Introduction

Development of 3-D and 4-D ultrasonography enabled better prenatal detection of many malformations among which is detection of malformations of primary and secondary palate.\(^1\)\(^-\)\(^9\) Facial clefting accounts for 13% of all congenital malformations.\(^10\) Malformation of the lip and palate may be isolated or associated with other malformations and/or syndromes, often connected with chromosomopathies.\(^10\) Typical facial clefting, including isolated cleft lip, cleft lip and cleft palate or isolated cleft palate have prevalence between 6.4 to 9.1/10,000 births, respectively. Cleft lip accounts for 36% of all lip and palate malformations and the prevalence of isolated orofacial clefts accounts for 61.7% of total facial cleftings recorded at birth.\(^11\)\(^-\)\(^13\) In 45 to 47% of cases the defect affects the palate only.\(^11\)\(^-\)\(^13\) From the epidemiological point of view, isolated malformations of the palate are associated with other malformations in about 18% of patients, while in 27.2% they are associated with syndromes.\(^11\) Cleft lip and cleft palate is isolated in 70 to 79% of cases and in another 21 to 29% it is part of a syndrome or associated with other malformations.\(^12\)\(^-\)\(^17\) Chmait in 2006 reported 45 cases of cleft lip and cleft palate diagnosed by 2-D and 3-D ultrasound, 21.6% of which were diagnosed as isolated, later not detected by prenatal ultrasound follow up.\(^20\)

The report of EUROSCAN 2000 showed that the sensitivity of the ultrasound was 27% for cleft lip and cleft palate, 17% for isolated forms of cleft lip and 7% for isolated cleft palate.\(^21\) Other reports indicate a detection rate of up to 73% for cleft lip by 2-D scan performed after 20 weeks of pregnancy.\(^22\)\(^-\)\(^24\) although in some reports the ultrasound detection sensitivity of isolated cleft of the palate was 0%.\(^25\) The prevalence of this malformation and especially the high incidence of associations with other malformations have prompted researchers to improve ultrasonographic definition of the secondary palate. Usually prenatal karyotyping should be offered in all cases of cleft lip/palate detected by 2-D and 3-D...
ultrasound, because of the increased risk of aneuploidy. Patients should be informed that some malformations which can not be detected by ultrasound can be present at birth in babies with different forms of clefts.15,26,27 The MRI is ancillary to ultrasound. Indeed the MRI can allow a better staging of the lesion, but the experiences are old and now we are waiting the results in diagnosing of cleft lip-palate by new 3D techniques. Very important: it is impossible to make a screening by MRI.8,17,19,24

Depiction of the palate by ultrasound

The primary palate includes the lips and jaw, nasal bone which is the most easily detected part of the anatomy by 2-D scan (Figure 1). According to many investigators, it is important to visualise the lips, jaw and the root of the nose in oblique coronal scan, scrolling upwards during the routine second trimester scan. Those investigators who use 3-D consider oblique coronal scan of fetal face as a part of the routine. The secondary palate consists of hard palate, which runs behind and horizontally of the incisive foramen and soft palate or velum, which curves downwards and backwards from the posterior part of the hard palate and ends in the uvula. Usually the clefting of the secondary palate is always in midline and results from failure of the palatine processes to elevate and grow (Figure 2).
Clefting of the secondary palate starts from uvula and soft palate, but isolated cleft of the soft palate with intact hard palate is also possible (Figure 3).28 The shadowing of the maxilla made visualization and the diagnosis of clefts of the secondary palate difficult but not impossible. Sherer et al.29 stated that visualization of the secondary palate is not difficult by 2-D scan in axial plane, but they did not report any case of defects of secondary palate. The new 3-D volume probe enables multiplanar view and surface rendering, offering more possibilities for detection of the clefting of the primary and secondary palate.3,4,30–34 By 3-D ultrasound it is possible to visualize the alveolar and maxilla by axial scan and secondary palate by coronal scan scrolling from the front to back in coronal plane.7

With this method of depiction there is the problem of the maxillary shadow. Campbell overcomes this problem by rotating the face through 180° and scrolling from back to front.35 This technique, described as “reverse
face view’, eliminating the shadowing of the maxilla, offers the possibility of a good visualization of the hard palate, but not of the soft palate. Platt et al. found a different technique to visualize the soft palate in axial 3-D plane (multiplanar and surface rendering) with inverted image to avoid the shadowing of the maxilla and using a little acoustic box scrolling from the chin to the nose (‘flipped-face view’). Platt et al. used a sagittal scan for depiction of the mandible, the tongue, the maxilla; the alveolar ridge and the secondary complete palate are systematically seen and offers a good mode to diagnosing the clefts of the primary and secondary palate. Faure et al. proposed the same technique of Platt in coronal scan, stating that they were able to visualize the palate in all 100 low-risk fetuses between 17 and 23 weeks of gestation, with normal anatomy after delivery. Pilu and Segata described a new multiplanar approach to study the secondary palate using TUI (Tomography Ultrasound Imaging). To avoid the shadowing of the alveolar ridge, the authors used a scan with an angle of 45° and obtained a satisfactory visualization in 10 out of 15 fetuses between 19 and 28 weeks of gestation.

There are many possibilities to study systematically the primary and the secondary palate by 2-D ultrasound, but 3-D is better method offering a lot of different possibilities. It is reasonable to say that a golden standard is to have experience with all techniques, specially in cases with doubtful diagnosis of facial clefting, or when is needed to define exactly the exact anatomy of the lesion. Campbell proposed screening of secondary palate in the first trimester depicting it in the axial plane by 3-D rendering. He stated that it was easy to visualize the secondary palate detecting delta sign (Figure 10) from 11 to 14 weeks. Performing 3-D ultrasonography in the second trimester (from 19 to 22 weeks) is associated with increased detection rate of facial clefts (Figure 11).

Secondary palate

The scheme of Berkowitz (Figure 3) illustrates that the uvula is always involved in cleft palate and could simplify detection, but in practice it is difficult to detect this small anatomical part either with 2-D or 3/4-D ultrasound.

Two dimensional ultrasonography

Two-dimensional scans can be used to study the hard and the soft parts of the secondary palate and for detection of the uvula (Figure 4). However, it is necessary that the fetal head should be in a good position, possibly

Figure 6. 3D multiplanar view and surface rendering of the secondary palate. Slika 6. Trodimenzionalni multiplanarni i površinski prikaz sekundarnog nepca.

Figure 7. 3D multiplanar view and surface rendering of the secondary palate (reverse mode) in sagital and coronal sections. Slika 7. Trodimenzionalni multiplanarni i površinski prikaz sekundarnog nepca (obrnuti prikaz) u sagitalnom i koronarnom presjeku.
A routine check of the secondary palate is therefore impossible in practice and it may take an hour or two to obtain a reliable result. This type of study is therefore only feasible when there is a diagnosis of facial cleft.

3-4 dimensional ultrasonography

Three-dimensional scans have better possibility to depict cleft of the palate, because a volume can be retrieved and saved, while the »off-line« analysis enables an infinite number of scanning planes. Various methods have been proposed:

- axial surface rendering plane with a small box (»flipped-face view«) and inverted scan to avoid

![Figure 8. 3D multiplanar view and surface rendering of the secondary palate in the coronal section (scrolling from the frontal plane backwards). Slika 8. 3D multiplanarni i površinski prikaz sekundarnog nepca u koronarnom presječu (od sprijeda prema straga)](image1)

![Figure 9. Tomographic Ultrasound Imaging (TUI) of the secondary palate in the coronal plane. Slika 9. Tomografski ultrazvučni prikaz (TUP) sekundarnog nepca u koronarnoj ravnini.)](image2)

![Figure 10. 3D multiplanar view of the maxilla (delta sign) and the hard palate at 12 weeks of gestation. Slika 10. Multiplanarni trodimenzionalni prikaz maksile (delta znak) i tvrdoga nepca s 12 tjedana trudnoće.](image3)

maxillary shadow (scrolling upwards) by sagittal (Figure 5) or coronal scan (Figure 6)
– coronal surface rendering plane, reverse-face (scrolling forwards) (Figure 7) or front face (scrolling backwards) scan (Figure 8)
– tomographic ultrasound imaging (TUI) sagittal scan at the angle of 45° (Figure 9).

Conclusion

Detection of facial clefts should be routinely included in the anomaly screening scan at 20 weeks of gestation. If there are problems or any doubts concerning the existence of cleft palate or lip, than 3-D ultrasound can be useful with all its possibilities and »off-line« analysis. Nowadays it would seem reasonable to propose study of the hard and soft palate by 3-D ultrasound only in cases with suspected or confirmed diagnosis of facial clefting and in cases with a positive family history.

Special acknowledgement to Gabriele Centini.

References

10th EUROPEAN CONGRESS OF ENDOCRINOLOGY
Berlin, 3–7 May 2008

Organizer: European Society of Endocrinology (ESE) with German Society of Endocrinology (DGE)

Selected topics (plenary lectures, symposia, "meet the experts"): HRT in women – a never ending story • Estrogens and cardiovascular disease • Contraception in the new millennium • New insights in PCOS • An underestimated hormone: Prolactin • How to prevent osteoporosis • Gene/Environment interactions in autoimmune endocrine disease • Is there a crisis in male reproduction • Protein modifications/Proteomics • New treatment approaches for type 2 diabetes mellitus • Let’s get older – lessons to learn from centenarians • Central regulation of appetite and body weight – the role of peripheral signals • Androgen therapy of aging male • Stem cell and regeneration • New therapeutic options in diabetes • Too early-too late: The timing of puberty • When and why do we wake up – the endocrine regulation of sleeps in humans

Hotel accommodation: possible in 24 hotels, price per night 109€ to 230€.

See: INTERPLAN AG: www.interplan.de; e-mail: ece@interplan.de

All information: www.ece2008.com