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SOME PROPERTIES OF THE EXTENDED ZERO-DIVISOR
GRAPH OF THE RING OF GAUSSIAN INTEGERS

MODULO n

Basem Alkhamaiseh

Abstract. Recently, Bennis and others studied an extension of the
zero-divisor graph of a commutative ring R. They called this extension
the extended zero-divisor graph of R, denoted by Γ(R). The graph Γ(R)
has as set of vertices all the nonzero zero-divisors of R, Z(R)∗, and two
distinct vertices x and y are adjacent if there are nonnegative integers n
and m such that xnym = 0 with xn 6= 0 and ym 6= 0. In this paper,
we study several properties of the extended zero-divisor graph of the ring
of Gaussian integers modulo n (Γ(Zn[i])). We characterize the positive
integers n such that Γ(Zn[i]) = Γ(Zn[i]). The diameter and girth, as well
as the positive integers n such that Γ(Zn[i]) is planar or outerplanar, are
also determined.

1. Introduction

Throughout this paper, let R be a commutative ring with nonzero identity
1. Beck in [7] originated the concept of the zero-divisor graph by discussing
the coloring of a commutative ring. In his graph, Beck used R as the set of
vertices. In 1999, D.F. Anderson and Livingston in [5] modified the concept
of the zero-divisor graph originated by Beck by restricting the set of vertices
to the nonzero zero-divisors of R. They used the notation Γ(R) to denote
the zero-divisor graph of the ring R. The zero-divisor graph of a commutative
ring has been the focus of several researchers [1–4,6, 10].

Recently, Bennis et al. in [8] studied an extension of the zero-divisor
graph of a commutative ring R. They called this extension the extended zero-
divisor graph of R, denoted by Γ(R). The graph Γ(R) has as set of vertices all
the nonzero zero-divisors of R, Z(R)∗, and two distinct vertices x and y are
adjacent if there are nonnegative integers n and m such that xnym = 0 with
xn 6= 0 and ym 6= 0. The extended zero-divisor graph has also been studied in
[6]. Abu Osba et al. in [1, 2] have studied some properties of the zero-divisor

2020 Mathematics Subject Classification. Primary 13A99, 13B99; Secondary 05C25.
Key words and phrases. Ring of Gaussian integers modulo n, extended zero-divisor

graph, diameter and girth, planar graph.

49



50 B. ALKHAMAISEH

graph of the ring of Gaussian integers modulo n, Γ(Zn[i]). Likewise in this
paper, we will study some properties of the extended zero-divisor graph of the
ring of Gaussian integers modulo n, Γ(Zn[i]).

In this paper, the set of zero-divisors of R is denoted by Z(R). Also, we
denote the set of nilpotent elements of R by Nil(R). For any x ∈ R, the
annihilator of x is Ann(x) = {y ∈ R : xy = 0}. For any set X that contains
0, we use the notation X∗ to exclude 0 from the set X. In graph theory, the
notation d(a, b) is used to express the distance between two distinct vertices
a and b, where d(a, b) is the length of a shortest path joining a and b if
such a path exists, otherwise d(a, b) = ∞. The diameter of a graph G is
diam(G) = sup{d(a, b) : a and b are distinct vertices of G}. The girth of a
graph G, denoted by gr(G), is the length of a shortest circle in the graph G,
if any. Otherwise, gr(G) = ∞. For undefined notations and terminology in
ring theory and graph theory, consult [14] and [12], respectively.

2. When is Γ(Zn[i]) = Γ(Zn[i])?

In this section, we characterize the positive integers n such that Γ(Zn[i]) =
Γ(Zn[i]).

First, we provide some results concerninig when Γ(R) = Γ(R) for a com-
mutative ring R. One can find the following propositions in [8].

Proposition 2.1. Let R be a ring. Then Γ(R) = Γ(R) if and only if R
satisfies the following conditions:

1. If Nil(R) 6= {0}, then every nonzero nilpotent element has index 2,
2. For every x ∈ Z(R)\Nil(R), Ann(x2) = Ann(x).

Proposition 2.2. Let R be a reduced ring. Then Γ(R) = Γ(R).

Proposition 2.3. Let (Ri)1≤i≤k be a finite family of rings with k ∈

N\{1}. Then Γ(
k∏
i=1

Ri) = Γ(
k∏
i=1

Ri) if and only if Ri is reduced for every

1 ≤ i ≤ k.

Next, we use the previous propositions to characterize the positive integers
n such that Γ(Zn[i]) = Γ(Zn[i]).

Lemma 2.4. Let n = 2k.
(1) If k = 1, then Γ(Zn[i]) = Γ(Zn[i]).
(2) If k ≥ 2, then Γ(Zn[i]) 6= Γ(Zn[i]).

Proof. In [2], the authors proved that Z(Z2k [i]) = Nil(Z2k [i]) =〈
1 + 1i

〉
= {a + bi : a and b are both odd or even}. When k = 1,

Z(Zn[i]) = {0, 1 + 1i}. Then it is clear that Γ(Zn[i]) = Γ(Zn[i]), and this
proves (1). For (2), since k ≥ 2, (1 + 1i) is a nonzero nilpotent element of
index 4 6= 2. Hence by Proposition 2.1, Γ(Zn[i]) 6= Γ(Zn[i]).
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Lemma 2.5. Let n = qk, q ≡ 3 (mod 4).
(1) If k ∈ {1, 2}, then Γ(Zn[i]) = Γ(Zn[i]).
(2) If k ≥ 3, then Γ(Zn[i]) 6= Γ(Zn[i]).

Proof. From [2], we see that Z(Zqk [i]) = Nil(Zqk [i]) = 〈q〉 .
(1) For k = 1, Zq[i] is a field, so a reduced ring. Then by Proposition 2.2

Γ(Zq[i]) = Γ(Zq[i]). For k = 2, it is clear that every nonzero nilpotent element
has index 2. Hence by Proposition 2.1, Γ(Zq2 [i]) = Γ(Zq2 [i]).

(2) For k ≥ 3, q is a nonzero nilpotent element of index greater than 2.
Hence by Proposition 2.1, Γ(Zqk [i]) 6= Γ(Zqk[i]).

Lemma 2.6. Let n = pk, p ≡ 1 (mod 4).
(1) If k = 1, then Γ(Zn[i]) = Γ(Zn[i]).
(2) If k ≥ 2, then Γ(Zn[i]) 6= Γ(Zn[i]).

Proof. It was shown in [2] that

Zpk [i] ∼= Z[i]/〈(a+ bi)k〉 × Z[i]/〈(a− bi)k〉 ∼= Zpk × Zpk ,
where p = (a+ bi) (a− bi).

(1) If k = 1, then Zp[i] ∼= Zp × Zp. Hence by Proposition 2.3, Γ(Zp[i]) =
Γ(Zp[i]).

(2) For k ≥ 2, Zpk [i] ∼= Zpk × Zpk . Since Zpk is not a reduced ring for
k ≥ 2, we deduce from Proposition 2.3 that Γ(Zpk [i]) 6= Γ(Zpk [i]).

For a positive integer n, we can write its prime power factorization as

n = 2k ×
m∏
j=1

q
αj
j ×

l∏
s=1

pβss , where qj ≡ 3 (mod 4) for 1 ≤ j ≤ m, and ps ≡ 1

(mod 4) for 1 ≤ s ≤ l. Recall that Z2k [i] is never reduced, and Zqk [i] and
Zpk [i] are reduced only if k = 1.

Therefore, we can use Proposition 2.3 to prove the following theorem.

Theorem 2.7. Suppose that n = 2k×
m∏
j=1

q
αj
j ×

l∏
s=1

pβss . Then Γ(Zn[i]) =

Γ(Zn[i]) if and only if n =
m∏
j=1

qj ×
l∏

s=1
ps. That is, if k ≥ 1, αj ≥ 2 for some

1 ≤ j ≤ m, or βs ≥ 2 for some 1 ≤ s ≤ l, then Γ(Zn[i]) 6= Γ(Zn[i]).

3. Diameter of Γ(Zn[i])

In this section, we find the diameter of the graph Γ(Zn[i]).
We start with some results from [8] that are useful to prove the main

results in this section.

Proposition 3.1. Let R be a ring. Then Γ(R) is connected with
diam(Γ(R)) ≤ 3.
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Proposition 3.2. Let R be a ring. Then there is a vertex x of Γ(R) that
is adjacent to every other vertex if and only if either R ∼= Z2×D, where D is
an integral domain, or Z(R) =

√
Ann(xnx−1).

Proposition 3.3. Let R be a ring such that Γ(R) 6= Γ(R). Then Γ(R)
is complete if and only if Z(R) = Nil(R) and Z(R)2 = {0}, where Z(R) =
{xnx−1 : x ∈ Nil∗(R)}.

Proposition 3.4. Let R be a ring with Z(R) = Nil(R) 6= {0}. Then
diam(Γ(R)) ≤ 2 and exactly one of the following three cases must occur.

1. |Z(R)∗| = 1. Then R is isomorphic to Z4 or Z2[x]/
〈
x2〉 and

diam(Γ(R)) = 0.
2. |Z(R)∗| ≥ 2 and Z(R)2 = {0}. Then Γ(R) is a complete graph and

diam(Γ(R)) = 1.
3. |Z(R)∗| ≥ 2 and Z(R)2 6= {0}. If Z(R)2 = {0}, then Γ(R) is a complete

graph and diam(Γ(R)) = 1. If Z(R)2 6= {0}, then diam(Γ(R)) = 2.

Proposition 3.5. Let R =
n∏
i=1

Ri , where (Ri)1≤i≤n is a finite family of

rings with n ∈ N\{1}.
(1) For n = 2, we have
(i) diam(Γ(R)) = diam(Γ(R)) = 1 if and only if R1 ∼= R2 ∼= Z2.
(ii) If R1 and R2 are integral domains with |R1| ≥ 3 or |R2| ≥ 3, then

Γ(R) = Γ(R) and diam(Γ(R)) = 2. In this case Γ(R) is a complete
bipartite graph.

(iii) If at least one of R1 and R2 contains a nonnilpotent zero-divisor, then
diam(Γ(R)) = diam(Γ(R)) = 3.

(iv) If at least one of R1 and R2 is not an integral domain such that all
zero-divisors are nilpotent in each ring with nonzero zero-divisors, then
diam(Γ(R)) = 3 and diam(Γ(R)) = 2.

(2) For n ≥ 3, diam(Γ(R)) = diam(Γ(R)) = 3.

An obvious relationship between Γ(R) and Γ(R) is diam(Γ(R)) ≤
diam(Γ(R)). It was shown in [1, 2] that Γ(Z2k [i]) ∼= Γ(Z22k). This result is
also true over Γ (that is, Γ(Z2k [i]) ∼= Γ(Z22k) ). To prove this, we will use
some results of [1] and the following theorem.

Theorem 3.6. Let n = 2k.
(1) If k = 1, then Γ(Zn[i]) is a complete graph with only one vertex, so

diam(Γ(Zn[i])) = 0
(2) If k ≥ 2, then Γ(Zn[i]) is a complete graph with diam(Γ(Zn[i])) = 1.

The proof of part (1) of Theorem 3.6 is trivial. To prove part (2) we
need the following lemma.
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Lemma 3.7. If x is a zero-divisor of Z2k [i], then x = (1 + i)mα for some
positive integer m, and α is a unit element of Z2k [i]. Moreover, x and (1+i)m
have the same nilpotency index.

Proof. From [2], Z(Z2k [i]) = Nil(Z2k [i]) =
〈
1 + i

〉
. Let x ∈ Z(Z2k [i]).

If x = 0, then x = (1 + i)2k. Hence, suppose that x 6= 0. Thus, x = (1 + i)α1.
If α1 is a unit, then we done while if α1 is a zero-divisor, then α1 = (1 + i)α2.
Similarily, If α2 is unit, then we done while if α2 is a zero-divisor, then we can
continue in the same manner until we collect all zero-divisors that appeared
and put them in a set S = {α1, α2, α3, . . . αn} . It is clear that S is a finite set
and αs 6= αt for any distinct s, t ∈ {1, 2, . . . , n}. To prove this, let αs = αt , for
s < t . Then (1+i)sαs = x = (1+i)tαt. So, (1+i)tαt

(
1− (1 + i)t−s

)
= 0. But(

1− (1 + i)t−s
)
is a unit since (1+i)t−s is nilpotent. Hence, x = (1+i)tαt = 0,

which is a contradiction. So, αn = (1+i)nαn+1 and αn+1 /∈ S (that is, αn+1 is
a unit). Therefore, x = (1+i)n+1αn+1 as required. Note that x and (1+i)n+1

have the same nilpotency index.

Now, we are ready to prove part (2) of Theorem 3.6.

Proof. In [2], it was shown that diam(Γ(Z2k [i])) = 2. Therefore,
(Z(Z2k [i]))2 6= {0}. Let x, y be nonzero nilpotent elements of Z2k [i], that
is, x = (1 + i)m1α, y = (1 + i)m2β, for some α, β ∈ U(Z2k [i]). Without loss of
generality we can assume that m1 ≥ m2. Hence, (nx − 1)m1 + (ny − 1)m2 ≥
m1 + (ny − 1)m2 ≥ nym2. Since y and (1 + i)m2 have the same nilpotency
index ny, then we have

xnx−1yny−1 = (1 + i)(nx−1)m1+(ny−1)m2αnx−1βny−1

= 0

Thus,
(
Z(Z2k [i])

)2 = {0}. So, from Proposition 3.4, Γ(Z2k [i]) is a com-
plete graph with diam(Γ(Z2k [i])) = 1.

To find the diameter of Γ(Zqk [i]), one can use the result, Z(Zqk [i]) =
Nil(Zqk [i]) = 〈q〉 , that appears in [2], and the following lemma (we omit the
proof of this lemma, since its proof is analogous to that in Lemma 3.7).

Lemma 3.8. If x is a zero-divisor of Zqk [i], then x = qmα for some
positive integer m, and α is a unit element of Zqk [i].

Theorem 3.9. Let n = qk, where q ≡ 3 (mod 4).
(1) If k = 1, then Γ(Zn[i]) is the null graph.
(2) If k = 2, then Γ(Zn[i]) = Γ(Zn[i]) is a complete graph. So,

diam(Γ(Zn[i])) = 1
(3) If k ≥ 3, then Γ(Zn[i]) is a complete graph with diam(Γ(Zn[i])) = 1.
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Proof. (1) Because Zq[i] ∼= Zq [x]
〈x2+1〉 which is a field, Γ(Zn[i]) is the null

graph.
(2) From Lemma 2.5, Γ(Zq2 [i]) = Γ(Zq2 [i]). But in [2], Γ(Zq2 [i]) is a

complete graph. Hence, diam(Γ(Zn[i])) = 1.
(3) The proof is similar to the proof of part (2) of Theorem 3.6 .

From [11], Zpk [i] ∼= Zpk × Zpk . Hence, we have

Theorem 3.10. Let n = pk, where p ≡ 1 (mod 4).
(1) If k = 1, then Γ(Zn[i]) is a complete bipartite graph with diam(Γ(Zn[i]))

= 2.
(2) If k ≥ 2, then diam(Γ(Zn[i])) = 2.

Proof. Apply Proposition 3.5.

For the general case. Consider the prime power factorization of n as

n = 2k×
m∏
j=1

q
αj
j ×

l∏
s=1

pβss , where qj ≡ 3 (mod 4) for all 1 ≤ j ≤ m, and ps ≡ 1

(mod 4) for all 1 ≤ s ≤ l. From Proposition 3.5, Theorem 3.6, Theorem 3.9,
and Theorem 3.10 we deduce the theorem

Theorem 3.11. Let n = 2k ×
m∏
j=1

q
αj
j ×

l∏
i=1

pβss , where qj ≡ 3 (mod 4) for

all 1 ≤ j ≤ m, and ps ≡ 1 (mod 4) for all 1 ≤ s ≤ l.
(1) diam(Γ(Zn[i])) = 3, if

(i) l ≥ 2, or
(ii) l = 1, and either k = 0 or m = 0, but not both, or
(iii) l = 0, k ≥ 1, and m ≥ 2, or
(iv) l = 0, k = 0, and m ≥ 3.

(2) diam(Γ(Zn[i])) = 2, if
(i) l = 1, k = 0, and m = 0, or
(ii) l = 0, k ≥ 1, and m = 1, or
(iii) l = 0, k = 0, and m = 2.

(3) diam(Γ(Zn[i])) = 1, if
(i) l = 0, k = 0, m = 1, and αj ≥ 2, or
(ii) l = 0, k ≥ 2, and m = 0.

(4) diam(Γ(Zn[i])) = 0, if l = 0, k = 1, and m = 0.
(5) diam(Γ(Zn[i])) is not defined if l = 0, k = 0, m = 1, and αj = 1.

4. Girth of Γ(Zn[i])

In this section, we study the girth of Γ(Zn[i]). First, we introduce some
propositions from [8] concerning gr(Γ(R)).

Proposition 4.1. gr(Γ(R)) ≤ gr(Γ(R)) ∈ {3, 4,∞}. If Γ(R) 6= Γ(R),
then Γ(R) contains a cycle with gr(Γ(R)) ∈ {3, 4}.



EXTENDED ZERO-DIVISOR GRAPH 55

Proposition 4.2. Let R =
n∏
i=1

Ri , where (Ri)1≤i≤n is a finite family of

rings with n ∈ N\{1}.
(1) For n = 2, the following hold
(i) gr(Γ(R)) = gr(Γ(R)) = ∞ if and only if R1 and R2 are integral

domains and at least one is isomorphic to Z2.
(ii) If R1 and R2 are integral domains with |R1| ≥ 3 or |R2| ≥ 3, then

Γ(R) = Γ(R) and gr(Γ(R)) = 4.
(iii) If at least one of R1 and R2 is not an integral domain, then gr(Γ(R)) =

gr(Γ(R)) = 3.
(2) For n ≥ 3, gr(Γ(R)) = gr(Γ(R)) = 3.

A reader of [2] can deduce the following proposition.

Proposition 4.3. For a positive integer n ∈ N, the following statements
are true:

1. If n 6= 2, q, p, q1 × q2, 2× q, then gr(Γ(Zn[i])) = 3.
2. gr(Γ(Zp[i])) = gr(Γ(Zq1×q2 [i])) = gr(Γ(Z2×q[i])) = 4.
3. gr(Γ(Z2[i])) =∞.
4. gr(Γ(Zq[i])) is not defined.

The following theorem characterizes the girth of Γ(Zn[i]).

Theorem 4.4. For a positive integer n ∈ N, the following statements are
true:

1. If n /∈ {2, q, p, q1 × q2}, then gr(Γ(Zn[i])) = 3.
2. gr(Γ(Zp[i])) = gr(Γ(Zq1×q2 [i])) = 4.
3. gr(Γ(Z2[i])) =∞.
4. gr(Γ(Zq[i])) is not defined.

Proof. From Proposition 4.1 and Proposition 4.3, it is enough to prove
gr(Γ(Z2×q[i])) = 3 and gr(Γ(Zp[i])) = gr(Γ(Zq1×q2 [i])) = 4. We can do that
based on Proposition 4.2 and the facts Z2×q[i] ∼= Z2[i] × Zq[i], Zq1×q2 [i] ∼=
Zq1 [i]× Zq2 [i], and Zp[i] ∼= Zp × Zp.

5. When is Γ(Zn[i]) complete, complete bipartite, or bipartite ?

In this section, we study when is Γ(Zn[i]) complete, complete bipartite,
or bipartite

Theorem 5.1. The graph Γ(Zn[i]) is complete if and only if n = 2k for
1 ≤ k or n = qk for 2 ≤ k.

Proof. From Theorem 3.6 and Theorem 3.9, if n = 2k for 1 ≤ k or
n = qk for 2 ≤ k, then Γ(Zn[i]) is a complete graph. To prove the other
direction, suppose that Γ(Zn[i]) is a complete graph with n 6= 2k for 1 ≤ k
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and n 6= qk for 2 ≤ k. Then by Theorem 3.11 diam(Γ(Zn[i])) 6= 1, which is a
contradiction.

Theorem 5.2. The graph Γ(Zn[i]) is complete bipartite if and only if
n = p or n = q1q2.

Proof. In [2], the authors proved that Γ(Zn[i]) is complete bipartite if
and only if n = p or n = q1q2. Thus, if n = p or n = q1q2, then from Theorem
2.7, Γ(Zn[i]) is a complete bipartite graph. The other direction can be proved
by contradiction. Let Γ(Zn[i]) be a complete bipartite graph with n 6= p and
n 6= q1q2. Then from Theorem 4.4 we deduce a contradiction. Because any
complete bipartite graph is of girth 4, the possible values of n is n = p or
n = q1q2.

To answer the question “when is Γ(Zn[i]) bipartite?”, the following propo-
sition from [12, Proposition 1.6.1] will be used.

Proposition 5.3. A graph is bipartite if and only if it contains no odd
cycle.

Theorem 5.4. The graph Γ(Zn[i]) is bipartite if and only if n = p or
n = q1q2.

Proof. Suppose that Γ(Zn[i]) is bipartite graph with n 6= p or n 6= q1q2.
Then the result is obtained directly using Theorem 4.4 and Proposition 5.3.
the other direction is obtained from Theorem 5.2.

6. When is Γ(Zn[i]) planar or outerplanar?

A graph G is called planar if it can be embedded in the plane. A planar
graph G is called outerplanar if it can be embedded in the plane such that
all vertices of G lie on the same exterior face. In this section, we discuss and
characterize the planarity and the outerplanarity of the graph Γ(Zn[i]).

The following propositions are attributed respectively to Kuratowski [15]
and Chartrand and Harary [9, 13]. These propositions are very important to
characterize planar and outerplanar graphs.

Proposition 6.1. A graph G is planar if and only if it does not have a
subgraph homeomorphic to the graphs K5 or K3,3.

Proposition 6.2. A graph G is outerplanar if and only if it does not have
a subgraph homeomorphic to the graphs K4 or K2,3, except K4 − x, where x
denotes an edge of K4.

The graph Γ(R) is a subgraph of the graph Γ(R). Since the graphs Γ(R)
and Γ(R) share the same set of vertices and the graph Γ(R) is produced by
adding some edges to the graph Γ(R), one can deduce the following lemma.

Lemma 6.3. Let R be a ring. Then Γ(R) is planar if Γ(R) is planar.
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We now consider an example in which the converse of Lemma 6.3 is not
true.

Example 6.4. It was shown in [2] that Γ(Z4[i]) is planar, but we proved
earlier in Theorem 3.6 that Γ(Z4[i]) is a complete graph with 7 vertices. Hence,
Γ(Z4[i]) has a subgraph homeomorphic to K5. From Proposition 6.1, Γ(Z4[i])
is not planar.

To characterize when is Γ(Zn[i]) planar or outerplanar, one can use the
following result from [2, Theorem 22].

Proposition 6.5. Γ(Zn[i]) is planar if and only if n is either 2 or 4.

From Example 6.4 and Proposition 6.5 one can obtain the following the-
orem.

Theorem 6.6. The following statements are equivalent for the graph
Γ(Zn[i]):

1. Γ(Zn[i]) is planar.
2. Γ(Zn[i]) is outerplanar.
3. n = 2.
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Neka svojstva proširenog grafa djelitelja nule u prstenu Gaussovih
cijelih brojeva modulo n

Basem Alkhamaiseh

Sažetak. Nedavno su Bennis i drugi autori proučavali
proširenje grafa djelitelja nule u komutativnom prstenu R. To
proširenje su nazvali prošireni graf djelitelja nule u R, i označili s
Γ(R). Graf Γ(R) ima za vrhove sve djelitelje nule, u oznaci Z(R)∗,
u R, a dva različita vrha x i y su susjedna ako postoje nenega-
tivni cijeli brojevi n i m takvi da je xnym = 0, gdje je xn 6= 0
i ym 6= 0. U ovom članku proučavaju se svojstva proširenog
grafa djelitelja nule u prstenu Gaussovih cijelih brojeva modulo
n (Γ(Zn[i])). Karakteriziraju se prirodni brojevi n takvi da je
Γ(Zn[i]) = Γ(Zn[i]). Takoder su odredeni dijametar i struk, te
prirodni brojevi n takvi da je Γ(Zn[i]) planaran.
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