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A note on continued fractions
of quadratic irrationals

Neven Elezović∗

Abstract. Quadratic irrationals
√

D have a periodic representation
in terms of continued fractions. In this paper some relations between
n-th approximations of quadratic irrationals are proved. Results are ap-
plied to Newton’s approximations of quadratic irrationals.
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Sažetak.O verižnim razlomcima korijena prirodnih brojeva.
Za prirodni broj D iracionalni broj

√
D ima periodički prikaz pomoću

verǐznih razlomaka. U ovom se članku dokazuju neke relacije izmedju
n-tih aproksimacija tih brojeva. Dobiveni su rezultati primijenjeni na
Newtonove aproksimacije korijena prirodnih brojeva.
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1. Introduction

Let D be a positive integer which is not a square. It is well known that quadratic
irrationals

√
D have a pure periodic representation in terms of continued fractions

([4, Th. 3, p. 294]). Let us denote

a0 +
1

a1+

/ 1
a2+

/
· · ·

/ 1
an+

/
· · · := a0 +

1
a1 + 1

a2 + 1

. . .
+ 1

an +
.. .

.
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Let s be the length of the period. We use the following notation:

√
D = a0 +

1
a1+

/ 1
a2+

/
· · ·

/ 1
as+

/ 1
a1+

/
· · · =: (a0; a1, a2, · · · , as).

For example √
2 = (1; 2),√
3 = (1; 1, 2),√
7 = (1; 1, 1, 1, 4)

etc.
We denote the n-th approximation in the standard way

Rn = a0 +
1

a1+

/ 1
a2+

/
· · ·

/ 1
an−1

=
Pn

Qn
. (1)

Then, as it is well known, it holds

P1 = a0 Q1 = 1;
P2 = a0a1 + 1 Q2 = a1;
Pk = ak−1Pk−1 + Pk−2 Qk = ak−1Qk−1 + Qk−2.

(2)

2. Some properties of approximations by continued fractions

Representation √
D = (a0; a1, . . . , as)

of a quadratic irrational has the following property [4, Th. 3, p. 294]

a0 = [
√

D], (3)

as = 2a0, (4)

a1, . . . , as−1 is symmetrical, i.e. ai = as−i, i = 1, . . . , s− 1. (5)

Let us introduce polynomials (pk) by recursive relations

p0 := 1,
p1(x1) := x1,

p2(x1, x2) := x1x2 + 1,
pk(x1, . . . , xk) := xkpk−1(x1, . . . , xk−1) + pk−2(x1, . . . , xk−2).

(6)

The connection between such polynomials and sequences (Pn), (Qn) is obvious:

Pn = pn(a0, a1, . . . , an−1), (7)

Qn = pn−1(a1, . . . , an−1), (Q1 = 1) (8)

In the sequel, we shall write polynomials pn without subscript, since this cannot
lead to confusion. Let us prove some lemmas.

Lemma 1. Polynomials p are symmetric in the sense

p(x1, . . . , xn) = p(xn, . . . , x1). (9)
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Proof. Easy, by induction. 2

Lemma 2. It holds

p(x1, x2, . . . , xn) = x1p(x2, . . . , xn) + p(x3, . . . , xn). (10)

Proof. Using (6) and Lemma 1. 2

Theorem 1. It holds, for all positive integers n:

Pns = a0Qns + Qns−1. (11)

and
DQns = a0Pns + Pns−1. (12)

Proof. We shall take n = 1, the same proof holds for all n. Since as = 2a0, we
have

√
D = a0 + 1

a1+

/
1

a2+

/
· · ·

/
1

as−1+

/
1

a0+
√

D

= p(a0, a1, . . . , as−1, a0 +
√

D)
p(a1, a2, . . . , as−1, a0 +

√
D)

= (a0 +
√

D)Ps + Ps−1

(a0 +
√

D)Qs + Qs−1

.

From this, it follows

a0Ps + Ps−1 −DQs =
√

D(a0Qs + Qs−1 − Ps)

The assertion follows since
√

D is irrational. 2

Theorem 2. If s is even and r = s/2, then it holds for all positive integers n:

Pnr

Qnr
=

Pnr+1 − Pnr−1

Qnr+1 −Qnr−1
(13)

and
D =

Pnr

Qnr
· Pnr+1 + Pnr−1

Qnr+1 + Qnr−1
(14)

Proof. We shall take again n = 1. Since a2r = as = 2a0, we have

√
D =

(
ar + 1

ar+1+

/
· · ·

/
1

a0+
√

D

)
Pr + Pr−1(

ar + 1
ar+1+

/
· · ·

/
1

a0+
√

D

)
Qr + Qr−1

= p(ar, . . . , a2r−1, a0 +
√

D)Pr + p(ar+1, . . . , a2r−1, a0 +
√

D)Pr−1

p(ar, . . . , a2r−1, a0 +
√

D)Qr + p(ar+1, . . . , a2r−1, a0 +
√

D)Qr−1

The sequence a1, . . . , a2r−1 is symmetric. By Lemma 1 and 2:

p(ar, . . . , a2r−1, a0 +
√

D) = (a0 +
√

D)p(ar, . . . , a2r−1) + p(ar, . . . , a2r−2)

=
√

Dp(ar, . . . , a2r−1) + p(ar, . . . , a2r−1, a0)

=
√

Dp(a1, . . . , ar) + p(a0, . . . , ar)

=
√

DQr+1 + Pr+1.
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Hence,

√
D =

(
√

DQr+1 + Pr+1)Pr + (
√

DQr + Pr)Pr−1

(
√

DQr+1 + Pr+1)Qr + (
√

DQr + Pr)Qr−1

.

From this the assertion easily follows. 2

3. Newton’s approximations

The sequence (Rn) has the best approximation property: between all rationals with
the denominator ≤ Qn, Rn is the best approximation for

√
D ([4, Th. 2, p. 290; 3,

Th. 181, p. 151]. But, the sequence (Rn) converges to
√

D very slowly, compared
to the Newton’s sequence

rn+1 =
1
2

(
rn +

D

rn

)
. (15)

So, it is interesting to compare the relation between those sequences. As an illus-
tration we give sequences for

√
2, in Tables 1 and 2.
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n Pn Qn

1 1 1
2 3 2
3 7 5
4 17 12
5 41 29
6 99 70
7 239 169
8 577 408
9 1393 985

10 3363 2378
11 8119 5741
12 19601 13860
13 47321 33461
14 114243 80782
15 275807 195025
16 665857 470832
17 1607521 1136689

...
23 318281039 225058681
24 768398401 543339720
25 1855077841 1311738121

...
31 367296043199 259717522849
32 886731088897 627013566048
33 2140758220993 1513744654945

...
47 489133282872437279 345869461223138161
48 1180872205318713601 835002744095575440
49 2850877693509864481 2015874949414289041

...
63 651385640666817642523007 460599203683050495415105
64 1572584048032918633353217 1111984844349868137938112

Table 1: Sequence of approximations for
√

2.

Let us see what happens with the Newton’s sequences. For the initial values
of r1 we take some approximation given in Table 1. Iterations rk are represented
in the form of rationals, rk = uk

vk
. In the last column, the value of corresponding

iterations in the Table 1 is given.
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k uk vk n
1 1 1 1
2 3 2 2
3 17 12 4
4 577 408 8
5 665857 470832 16
6 886731088897 627013566048 32
7 1572584048032918633353217 1111984844349868137938112 64

1 7 5 3
2 99 70 6
3 19601 13860 12
4 768398401 543339720 24
5 1180872205318713601 835002744095575440 48

Table 2: Newton’s sequences for
√

2.

We see that all those approximations appear in the sequence given in Table 1.
The same is true for initial values arbitrary taken from the Table 1, in fact, it holds
for all n

R2n =
1
2

(
Rn +

2
Rn

)
.

This result is proved in [1], p. 440. By inspection through similar table for
√

3 =
(1; 1, 2), or

√
8 = (2; 1, 4) we can see that the same is true for the period s of length

2.
Does the same happen with other irrationals

√
D? In general, this depends on

the length of the period s. The main result of the paper is the following.
Theorem 3. Let s be the period of the representation of quadratic irrationals√

D in terms of continued fraction and r defined in a way

r =
{

s, if s is odd,
s/2, if s is even.

Then it holds for all natural n

R2nr =
1
2

(
Rnr +

D

Rnr

)
. (16)

Proof. Case r = s. This case is proved in [1], see also [2]. We give here a
different proof using Theorem 1.

R2s =

(
as + 1

as+1+

/
· · ·

/
1

a2s−1

)
Ps + Ps−1(

as + 1
as+1+

/
· · ·

/
1

a2s−1

)
Qs + Qs−1

=

(
a0 + Ps

Qs

)
Ps + Ps−1(

a0 + Ps

Qs

)
Qs + Qs−1

=

P 2
s

Q2
s

+ a0Ps + Ps−1

Qs

Ps
Qs

+ a0Qs + Qs−1

Qs

= R2
s + D
2Rs

,
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The same proof holds for iterations R2ns.
Case r = s/2. In a similar way, we can write

R2r=
p(ar, . . . , a2r−1)Pr + p(ar+1, . . . , a2r−1)Pr−1

p(ar, . . . , a2r−1)Qr + p(ar+1, . . . , a2r−1)Qr−1
= Qr+1Pr + QrPr−1

Qr+1Qr + QrQr−1
= by(15)

= Pr(Qr+1 + Qr−1) + Qr(Pr+1 + Pr−1)
2Qr(Qr+1 + Qr−1)

= by(16) = 1
2

(
Rr + D

Rr

)
.

2

4. Some remarks and open questions

For the number
√

21 = (4; 1, 1, 2, 1, 1, 8) (16) holds not only for r = 3, but also
for r = 2 as well. But, for the next number with the same period,

√
22 =

(4; 1, 2, 4, 2, 1, 8) (16) holds only for r = 3.
The interesting thing happens for s = 5. Let us see for example D = 13,√

D = (3; 1, 1, 1, 1, 6). Then,

1
2

(
Rk +

D

Rk

)
=





P2k
Q2k

, if k = 5n,

P2k−2

Q2k−2
, if k = 5n− 1,

P2k+2

Q2k+2
, if k = 5n + 1.

If k = 5n ± 2, then R2n is not a standard approximation. The same is true for√
29 = (5; 2, 1, 1, 2, 10) and for the next number with a period of length 5,

√
53 =

(7; 3, 1, 1, 3, 14). But, for
√

74 = (8; 1, 1, 1, 1, 16) (16) holds only for r = 5! What
can be said for other values of s?

Remark 1. The following is noted by the referee: If a > 1 is odd and D = a2+4,
then (17) holds true. Moreover,

1
2

(
Rk +

D

Rk

)
=





(a− 2)P2k+1 + P2k

(a− 2)Q2k+1 + Q2k
, if k = 5n + 2,

P2k − (a− 2)P2k−1

Q2k − (a− 2)Q2k−1
, if k = 5n− 2.

Also, the result for D = 21 can be generalized to the numbers of the form D = a2−4,
where a > 3 is odd.
Acknowledgments. The author is grateful to the referee for valuable remarks and
suggestions.
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