A note on continued fractions of quadratic irrationals

Neven Elezović*

Abstract

Quadratic irrationals \sqrt{D} have a periodic representation in terms of continued fractions. In this paper some relations between n-th approximations of quadratic irrationals are proved. Results are applied to Newton's approximations of quadratic irrationals.

Key words: Continued fractions, quadratic irrationals, Newton's aproksimations

Sažetak. O verižnim razlomcima korijena prirodnih brojeva. Za prirodni broj D iracionalni broj \sqrt{D} ima periodički prikaz pomoću verižnih razlomaka. U ovom se članku dokazuju neke relacije izmedju n-tih aproksimacija tih brojeva. Dobiveni su rezultati primijenjeni na Newtonove aproksimacije korijena prirodnih brojeva.

Ključne riječi: Verižni razlomci, Newtonove aproksimacije

AMS subject classifications: 11A55

Received February 10, 1997, Revised April 8, 1997

1. Introduction

Let D be a positive integer which is not a square. It is well known that quadratic irrationals \sqrt{D} have a pure periodic representation in terms of continued fractions ([4, Th. 3, p. 294]). Let us denote

$$
a_{0}+\frac{1}{a_{1}+} / \frac{1}{a_{2}+} / \cdots / \frac{1}{a_{n}+} / \cdots:=a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{\ddots}+\frac{1}{a_{n}+\ddots}}} .
$$

[^0]Let s be the length of the period. We use the following notation:

$$
\sqrt{D}=a_{0}+\frac{1}{a_{1}+} / \frac{1}{a_{2}+} / \cdots / \frac{1}{a_{s}+} / \frac{1}{a_{1}+} / \cdots=:\left(a_{0} ; a_{1}, a_{2}, \cdots, a_{s}\right)
$$

For example

$$
\begin{aligned}
\sqrt{2} & =(1 ; 2) \\
\sqrt{3} & =(1 ; 1,2) \\
\sqrt{7} & =(1 ; 1,1,1,4)
\end{aligned}
$$

etc.
We denote the n-th approximation in the standard way

$$
\begin{equation*}
R_{n}=a_{0}+\frac{1}{a_{1}+} / \frac{1}{a_{2}+} / \cdots / \frac{1}{a_{n-1}}=\frac{P_{n}}{Q_{n}} \tag{1}
\end{equation*}
$$

Then, as it is well known, it holds

$$
\begin{array}{ll}
P_{1}=a_{0} & Q_{1}=1 \\
P_{2}=a_{0} a_{1}+1 & Q_{2}=a_{1} \tag{2}\\
P_{k}=a_{k-1} P_{k-1}+P_{k-2} & Q_{k}=a_{k-1} Q_{k-1}+Q_{k-2}
\end{array}
$$

2. Some properties of approximations by continued fractions

Representation

$$
\sqrt{D}=\left(a_{0} ; a_{1}, \ldots, a_{s}\right)
$$

of a quadratic irrational has the following property [4, Th. 3, p. 294]

$$
\begin{gather*}
a_{0}=[\sqrt{D}] \tag{3}\\
a_{s}=2 a_{0}, \tag{4}
\end{gather*}
$$

Let us introduce polynomials $\left(p_{k}\right)$ by recursive relations

$$
\begin{align*}
p_{0} & :=1 \\
p_{1}\left(x_{1}\right) & :=x_{1} \\
p_{2}\left(x_{1}, x_{2}\right) & :=x_{1} x_{2}+1 \tag{6}\\
p_{k}\left(x_{1}, \ldots, x_{k}\right) & :=x_{k} p_{k-1}\left(x_{1}, \ldots, x_{k-1}\right)+p_{k-2}\left(x_{1}, \ldots, x_{k-2}\right) .
\end{align*}
$$

The connection between such polynomials and sequences $\left(P_{n}\right),\left(Q_{n}\right)$ is obvious:

$$
\begin{gather*}
P_{n}=p_{n}\left(a_{0}, a_{1}, \ldots, a_{n-1}\right), \tag{7}\\
Q_{n}=p_{n-1}\left(a_{1}, \ldots, a_{n-1}\right), \quad\left(Q_{1}=1\right) \tag{8}
\end{gather*}
$$

In the sequel, we shall write polynomials p_{n} without subscript, since this cannot lead to confusion. Let us prove some lemmas.

Lemma 1. Polynomials p are symmetric in the sense

$$
\begin{equation*}
p\left(x_{1}, \ldots, x_{n}\right)=p\left(x_{n}, \ldots, x_{1}\right) \tag{9}
\end{equation*}
$$

Proof. Easy, by induction.
Lemma 2. It holds

$$
\begin{equation*}
p\left(x_{1}, x_{2}, \ldots, x_{n}\right)=x_{1} p\left(x_{2}, \ldots, x_{n}\right)+p\left(x_{3}, \ldots, x_{n}\right) . \tag{10}
\end{equation*}
$$

Proof. Using (6) and Lemma 1.
Theorem 1. It holds, for all positive integers n :

$$
\begin{equation*}
P_{n s}=a_{0} Q_{n s}+Q_{n s-1} \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
D Q_{n s}=a_{0} P_{n s}+P_{n s-1} \tag{12}
\end{equation*}
$$

Proof. We shall take $n=1$, the same proof holds for all n. Since $a_{s}=2 a_{0}$, we have

$$
\begin{aligned}
\sqrt{D} & =a_{0}+\frac{1}{a_{1}+} / \frac{1}{a_{2}+} / \cdots / \frac{1}{a_{s-1}+} / \frac{1}{a_{0}+\sqrt{D}} \\
& =\frac{p\left(a_{0}, a_{1}, \ldots, a_{s-1}, a_{0}+\sqrt{D}\right)}{p\left(a_{1}, a_{2}, \ldots, a_{s-1}, a_{0}+\sqrt{D}\right)}=\frac{\left(a_{0}+\sqrt{D}\right) P_{s}+P_{s-1}}{\left(a_{0}+\sqrt{D}\right) Q_{s}+Q_{s-1}}
\end{aligned}
$$

From this, it follows

$$
a_{0} P_{s}+P_{s-1}-D Q_{s}=\sqrt{D}\left(a_{0} Q_{s}+Q_{s-1}-P_{s}\right)
$$

The assertion follows since \sqrt{D} is irrational.
Theorem 2. If s is even and $r=s / 2$, then it holds for all positive integers n :

$$
\begin{equation*}
\frac{P_{n r}}{Q_{n r}}=\frac{P_{n r+1}-P_{n r-1}}{Q_{n r+1}-Q_{n r-1}} \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
D=\frac{P_{n r}}{Q_{n r}} \cdot \frac{P_{n r+1}+P_{n r-1}}{Q_{n r+1}+Q_{n r-1}} \tag{14}
\end{equation*}
$$

Proof. We shall take again $n=1$. Since $a_{2 r}=a_{s}=2 a_{0}$, we have

$$
\begin{aligned}
\sqrt{D} & =\frac{\left(a_{r}+\frac{1}{a_{r+1}+} / \cdots / \frac{1}{a_{0}+\sqrt{D}}\right) P_{r}+P_{r-1}}{\left(a_{r}+\frac{1}{a_{r+1}+} / \cdots / \frac{1}{a_{0}+\sqrt{D}}\right) Q_{r}+Q_{r-1}} \\
& =\frac{p\left(a_{r}, \ldots, a_{2 r-1}, a_{0}+\sqrt{D}\right) P_{r}+p\left(a_{r+1}, \ldots, a_{2 r-1}, a_{0}+\sqrt{D}\right) P_{r-1}}{p\left(a_{r}, \ldots, a_{2 r-1}, a_{0}+\sqrt{D}\right) Q_{r}+p\left(a_{r+1}, \ldots, a_{2 r-1}, a_{0}+\sqrt{D}\right) Q_{r-1}}
\end{aligned}
$$

The sequence $a_{1}, \ldots, a_{2 r-1}$ is symmetric. By Lemma 1 and 2:

$$
\begin{aligned}
p\left(a_{r}, \ldots, a_{2 r-1}, a_{0}+\sqrt{D}\right) & =\left(a_{0}+\sqrt{D}\right) p\left(a_{r}, \ldots, a_{2 r-1}\right)+p\left(a_{r}, \ldots, a_{2 r-2}\right) \\
& =\sqrt{D} p\left(a_{r}, \ldots, a_{2 r-1}\right)+p\left(a_{r}, \ldots, a_{2 r-1}, a_{0}\right) \\
& =\sqrt{D} p\left(a_{1}, \ldots, a_{r}\right)+p\left(a_{0}, \ldots, a_{r}\right) \\
& =\sqrt{D} Q_{r+1}+P_{r+1} .
\end{aligned}
$$

Hence,

$$
\sqrt{D}=\frac{\left(\sqrt{D} Q_{r+1}+P_{r+1}\right) P_{r}+\left(\sqrt{D} Q_{r}+P_{r}\right) P_{r-1}}{\left(\sqrt{D} Q_{r+1}+P_{r+1}\right) Q_{r}+\left(\sqrt{D} Q_{r}+P_{r}\right) Q_{r-1}}
$$

From this the assertion easily follows.

3. Newton's approximations

The sequence $\left(R_{n}\right)$ has the best approximation property: between all rationals with the denominator $\leq Q_{n}, R_{n}$ is the best approximation for \sqrt{D} ([4, Th. 2, p. 290; 3, Th. 181, p. 151]. But, the sequence $\left(R_{n}\right)$ converges to \sqrt{D} very slowly, compared to the Newton's sequence

$$
\begin{equation*}
r_{n+1}=\frac{1}{2}\left(r_{n}+\frac{D}{r_{n}}\right) \tag{15}
\end{equation*}
$$

So, it is interesting to compare the relation between those sequences. As an illustration we give sequences for $\sqrt{2}$, in Tables 1 and 2 .

n	P_{n}	Q_{n}
1	1	1
2	3	2
3	7	5
4	17	12
5	41	29
6	99	70
7	239	169
8	577	408
9	1393	985
10	3363	2378
11	8119	5741
12	19601	13860
13	47321	33461
14	114243	80782
15	275807	195025
16	665857	470832
17	1607521	1136689
:		
23	318281039	225058681
24	768398401	543339720
25	1855077841	1311738121
!		
31	367296043199	259717522849
32	886731088897	627013566048
33	2140758220993	1513744654945
:		
47	489133282872437279	345869461223138161
48	1180872205318713601	835002744095575440
49	2850877693509864481	2015874949414289041
;		
63	651385640666817642523007	460599203683050495415105
64	1572584048032918633353217	1111984844349868137938112

Table 1: Sequence of approximations for $\sqrt{2}$.

Let us see what happens with the Newton's sequences. For the initial values of r_{1} we take some approximation given in Table 1. Iterations r_{k} are represented in the form of rationals, $r_{k}=\frac{u_{k}}{v_{k}}$. In the last column, the value of corresponding iterations in the Table 1 is given.

k	u_{k}	v_{k}	n
1	1	1	1
2	3	2	2
3	17	12	4
4	577	408	8
5	665857	470832	16
6	886731088897	627013566048	32
7	1572584048032918633353217	1111984844349868137938112	64
		7	5
1	99	70	6
2	19601	13860	12
3	768398401	543339720	24
4	1180872205318713601	835002744095575440	48

Table 2: Newton's sequences for $\sqrt{2}$.
We see that all those approximations appear in the sequence given in Table 1. The same is true for initial values arbitrary taken from the Table 1, in fact, it holds for all n

$$
R_{2 n}=\frac{1}{2}\left(R_{n}+\frac{2}{R_{n}}\right)
$$

This result is proved in [1], p. 440. By inspection through similar table for $\sqrt{3}=$ $(1 ; 1,2)$, or $\sqrt{8}=(2 ; 1,4)$ we can see that the same is true for the period s of length 2.

Does the same happen with other irrationals \sqrt{D} ? In general, this depends on the length of the period s. The main result of the paper is the following.

Theorem 3. Let s be the period of the representation of quadratic irrationals \sqrt{D} in terms of continued fraction and r defined in a way

$$
r=\left\{\begin{aligned}
s, & \text { if } s \text { is odd } \\
s / 2, & \text { if } s \text { is even. }
\end{aligned}\right.
$$

Then it holds for all natural n

$$
\begin{equation*}
R_{2 n r}=\frac{1}{2}\left(R_{n r}+\frac{D}{R_{n r}}\right) \tag{16}
\end{equation*}
$$

Proof. Case $r=s$. This case is proved in [1], see also [2]. We give here a different proof using Theorem 1.

$$
\begin{aligned}
R_{2 s} & =\frac{\left(a_{s}+\frac{1}{a_{s+1}+} / \cdots / \frac{1}{a_{2 s-1}}\right) P_{s}+P_{s-1}}{\left(a_{s}+\frac{1}{a_{s+1}+} / \cdots / \frac{1}{a_{2 s-1}}\right) Q_{s}+Q_{s-1}}=\frac{\left(a_{0}+\frac{P_{s}}{Q_{s}}\right) P_{s}+P_{s-1}}{\left(a_{0}+\frac{P_{s}}{Q_{s}}\right) Q_{s}+Q_{s-1}} \\
& =\frac{\frac{P_{s}^{2}}{Q_{s}^{2}}+\frac{a_{0} P_{s}+P_{s-1}}{Q_{s}}}{\frac{P_{s}}{Q_{s}}+\frac{a_{0} Q_{s}+Q_{s-1}}{Q_{s}}}=\frac{R_{s}^{2}+D}{2 R_{s}},
\end{aligned}
$$

The same proof holds for iterations $R_{2 n s}$.
Case $r=s / 2$. In a similar way, we can write

$$
\begin{aligned}
R_{2 r} & =\frac{p\left(a_{r}, \ldots, a_{2 r-1}\right) P_{r}+p\left(a_{r+1}, \ldots, a_{2 r-1}\right) P_{r-1}}{p\left(a_{r}, \ldots, a_{2 r-1}\right) Q_{r}+p\left(a_{r+1}, \ldots, a_{2 r-1}\right) Q_{r-1}}=\frac{Q_{r+1} P_{r}+Q_{r} P_{r-1}}{Q_{r+1} Q_{r}+Q_{r} Q_{r-1}}=\operatorname{by}(15) \\
& =\frac{P_{r}\left(Q_{r+1}+Q_{r-1}\right)+Q_{r}\left(P_{r+1}+P_{r-1}\right)}{2 Q_{r}\left(Q_{r+1}+Q_{r-1}\right)}=\operatorname{by}(16)=\frac{1}{2}\left(R_{r}+\frac{D}{R_{r}}\right)
\end{aligned}
$$

4. Some remarks and open questions

For the number $\sqrt{21}=(4 ; 1,1,2,1,1,8)(16)$ holds not only for $r=3$, but also for $r=2$ as well. But, for the next number with the same period, $\sqrt{22}=$ $(4 ; 1,2,4,2,1,8)(16)$ holds only for $r=3$.

The interesting thing happens for $s=5$. Let us see for example $D=13$, $\sqrt{D}=(3 ; 1,1,1,1,6)$. Then,

$$
\frac{1}{2}\left(R_{k}+\frac{D}{R_{k}}\right)= \begin{cases}\frac{P_{2 k}}{Q_{2 k}}, & \text { if } k=5 n \\ \frac{P_{2 k-2}}{Q_{2 k-2}}, & \text { if } k=5 n-1 \\ \frac{P_{2 k+2}}{Q_{2 k+2}}, & \text { if } k=5 n+1\end{cases}
$$

If $k=5 n \pm 2$, then $R_{2 n}$ is not a standard approximation. The same is true for $\sqrt{29}=(5 ; 2,1,1,2,10)$ and for the next number with a period of length $5, \sqrt{53}=$ $(7 ; 3,1,1,3,14)$. But, for $\sqrt{74}=(8 ; 1,1,1,1,16)(16)$ holds only for $r=5$! What can be said for other values of s ?

Remark 1. The following is noted by the referee: If $a>1$ is odd and $D=a^{2}+4$, then (17) holds true. Moreover,

$$
\frac{1}{2}\left(R_{k}+\frac{D}{R_{k}}\right)= \begin{cases}\frac{(a-2) P_{2 k+1}+P_{2 k}}{(a-2) Q_{2 k+1}+Q_{2 k}}, & \text { if } k=5 n+2 \\ \frac{P_{2 k}-(a-2) P_{2 k-1}}{Q_{2 k}-(a-2) Q_{2 k-1}}, & \text { if } k=5 n-2\end{cases}
$$

Also, the result for $D=21$ can be generalized to the numbers of the form $D=a^{2}-4$, where $a>3$ is odd.
Acknowledgments. The author is grateful to the referee for valuable remarks and suggestions.

References

[1] G. Chrystal, Textbook of Algebra, Vol II, Chelsea Publishing Company, Chelsea, 1896.
[2] L. E. Clemens, K. D. Merill, D. W. Roeder, Continues fractions and series, J. Number Theory 54(1995), 309-317.
[3] G. H. Hardy, E. M. Wright, An Introduction to the Theory of Numbers (third edition), Oxford Univ. Press, Oxford, 1954.
[4] W. Sierpiński, Elementary Theory of Numbers, Państwowe Wydawnictwo Naukowe, Warszawa, 1964.

[^0]: *Faculty of Electrical Engineering and Computing, University of Zagreb, Unska 3, HR-10 000 Zagreb, Croatia, e-mail: neven.elez@fer.hr

