A COMPARATIVE STUDY OF ANTIBACTERIAL AND ANTFUNGAL EFFICACY OF SOFT CONTACT LENS DISINFECTING SOLUTIONS

Tomislav Kuzman¹, Rajko Pokupec¹, Miro Kalauž¹, Jelena Juri¹, Zdenko Bužger³ and Aleksandra Prešekški²

¹University Department of Ophthalmology; ²Department of Clinical and Molecular Microbiology, Zagreb University Hospital Center, Zagreb, Croatia

SUMMARY – The aim of this study was to compare antibacterial and antifungal efficacy of five soft contact lens disinfecting solutions. The following solutions were tested: Oxysept Comfort (Advanced Medical Optics), Nitilens One Step (Avizor), Opti-Free Express (Alcon Laboratories), Complete Moisture Plus (Advanced Medical Optics) and Nitilens All-in-one (Avizor). Their efficacy to disinfect saline solution experimentally contaminated with American Type Culture Collection (ATCC): Staphylococcus aureus (ATCC 25923), Escherichia coli (ATCC 25922), Pseudomonas aeruginosa (ATCC 27853), Candida albicans (ATCC 90028) and Staphylococcus epidermidis (isolated from our laboratory) was tested. All study solutions reduced concentrations of bacteria and fungi below 1000 CFU/mL (reduction by 3 log and 1 log, respectively) after 8-hour overnight disinfection. However, there were differences in their disinfecting efficacy. Generally, all contact lens care solutions showed good disinfecting activity against the bacteria and fungi tested. Yet, the differences recorded in their antimicrobial activity may become more evident among non-compliant patients, and therefore the results of the study might be valuable when selecting appropriate solutions for contact lens wearers.

Key words: Contact lens; Disinfection; Multipurpose contact lens solution; antimicrobial

Introduction

Disinfecting solutions need to keep soft contact lenses in a hygienic condition in order to avoid infections. Contact lens wearers are in the risk group of acquiring bacterial and fungal keratitis¹⁻³. These infections are often associated with contaminated contact lens solutions⁴. Compliance and proper hygienic care of contact lens wearers are also of great importance, as poor compliance is estimated to be responsible for 80% or more of all contact lens related problems⁵⁻⁶.

Contact lens care systems have changed in the last few decades, from multi component bottle systems to current single bottle multipurpose care solutions. Although easier to use by patients, in order to achieve all of the intended tasks the manufacturers of multipurpose solutions have to make some compromises. It has been suggested that the disinfecting agents used are less efficient but have better wetting and comfort abilities⁷⁻⁸.

The International Organization for Standardization (ISO) has established microbiological requirements and test methods for products and regimens for hygienic management of contact lenses with methodology and acceptance criteria for stand alone disinfecting solutions (ISO/CD 14729). According to this standard for stand alone primary acceptance criteria, disinfecting solution must be able to reduce the starting concentration of bacteria (Serratia marcescens, Pseudomonas aeruginosa and Staphylococcus aureus) by 3 log and of fungi (Fusarium solani and Candida albicans) by 1 log at the minimum disinfection time recommended by the manufacturers⁹. However, two common bacteria, Staphylococcus epidermidis and Escherichia coli, which are not required by ISO, often cause

Correspondence to: Tomislav Kuzman, MD, University Department of Ophthalmology, Zagreb University Hospital Center, Kupatilićeva 12, HR-10000 Zagreb, E-mail: tkuzman@gmail.com
ocular pathology10-12. Therefore, the aim of our study was to compare relative antibacterial and antifungal efficacy of five soft contact lens disinfection solutions commercially available in Croatia. To the best of our knowledge, the Nitilens One Step and Nitilens All-in-one (Avizor) solutions were now for the first time included in this type of study.

Material and Methods

The antimicrobial activity of five commercially available disinfecting solutions was assessed and compared. We included the following solutions: Oxyspet Comfort (Advanced Medical Optics), Nitilens One Step (Avizor), Opti-Free Express (Alcon Laboratories), Complete Moisture Plus (Advanced Medical Optics) and Nitilens All-in-one (Avizor) (Table 1). Their efficacy to disinfect saline solution experimentally contaminated with American Type Culture Collection (ATCC): *Staphylococcus aureus* (ATCC 25923), *Escherichia coli* (ATCC 25922), *Pseudomonas aeruginosa* (ATCC 27853), *Candida albicans* (ATCC 90028) and *Staphylococcus epidermidis* (isolated from our laboratory) was tested.

The bacteria were grown on the blood agar plate, and *Candida albicans* on the Emmons agar plate. Using physiological saline, the microbial suspensions were adjusted to contain 1.0×10^6 colony-forming units per milliliter (CFU/mL) bacteria and 1.0×10^4 CFU/mL fungi. The appropriate volume of the disinfection solution (10 mL, A-B; 2 mL C-E) and 2 mL of physiological saline were inoculated with the appropriate volume of the microbial suspension (100 μL in A-B; 20 μL in C-E and in physiological saline) to achieve a final concentration of 1.0×10^6 CFU/mL bacteria and 1.0×10^4 CFU/mL fungi. This concentration was the first one in the series of dilutions (1.0×10^6 to 1.0×10^5) with which the plates were inoculated separately four times. The mixtures of the disinfection solution and the microbial suspension were stored at ambient temperature, which was $25 \pm 1 \degree C$. After 8-hour incubation (overnight disinfection period), appropriate disinfectant neutralizer was applied and the plates were inoculated. The blood and the Mueller-Hinton agar plates were used for identification of bacterial growth and the Emmons agar plate for identification of fungal growth. The agar plates were cultured at $35 \pm 2 \degree C$ for 24-72 hours. In addition, sterility control of disinfection solutions (100 μL of each solution were seeded in the blood and Mueller-Hinton agar plate) and microbial growth control (100 μL of each microbial suspension in a series of dilutions 1.0×10^6 or 1.0×10^5 to 1.0×10^4 CFU/mL were seeded in the blood or Emmons agar plate) were performed.

Results

All study solutions reduced microorganism concentrations below 1000 CFU/mL (concentrations of bacteria and fungi reduced by 3 log and 1 log, respectively). However, there were differences in their disinfecting efficacy.

Solution A containing hydrogen peroxide as a disinfecting agent showed good efficacy against *Staphylococcus aureus*, *Escherichia coli* and *Pseudomonas aeruginosa* as the concentration of bacteria was below 100 CFU/mL, whereas it was the least effective against *Staphylococcus epidermidis* with a concentration of 900 CFU/mL (Fig. 1).

Table 1. Formulation of the soft contact lens disinfecting solutions compared

<table>
<thead>
<tr>
<th>Soft lens solution</th>
<th>Code used in study</th>
<th>Manufacturer</th>
<th>Disinfecting agent</th>
<th>Surfactant, isotonic, buffering and other agents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxyspet Comfort</td>
<td>A</td>
<td>Advanced Medical Optics</td>
<td>Hydrogen peroxide 3%</td>
<td>Neutralizing catalase tablet, vitamin B12</td>
</tr>
<tr>
<td>Nitilens One Step</td>
<td>B</td>
<td>Avizor</td>
<td>Hydrogen peroxide 3%</td>
<td>Neutralizing catalase tablet</td>
</tr>
<tr>
<td>Opti-Free Express</td>
<td>C</td>
<td>Alcon</td>
<td>0.001% Polyquad</td>
<td>Tetronic 1304, boric acid, AMP, sodium chloride, sodium citrate and sorbitol</td>
</tr>
<tr>
<td>Complete Moisture Plus</td>
<td>D</td>
<td>Advanced Medical Optics</td>
<td>0.0001% PHMB</td>
<td>Poloxamer 237, sodium phosphate, sodium chloride, potassium chloride, propylene glycol and taurine</td>
</tr>
<tr>
<td>Nitilens All-in-one</td>
<td>E</td>
<td>Avizor</td>
<td>0.0002% Polyhexanide</td>
<td>0.25% Poloxamer, 0.1% EDTA, 0.05% PVP</td>
</tr>
</tbody>
</table>

AMP – 2-amino-2-methyl-1-propanol; EDTA – ethylenediaminetetraacetic acid; PVP – polyvinylpyrrolidone
Discussion

The optimal contact lens care system should provide disinfection against a wide spectrum of different microorganisms avoiding toxicity to the eye. Antimicrobial agents can induce numerous adverse clinical effects like limbal and conjunctival hyperemia, punctate keratitis, superior limbic keratoconjunctivitis, papillary conjunctivitis, corneal staining and edema13,15. Therefore, the manufacturers should always balance the ability of solutions to retain a broad spectrum of antimicrobial activity while allowing for only minimal toxicity. These properties depend upon agents contained in the solution.

Although not required by ISO Guidelines, \textit{Staphylococcus epidermidis} is one of the most common bacteria in the eyes of lens wearers11. Likewise, disinfecting activity against \textit{Escherichia coli} is not required in the ISO Guidelines but it commonly contaminates contact lens accessories stored in bathrooms10. We believe that contact lens solution disinfecting activity should be extended to as much as possible resistant and common microbial species. If the goal is to achieve sterile contact lens, it might be important for the contact lens solution to exhibit antimicrobial activity also against the most common bacteria. It is frequently unnecessary to identify the bacteria that are contained in the solution16. Therefore, both \textit{Escherichia coli} and \textit{Staphylococcus epidermidis} were also tested in our study.

Disinfection time in our study was 8 hours, which is defined as overnight disinfection. We believe that 8-hour disinfection period is appropriate as it resembles everyday situations considering that lens wearers usually do not wear lenses overnight.

We tested several different contact lens disinfecting solutions containing different disinfecting agents: two containing hydrogen peroxides, one polyquad and myristamidopropyl dimethyamine (MAPD), one polyhexamethylene biguanide (PHMB), and one containing polyhexanide (Table 1).

Table 2. Mean log reduction after 8-hour overnight disinfection

<table>
<thead>
<tr>
<th>Test solution</th>
<th>Staphylococcus aureus</th>
<th>Staphylococcus epidermidis</th>
<th>Escherichia coli</th>
<th>Pseudomonas aeruginosa</th>
<th>Candida albicans</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>>5.0</td>
<td>3.1</td>
<td>4.4</td>
<td>>5.0</td>
<td>1.9</td>
</tr>
<tr>
<td>B</td>
<td>4.8</td>
<td>3.3</td>
<td>3.6</td>
<td>5.0</td>
<td>1.6</td>
</tr>
<tr>
<td>C</td>
<td>4.7</td>
<td>>5.0</td>
<td>>5.0</td>
<td>5.0</td>
<td>>3.0</td>
</tr>
<tr>
<td>D</td>
<td>4.3</td>
<td>3.7</td>
<td>>5.0</td>
<td>3.8</td>
<td>2.0</td>
</tr>
<tr>
<td>E</td>
<td>4.5</td>
<td>4.8</td>
<td>3.8</td>
<td>4.8</td>
<td>2.9</td>
</tr>
</tbody>
</table>
The observed efficiency of OxsySept Comfort against all bacteria and fungi, with the exception of *Staphylococcus epidermidis*, was consistent with other studies, whereas there are no reports on studies investigating Nitilens One Step antimicrobial activity17-19. Both solutions were least effective against *Staphylococcus epidermidis*. The fact that *Staphylococcus epidermidis* was not standardized, but was isolated from our laboratory might provide an explanation for these results. However, considering that *Staphylococcus epidermidis* was isolated from our laboratory, our results add “real life” experience to this experiment. As we live surrounded by unstandardized bacteria, the efficacy of a disinfecting solution should be measured by its efficacy to kill most microorganisms that may be present16. Therefore, we believe our results are rather interesting. It should be noted that these systems are also preservative free, so they can be used in patients allergic to preservatives.

According to our results, Opti-Free Express showed highest antimicrobial activity against all bacteria and fungi tested. This might be attributed to the fact that it contains two antimicrobial agents, polyquad and MAPD. Polyquad is a quaternary ammonium-based antimicrobial agent providing predominantly antibacterial properties, whereas MAPD has a wider spectrum of antimicrobial activity, particularly for fungi20. Our results are in relatively consistent with other studies21,22. Opti-Free Express showed good efficacy against *Staphylococcus aureus*, unlike the results from a similar study which, however, was performed during a 6-hour disinfection period23. A different ATCC strain of *Staphylococcus aureus* might also provide an explanation for the observed difference. Although having strong antimicrobial activity, Opti-Free Express was shown to be more cytotoxic as compared with other solutions24. It should be noted that multipurpose solutions are intended to be applied into the eye, and therefore should not be rated solely based on their disinfecting capacity.

The latter two solutions tested, Complete Moisture Plus and Nitilens All-in-one, both contain biguanide-based antimicrobial agents, polyhexamethylene biguanide (PHMB) and polyhexanide, respectively. These antimicrobial agents contain cationic active sites that have the ability to lyse microbial cellular membranes by electrostatic interaction. PHMB is a polymer with 6 to 14 active sites, showing antimicrobial activity for gram-positive and gram-negative bacteria25. Both solutions showed similar antibacterial activity against all microorganisms tested, although Complete Moisture Plus showed somewhat lower efficacy than Nitilens All-in-one. Likewise, previous studies have shown that multipurpose disinfecting contact lens solutions with identical concentrations of PHMB might behave differently depending on the solution formulation26. Furthermore, it is possible that besides solution components, other solution qualities, e.g., viscosity and ionic balance of the solution, contribute significantly to the overall antimicrobial activity27,28. Although having somewhat lower antimicrobial activity, Complete Moisture Plus was not found to be cytotoxic in previous studies24.

There is one issue that should be acknowledged. Antimicrobial activity was tested against microorganisms in suspension. As shown in a previous study, microorganisms adhering to the surface of the lens case may be more difficult to eliminate29.

Overall, all contact lens care solutions showed good antimicrobial activity against all bacteria and fungi. However, we noted differences in their antimicrobial activity that might become more evident among non-compliant patients. A solution that showed better antimicrobial efficacy could provide higher safety for non-compliant patients, as good disinfection capacities might be the most important solution quality that would help minimize the risk of eye infections.

Acknowledgment. We thank our colleagues from Department of Clinical and Molecular Microbiology, Zagreb University Hospital Center, for technical support during the research.

References

Sažetak

USPOREDBA ANTIBAKTERIJSKE I ANTIGLJIVIČNE UČINKOVITOSTI OTOPINA ZA DEZINFECIJU MEKIH KONTAKTNIH LEĆA

T. Kuzman, R. Pokupec, M. Kalauz, J. Juri, Z. Bugjer i A. Preselki

Cilj studije bio je usporediti antibakterijska i antigljična svojstva pet tekućina za dezinfekciju mekih kontaktnih leća. Ispitane su slijedeće tekućine: Oxyspt Comfort (Advanced Medical Optics), Niltlens One Step (Avizor), Opti-Free Express (Alcon Laboratories), Complete Moisture Plus (Advanced Medical Optics) i Niltlens All-in-one (Avizor). Uspoređili smo njihovu učinkovitost u dezinfekciji fiziološke otopine eksperimentalno kontaminiranih slijedećim mikroorganizmima (American Type Culture Collection (ATCC)): Staphylococcus aureus (ATCC 25923), Escherichia coli (ATCC 25922), Pseudomonas aeruginosa (ATCC 27853), Candida albicans (ATCC 90028) i Staphylococcus epidermidis (soj izoliran u našem laboratoriju). Sve ispitivane tekućine su smanjile početnu koncentraciju bakterija i gljivica ispod 1000 CFU/mL (broj kolonija/mL; smanjenje 3 log za bakterije i 1 log za gljivice) nakon dezinfekcijskog razdoblja od 8 sati. Međutim, zabilježene su razlike u njihovoj dezinfekcijskoj učinkovitosti. Općenito su sve ispitane tekućine pokazale dobru dezinfekcijsku učinkovitost protiv testiranih bakterija i gljivica, ali uočene razlike u njihovoj učinkovitosti mogu postati važne kod nesuadljivih nositelja mekih kontaktnih leća. Stoga su rezultati ove studije korisni pri odabiru tekućina kod navedene skupine nositelja.

Ključne riječi: Kontaktne leće; Dezinfekcija; Višenamjenska otopina za dezinfekciju kontaktnih leća, antibakterijska