A note on continued fractions of quadratic irrationals

NEVEN ELEZOVIĆ*

Abstract. Quadratic irrationals \sqrt{D} have a periodic representation in terms of continued fractions. In this paper some relations between *n*-th approximations of quadratic irrationals are proved. Results are applied to Newton's approximations of quadratic irrationals.

Key words: Continued fractions, quadratic irrationals, Newton's aproksimations

Sažetak. O verižnim razlomcima korijena prirodnih brojeva. Za prirodni broj D iracionalni broj \sqrt{D} ima periodički prikaz pomoću verižnih razlomaka. U ovom se članku dokazuju neke relacije izmedju n-tih aproksimacija tih brojeva. Dobiveni su rezultati primijenjeni na Newtonove aproksimacije korijena prirodnih brojeva.

Ključne riječi: Verižni razlomci, Newtonove aproksimacije

AMS subject classifications: 11A55

Received February 10, 1997, Revised April 8, 1997

1. Introduction

Let D be a positive integer which is not a square. It is well known that quadratic irrationals \sqrt{D} have a pure periodic representation in terms of continued fractions ([4, Th. 3, p. 294]). Let us denote

$$a_0 + \frac{1}{a_1 +} / \frac{1}{a_2 +} / \dots / \frac{1}{a_n +} / \dots := a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_2 + \frac{1}{a_n + \frac$$

*Faculty of Electrical Engineering and Computing, University of Zagreb, Unska 3, HR-10000 Zagreb, Croatia, e-mail: neven.elez@fer.hr

N. Elezović

Let s be the length of the period. We use the following notation:

$$\sqrt{D} = a_0 + \frac{1}{a_1 + 1} / \frac{1}{a_2 + 1} / \dots / \frac{1}{a_s + 1} / \frac{1}{a_1 + 1} / \dots =: (a_0; a_1, a_2, \dots, a_s).$$

For example

$$\begin{split} \sqrt{2} &= (1;2), \\ \sqrt{3} &= (1;1,2), \\ \sqrt{7} &= (1;1,1,1,4) \end{split}$$

etc.

We denote the n-th approximation in the standard way

$$R_n = a_0 + \frac{1}{a_1 +} / \frac{1}{a_2 +} / \dots / \frac{1}{a_{n-1}} = \frac{P_n}{Q_n}.$$
 (1)

Then, as it is well known, it holds

$$P_{1} = a_{0} \qquad Q_{1} = 1; P_{2} = a_{0}a_{1} + 1 \qquad Q_{2} = a_{1}; P_{k} = a_{k-1}P_{k-1} + P_{k-2} \qquad Q_{k} = a_{k-1}Q_{k-1} + Q_{k-2}.$$

$$(2)$$

2. Some properties of approximations by continued fractions

Representation

$$\sqrt{D} = (a_0; a_1, \dots, a_s)$$

of a quadratic irrational has the following property [4, Th. 3, p. 294]

$$a_0 = [\sqrt{D}],\tag{3}$$

$$a_s = 2a_0,\tag{4}$$

$$a_1, \dots, a_{s-1}$$
 is symmetrical, i.e. $a_i = a_{s-i}, i = 1, \dots, s-1.$ (5)

Let us introduce polynomials (p_k) by recursive relations

$$p_{0} := 1,$$

$$p_{1}(x_{1}) := x_{1},$$

$$p_{2}(x_{1}, x_{2}) := x_{1}x_{2} + 1,$$

$$p_{k}(x_{1}, \dots, x_{k}) := x_{k}p_{k-1}(x_{1}, \dots, x_{k-1}) + p_{k-2}(x_{1}, \dots, x_{k-2}).$$
(6)

The connection between such polynomials and sequences (P_n) , (Q_n) is obvious:

$$P_n = p_n(a_0, a_1, \dots, a_{n-1}), \tag{7}$$

$$Q_n = p_{n-1}(a_1, \dots, a_{n-1}), \quad (Q_1 = 1)$$
(8)

In the sequel, we shall write polynomials p_n without subscript, since this cannot lead to confusion. Let us prove some lemmas.

Lemma 1. Polynomials p are symmetric in the sense

$$p(x_1, \dots, x_n) = p(x_n, \dots, x_1).$$
 (9)

Proof. Easy, by induction. **Lemma 2.** *It holds*

$$p(x_1, x_2, \dots, x_n) = x_1 p(x_2, \dots, x_n) + p(x_3, \dots, x_n).$$

Proof. Using (6) and Lemma 1. **Theorem 1.** It holds, for all positive integers n:

$$P_{ns} = a_0 Q_{ns} + Q_{ns-1}.$$
 (11)

and

$$DQ_{ns} = a_0 P_{ns} + P_{ns-1}.$$
 (12)

Proof. We shall take n = 1, the same proof holds for all n. Since $a_s = 2a_0$, we have

$$\begin{split} \sqrt{D} &= a_0 + \frac{1}{a_{1+}} \left/ \frac{1}{a_{2+}} \right/ \dots \left/ \frac{1}{a_{s-1+}} \right/ \frac{1}{a_0 + \sqrt{D}} \\ &= \frac{p(a_0, a_1, \dots, a_{s-1}, a_0 + \sqrt{D})}{p(a_1, a_2, \dots, a_{s-1}, a_0 + \sqrt{D})} = \frac{(a_0 + \sqrt{D})P_s + P_{s-1}}{(a_0 + \sqrt{D})Q_s + Q_{s-1}}. \end{split}$$

From this, it follows

$$a_0 P_s + P_{s-1} - DQ_s = \sqrt{D}(a_0 Q_s + Q_{s-1} - P_s)$$

The assertion follows since \sqrt{D} is irrational.

Theorem 2. If s is even and r = s/2, then it holds for all positive integers n:

$$\frac{P_{nr}}{Q_{nr}} = \frac{P_{nr+1} - P_{nr-1}}{Q_{nr+1} - Q_{nr-1}} \tag{13}$$

and

$$D = \frac{P_{nr}}{Q_{nr}} \cdot \frac{P_{nr+1} + P_{nr-1}}{Q_{nr+1} + Q_{nr-1}}$$
(14)

Proof. We shall take again n = 1. Since $a_{2r} = a_s = 2a_0$, we have

$$\begin{split} \sqrt{D} &= \frac{\left(a_r + \frac{1}{a_{r+1+}} \middle/ \cdots \middle/ \frac{1}{a_0 + \sqrt{D}}\right) P_r + P_{r-1}}{\left(a_r + \frac{1}{a_{r+1+}} \middle/ \cdots \middle/ \frac{1}{a_0 + \sqrt{D}}\right) Q_r + Q_{r-1}} \\ &= \frac{p(a_r, \dots, a_{2r-1}, a_0 + \sqrt{D}) P_r + p(a_{r+1}, \dots, a_{2r-1}, a_0 + \sqrt{D}) P_{r-1}}{p(a_r, \dots, a_{2r-1}, a_0 + \sqrt{D}) Q_r + p(a_{r+1}, \dots, a_{2r-1}, a_0 + \sqrt{D}) Q_{r-1}} \end{split}$$

The sequence a_1, \ldots, a_{2r-1} is symmetric. By Lemma 1 and 2:

$$p(a_r, \dots, a_{2r-1}, a_0 + \sqrt{D}) = (a_0 + \sqrt{D})p(a_r, \dots, a_{2r-1}) + p(a_r, \dots, a_{2r-2})$$
$$= \sqrt{D}p(a_r, \dots, a_{2r-1}) + p(a_r, \dots, a_{2r-1}, a_0)$$
$$= \sqrt{D}p(a_1, \dots, a_r) + p(a_0, \dots, a_r)$$
$$= \sqrt{D}Q_{r+1} + P_{r+1}.$$

29

(10)

N. Elezović

Hence,

$$\sqrt{D} = \frac{(\sqrt{D}Q_{r+1} + P_{r+1})P_r + (\sqrt{D}Q_r + P_r)P_{r-1}}{(\sqrt{D}Q_{r+1} + P_{r+1})Q_r + (\sqrt{D}Q_r + P_r)Q_{r-1}}.$$

From this the assertion easily follows.

3. Newton's approximations

The sequence (R_n) has the best approximation property: between all rationals with the denominator $\leq Q_n$, R_n is the best approximation for \sqrt{D} ([4, Th. 2, p. 290; 3, Th. 181, p. 151]. But, the sequence (R_n) converges to \sqrt{D} very slowly, compared to the Newton's sequence

$$r_{n+1} = \frac{1}{2} \left(r_n + \frac{D}{r_n} \right). \tag{15}$$

So, it is interesting to compare the relation between those sequences. As an illustration we give sequences for $\sqrt{2}$, in *Tables* 1 and 2.

n	P_n	Q_n
1	1	1
2	3	2
3	7	5
4	17	12
5	41	29
6	99	70
7	239	169
8	577	408
9	1393	985
10	3363	2378
11	8119	5741
12	19601	13860
13	47321	33461
14	114243	80782
15	275807	195025
16	665857	470832
17	1607521	1136689
:		
23	318281039	225058681
24	768398401	543339720
25	1855077841	1311738121
:		
31	367296043199	259717522849
32	886731088897	627013566048
33	2140758220993	1513744654945
:		
47	489133282872437279	345869461223138161
48	1180872205318713601	835002744095575440
49	2850877693509864481	2015874949414289041
:		
63	651385640666817642523007	460599203683050495415105
64	1572584048032918633353217	1111984844349868137938112
~ -	10.100101000100000000000000000000000000	00101101000010.000111

Table 1: Sequence of approximations for $\sqrt{2}$.

Let us see what happens with the Newton's sequences. For the initial values of r_1 we take some approximation given in Table 1. Iterations r_k are represented in the form of rationals, $r_k = \frac{u_k}{v_k}$. In the last column, the value of corresponding iterations in the *Table 1* is given.

```
N. Elezović
```

k	u_k	v_k	n
1	1	1	1
2	3	2	2
3	17	12	4
4	577	408	8
5	665857	470832	16
6	886731088897	627013566048	32
7	1572584048032918633353217	1111984844349868137938112	64
1	7	5	3
2	99	70	6
3	19601	13860	12
4	768398401	543339720	24
5	1180872205318713601	835002744095575440	48

Table 2: Newton's sequences for $\sqrt{2}$.

We see that all those approximations appear in the sequence given in *Table 1*. The same is true for initial values arbitrary taken from the *Table 1*, in fact, it holds for all n

$$R_{2n} = \frac{1}{2} \left(R_n + \frac{2}{R_n} \right).$$

This result is proved in [1], p. 440. By inspection through similar table for $\sqrt{3} = (1; 1, 2)$, or $\sqrt{8} = (2; 1, 4)$ we can see that the same is true for the period s of length 2.

Does the same happen with other irrationals \sqrt{D} ? In general, this depends on the length of the period s. The main result of the paper is the following.

Theorem 3. Let s be the period of the representation of quadratic irrationals \sqrt{D} in terms of continued fraction and r defined in a way

$$r = \begin{cases} s, & \text{if } s \text{ is odd,} \\ s/2, & \text{if } s \text{ is even.} \end{cases}$$

Then it holds for all natural n

$$R_{2nr} = \frac{1}{2} \left(R_{nr} + \frac{D}{R_{nr}} \right). \tag{16}$$

Proof. Case r = s. This case is proved in [1], see also [2]. We give here a different proof using *Theorem 1*.

$$R_{2s} = \frac{\left(a_{s} + \frac{1}{a_{s+1}+} \middle/ \cdots \middle/ \frac{1}{a_{2s-1}}\right)P_{s} + P_{s-1}}{\left(a_{s} + \frac{1}{a_{s+1}+} \middle/ \cdots \middle/ \frac{1}{a_{2s-1}}\right)Q_{s} + Q_{s-1}} = \frac{\left(a_{0} + \frac{P_{s}}{Q_{s}}\right)P_{s} + P_{s-1}}{\left(a_{0} + \frac{P_{s}}{Q_{s}}\right)Q_{s} + Q_{s-1}}$$
$$= \frac{\frac{P_{s}^{2}}{Q_{s}^{2}} + \frac{a_{0}P_{s} + P_{s-1}}{Q_{s}}}{\frac{P_{s}}{Q_{s}} + \frac{a_{0}Q_{s} + Q_{s-1}}{Q_{s}}} = \frac{R_{s}^{2} + D}{2R_{s}},$$

33

The same proof holds for iterations R_{2ns} .

Case r = s/2. In a similar way, we can write

$$R_{2r} = \frac{p(a_r, \dots, a_{2r-1})P_r + p(a_{r+1}, \dots, a_{2r-1})P_{r-1}}{p(a_r, \dots, a_{2r-1})Q_r + p(a_{r+1}, \dots, a_{2r-1})Q_{r-1}} = \frac{Q_{r+1}P_r + Q_rP_{r-1}}{Q_{r+1}Q_r + Q_rQ_{r-1}} = by(15)$$
$$= \frac{P_r(Q_{r+1} + Q_{r-1}) + Q_r(P_{r+1} + P_{r-1})}{2Q_r(Q_{r+1} + Q_{r-1})} = by(16) = \frac{1}{2}\left(R_r + \frac{D}{R_r}\right).$$

4. Some remarks and open questions

For the number $\sqrt{21} = (4; 1, 1, 2, 1, 1, 8)$ (16) holds not only for r = 3, but also for r = 2 as well. But, for the next number with the same period, $\sqrt{22} = (4; 1, 2, 4, 2, 1, 8)$ (16) holds only for r = 3.

The interesting thing happens for s = 5. Let us see for example D = 13, $\sqrt{D} = (3; 1, 1, 1, 1, 6)$. Then,

$$\frac{1}{2}\left(R_k + \frac{D}{R_k}\right) = \begin{cases} \frac{P_{2k}}{Q_{2k}}, & \text{if } k = 5n, \\ \frac{P_{2k-2}}{Q_{2k-2}}, & \text{if } k = 5n-1, \\ \frac{P_{2k+2}}{Q_{2k+2}}, & \text{if } k = 5n+1. \end{cases}$$

If $k = 5n \pm 2$, then R_{2n} is not a standard approximation. The same is true for $\sqrt{29} = (5; 2, 1, 1, 2, 10)$ and for the next number with a period of length 5, $\sqrt{53} = (7; 3, 1, 1, 3, 14)$. But, for $\sqrt{74} = (8; 1, 1, 1, 1, 16)$ (16) holds only for r = 5! What can be said for other values of s?

Remark 1. The following is noted by the referee: If a > 1 is odd and $D = a^2+4$, then (17) holds true. Moreover,

$$\frac{1}{2}\left(R_k + \frac{D}{R_k}\right) = \begin{cases} \frac{(a-2)P_{2k+1} + P_{2k}}{(a-2)Q_{2k+1} + Q_{2k}}, & \text{if } k = 5n+2, \\ \frac{P_{2k} - (a-2)P_{2k-1}}{Q_{2k} - (a-2)Q_{2k-1}}, & \text{if } k = 5n-2. \end{cases}$$

Also, the result for D = 21 can be generalized to the numbers of the form $D = a^2 - 4$, where a > 3 is odd.

Acknowledgments. The author is grateful to the referee for valuable remarks and suggestions.

References

[1] G. CHRYSTAL, *Textbook of Algebra, Vol II*, Chelsea Publishing Company, Chelsea, 1896.

N. Elezović

- [2] L. E. CLEMENS, K. D. MERILL, D. W. ROEDER, Continues fractions and series, J. Number Theory 54(1995), 309–317.
- [3] G. H. HARDY, E. M. WRIGHT, An Introduction to the Theory of Numbers (third edition), Oxford Univ. Press, Oxford, 1954.
- [4] W. SIERPIŃSKI, *Elementary Theory of Numbers*, Państwowe Wydawnictwo Naukowe, Warszawa, 1964.