^{5}-\alpha^{3}+2 \alpha^{2}-\alpha\right)+\beta^{n}\left(\alpha^{6}+\alpha^{5}+\alpha^{3}-\alpha\right.\right.\right.} \\
& \left.\left.\quad-\beta^{2}+\beta\right)\right)-\left(\beta^{n}\right)^{2}\left(\beta^{n}\left(\beta^{7}-2 \beta^{6}+\beta^{5}-\beta^{3}+2 \beta^{2}-\beta\right)+\alpha^{n}\left(\beta^{6}+\beta^{5}\right.\right. \\
& \left.\left.\left.\quad+\beta^{3}-\beta-\alpha^{2}+\alpha\right)\right)\right] /\left(2(\alpha-\beta)^{3}(-1)^{n}(\alpha+\beta)\right) .
\end{aligned}
$$

Hence, the square of the distance between circumcenter $O\left(\Delta_{n}\right)$ and vertex A_{n} is

$$
\begin{aligned}
\left|O\left(\Delta_{n}\right) A_{n}\right|^{2}= & \left(\left(\beta^{n}\right)^{2}\left(\beta^{4}-2 \beta^{3}+2 \beta^{2}-2 \beta+1\right)+\left(\alpha^{n}\right)^{2}\left(\alpha^{4}-2 \alpha^{3}+2 \alpha^{2}\right.\right. \\
& -2 \alpha+1))\left(\left(\beta^{n}\right)^{2}\left(\beta^{6}-\beta^{4}-\beta^{2}+1\right)+\left(\alpha^{n}\right)^{2}\left(\alpha^{6}-\alpha^{4}-\alpha^{2}\right.\right. \\
& +1))\left(\left(\beta^{n}\right)^{2}\left(\beta^{6}-2 \beta^{5}+2 \beta^{4}-2 \beta^{3}+\beta^{2}\right)+\left(\alpha^{n}\right)^{2}\left(\alpha^{6}-2 \alpha^{5}\right.\right. \\
& \left.\left.+2 \alpha^{4}-2 \alpha^{3}+\alpha^{2}\right)\right) /\left(4(\alpha-\beta)^{6}(\beta-1)^{2}(\alpha-1)^{2}\right) .
\end{aligned}
$$

From the Binet formulas of sequences $\left\{U_{n}\right\}$ and $\left\{V_{n}\right\}$, we get

$$
\begin{aligned}
\left|O\left(\Delta_{n}\right) A_{n}\right|^{2}= & {\left[\left(V_{2 n+4}-2 V_{2 n+3}+2 V_{2 n+2}-2 V_{2 n+1}+V_{2 n}\right)\right.} \\
& \times\left(V_{2 n+6}-V_{2 n+4}-V_{2 n+2}+V_{2 n}\right) \\
& \left.\times\left(V_{2 n+6}-2 V_{2 n+5}+2 V_{2 n+4}-2 V_{2 n+3}+V_{2 n+2}\right)\right] \\
& /\left[4(\alpha-\beta)^{6}(\beta-1)^{2}(\alpha-1)^{2}\right] .
\end{aligned}
$$

By Lemma 2.1, we get

$$
\begin{aligned}
\left|O\left(\Delta_{n}\right) A_{n}\right|^{2}=[& \left(\left(p^{2}+4\right) U_{2 n+3}+V_{2 n+2}-2\left(p^{2}+4\right) U_{2 n+2}+V_{2 n}\right) \\
& \times p\left(V_{2 n+5}-V_{2 n+1}\right)\left(\left(p^{2}+4\right) U_{2 n+5}+V_{2 n+4}\right. \\
& \left.\left.-2\left(p^{2}+4\right) U_{2 n+4}+V_{2 n+2}\right)\right] /\left[4 p^{2}\left(p^{2}+4\right)^{3}\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\left[\begin{array}{l}
\left(p^{2}+4\right)\left(U_{2 n+3}-2 U_{2 n+2}+U_{2 n+1}\right) p\left(\left(p^{2}+4\right) U_{2 n+3} U_{2}\right)\left(p^{2}+4\right) \\
\left.\quad \times\left(U_{2 n+5}-2 U_{2 n+4}+U_{2 n+3}\right)\right] /\left[4 p^{2}\left(p^{2}+4\right)^{3}\right] \\
= \\
=\frac{\left(V_{2 n+2}-2 U_{2 n+2}\right) U_{2 n+3}\left(V_{2 n+4}-2 U_{2 n+4}\right)}{4} \\
=\frac{U_{2 n+3}\left(V_{2 n+2} V_{2 n+4}-4 U_{4 n+6}+4 U_{2 n+2} U_{2 n+4}\right)}{4} \\
=\frac{U_{2 n+3}\left(2 V_{2(2 n+3)}-p^{2} U_{2 n+3}^{2}+p^{2}-4 U_{2(2 n+3)}\right)}{4} \\
=\frac{U_{2 n+3}\left(2\left(\left(p^{2}+4\right) U_{2 n+3}^{2}-2\right)-p^{2} U_{2 n+3}^{2}+p^{2}-4 U_{2(2 n+3)}\right)}{4},
\end{array},=\frac{U_{2}}{4},\right.
\end{aligned}
$$

as claimed.

Acknowledgements.

We would like to thank to the referee for carefully reading our paper and for giving such constructive comments which substantially helped to improve the quality of the paper.

References

[1] B. Çelik, Maple ve Maple ile Matematik, Dora Yayın Dağıtım, Bursa, 2014.
[2] Z. Cerin, On triangles with Fibonacci and Lucas numbers as coordinates, Sarajevo J. Math. 3 (2007), 3-7.
[3] Z. Čerin and G. M. Gianella, Triangles with coordinates of vertices from Pell and Pell-Lucas numbers, Rend. Circ. Mat. Palermo (2) Suppl. 80 (2008), 65-73.
[4] Z. Čerin, Hyperbolas, orthology, and antipedal triangles, Glasnik Mat. Ser. III 33 (1998), 143-160.
[5] Z. Čerin, On propellers from triangles, Beitr. Algebra Geom. 42 (2001), 575-582.
[6] W. Gallatly, The modern geometry of the triangle, Second Edition, Hodgson, London, 1913.
[7] R. Honsberger, Episodes in nineteenth and twentieth century Euclidean geometry, New Mathematical Library, The Mathematical Association of America, 1995.
[8] R. A. Johnson, Advanced Euclidean geometry, Dover Publications, 1960.
[9] E. Kılıç and P. Stănica, Factorizations and representations of second order linear recurrences with indices in arithmetic progressions, Bol. Soc. Mat. Mex. (3) 15 (2010), 23-36.
[10] E. Kılıç, Y. Türker Ulutaş and N. Ömür, Sums of products of the terms of the generalized Lucas sequence $\left\{V_{k n}\right\}$, Hacettepe J. Math. Stat. 4 (2011), 147-161.
[11] N. J. A. Sloane, On-Line Encyclopedia of Integer Sequences, http://www2.research.att.com/~njas/sequences/.

O trokutima s koordinatama vrhova u nizovima $\left\{U_{k n}\right\} \mathbf{i}\left\{V_{k n}\right\}$

Neşe Ömür, Gökhan Soydan, Yücel Türker Ulutaş i Yusuf Doğru
SAžETAK. U ovom članku su dobiveni neki rezultati o trokutima čije su koordinate vrhova članovi nizova $\left\{U_{k n}\right\}$ i $\left\{V_{k n}\right\}$, gdje su $U_{k n}$ članovi rekurzivnog niza drugog reda, a $V_{k n}$ su članovi njemu pridruženog niza, za neparan prirodan broj k, čime su poopćeni rezultati Z. Čerina. Primjerice, kogantens Brocardovog kuta trokuta $\Delta_{k n}$ je $\cot \left(\Omega_{\Delta_{k n}}\right)=\frac{U_{k(2 n+3)} V_{2 k}-V_{k(2 n+3)} U_{k}}{(-1)^{n} U_{2 k}}$.

Neşe Ömür

Department of Mathematics
Kocaeli University
41380 Izmit-Kocaeli, Turkey
E-mail: neseomur@kocaeli.edu.tr
Gökhan Soydan
Department of Mathematics
Bursa Uludağ University
16059 Bursa, Turkey
E-mail: gsoydan@uludag.edu.tr
Yücel Türker Ulutaş
Department of Mathematics
Kocaeli University
41380 Izmit-Kocaeli, Turkey
E-mail: turkery@kocaeli.edu.tr
Yusuf Doğru
Hava Eğitim Komutanlığı
Konak-Izmir, Turkey
E-mail: yusufdogru1@yahoo.com
Received: 22.6.2020.
Revised: 3.7.2020.
Accepted: 15.9.2020.

[^0]: 2020 Mathematics Subject Classification. 11B37, 11Y55, 05A19.
 Key words and phrases. Second order sequence, triangle, orthologic, paralogic, homologic.

