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ON DECOMPOSITION OF POLYNOMIALS OVER RINGS

Ivica Gusić

University of Zagreb, Croatia

Abstract. We discuss the behavior of decomposability of polynomi-
als under ring extension. Also, we state two open problems.

1. Introduction

Let K and M be fields of characteristic 0 with K ⊆ M and let f be a
polynomial over K. We say that f is decomposable over M if there exist
polynomials g, h over M of degrees at least 2 such that f = g ◦ h.
We say that a decomposition of f is equivalent to the decomposition f = g ◦h

if it is of the form
f = (g ◦ L−1) ◦ (L ◦ h)

for a linear polynomial L. It is well known that decomposability over an
extension of K implies decomposability over K (see [4, Theorem 6.]). Here
we present a proof of a slightly more complete result (see [2, Theorem 7.]).
The proof is based on elementary properties of Galois group that can be found
in [3]. By the sake of simplicity we work in zero characteristic, although in
most cases analogous results are valid over arbitrary fields, under assumption
that the characteristic does not divide the degree of f .

Theorem 1.1. Let f be a polynomial over K and let f = g ◦ h be a

decomposition over M . Then:

(a) The decomposition f = g ◦ h is equivalent to a decomposition f =
(g ◦ L−1) ◦ (L ◦ h) over K.

(b) The following statements are equivalent:

(i) g and h are defined over K.

(ii) L is defined over K.
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(iii) h is defined over K.

(iv) c0 ∈ K and ci ∈ K \ {0} for an index i ∈ {1, . . . , r}, where

h(X) := crX
r + · · · + c0.

Proof. (a) Put L(X) := X
cr

− c0

cr

, h̃ := L◦h, g̃ = g◦L−1. Then g◦h = g̃◦h̃.

Note that h̃ is monic (i.e. with leading coefficient 1) and that h̃(0) = 0. Let
us fix a Galois closure M ′ of M and let σ be arbitrary automorphism of M ′

over K. Then from

f = g̃ ◦ h̃

we get

σ(f) = σ(g̃) ◦ σ(h̃).

Here σ acts on polynomials over M ′ by acting on the coefficients. Since
σ(f) = f , we get

f = g̃ ◦ h̃ = σ(g̃) ◦ σ(h̃)

By [4, Theorem 5.], we see that σ(h̃) = ah̃ + b for suitable a, b ∈ M ′. Since

h̃ is monic, we get a = 1, and since h̃(0) = 0, we get b = 0. It is valid for all

automorphisms σ of M ′ over K, and so h̃ is defined over K.
Now we get

σ(g̃) ◦ h̃ = g̃ ◦ h̃

for all σ, hence

σ(g̃) = g̃

for all σ, which implies that g̃ is defined over K, too.
(b) (i) ⇒ (ii), (ii) ⇒ (iii), and (iii) ⇒ (iv) are obvious. It remains to

prove (iv) ⇒ (i). As in (a) we get σ(h) = Ah + B for some A, B ∈ M ′, where
σ is a fixed K-automorphism of M ′. Then from ci ∈ K \ {0} for an index
i ∈ {1, . . . , r}, we get ci = Aci, hence A = 1. Now from c0 ∈ K we get B = 0.
Since it is valid for arbitrary σ, we see that h is defined over K, which implies,
as in (a), that g is defined over K, too.

Remark 1.2. In the proof of Theorem 1.1, we infer from [4, Theorem 5.]
that the relation g ◦ h = G ◦ H for nonconstant polynomials over a field k of
zero characteristic, with degh = degH , implies H = ah + b for some a, b ∈ k.
Since the proof of Theorem 5 from [4] is pretty sophisticated, we present here
a direct proof of the needed result.

By g ◦ h = G ◦ H and degh = degH we get H = ah + h0 for a ∈ k

and a polynomial h0 with degh0 < degH . We claim that h0 is a constant
polynomial. Assume the contrary and look at the Taylor expansion:

g ◦ h = G ◦ (ah + h0) =

m∑

0

(G(i) ◦ h0)
(ah)i

i!

where m denotes the degree of G. The left side is a k-linear combination of
polynomials {1, h, . . . , hm} while the right side is a sum of m +1 polynomials
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with degrees (m−i)degh0+ideg h for i = 0, 1, . . . , m. Especially, all members
of the right side are non-constant and of different degrees. Hence, the set of
degrees appearing on the left side is different from the set of degrees appearing
on the right side. It is impossible, and so h0 should be constant.

In some applications arises need for analogous results over rings (see [1]).
However, we have to make some restrictions on the rings or polynomials. In
this paper we consider polynomials over integral domains in characteristic 0.
It occurs that the case of monic polynomials is much simpler. In that case we
prove that all decompositions are essentially defined over the integral closure
(see Theorem 2.1, Corollary 2.2 and Example 2.3). It is an open question if
the result is optimal (see Problem 3.1).
In Example 2.4 we construct a (non-monic) polynomial over A := Z[

√
−5]

that is decomposable over K := Q[
√
−5], but not over A. It seems that it

is an effect of non-triviality of the ideal class group of K. In Theorem 2.5
we prove that such examples do not exist over unique factorization domains
of zero characteristic. It is an open question if that condition on the ring is
minimal (see Problem 3.2).

2. Decomposition of polynomials over rings

In this section we consider the problem from Section 1 for polynomials
over rings. Let us recall some standard definitions and facts. A ring A is called
an integral domain if it is a commutative ring with 1 (where 1 6= 0) without
zero divisors. The field of fractions of A is the smallest field containing A

(defined uniquely up to an isomorphism). If M is a field containing A and
x ∈ M then we say that x is integral over A if x is a root of a monic polynomial
over A. The set of all elements from M that are integral over A form a ring
(the integral closure of A in M). We say that A is integrally closed if it is
integrally closed in its field of fractions.

We begin our consideration with monic polynomials. In the following
theorem we simulate the proof from [1, Theorem 2.1].

Theorem 2.1. Let A be an integral domain of zero characteristic and let

f be a monic polynomial over A. Let K denote the field of fractions of A and

B the integral closure of A in K. Assume that f = g ◦ h is a decomposition

over an extension field of K. Then it is equivalent to a decomposition over

B.

Proof. By Theorem 1.1, the decomposition f = g ◦ h is equivalent to
f = G◦H , where G, H ∈ K[X ] are monic and H(0) = 0. We claim that G, H

are defined over B.
Put f(X) = (X − α1) · · · (X − αn), G(X) = (X − β1) · · · (X − βm), for

α1, . . . , αn integral over A and β1, . . . , βm algebraic over K. Thus,

f(X) = (H(X) − β1) · · · (H(x) − βm).
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The polynomials f(X) and H(X) − βj, j = 1, 2, . . . , m have a factorization
into linear polynomials over a suitable algebraic extension of K containing
α1, . . . , αn; β1, . . . , βm. Since the factorization is unique,

H(X) − βj = const ·
∏

i∈I

(X − αi),

for a suitable set of indices I ⊂ {1, 2, . . . , n}. But H(X)− βj is monic, which
implies that const = 1. Since the αi’s are integral over A and H(0) = 0, we
conclude that βj , j = 1, . . . , m (the roots of G(X)) are integral over A and
also the coefficients of H are integral over A. Since H is defined over K, we
see that it is defined over B. Similarly, G ∈ B[X ].

Corollary 2.2. Let A be an integrally closed integral domain of zero

characteristic and let f be a monic polynomial over A. Let K denote the field

of fractions of A. Assume that f = g ◦h is a decomposition over an extension

field of K. Then it is equivalent to a decomposition over A.

Let us notice on two restrictions in Corollary 2.2:

(i) restriction on A (closeness),
(ii) restriction on f (unitarity).

In the following example we show that the restriction on A is not super-
fluous.

Example 2.3. Let A := Z[
√
−3]. Then K = Q[

√
−3] and B = Z[ρ],

where ρ is a nontrivial third root of unity. Put f(X) = X4 + 2ρX3 − X ∈
A[X ], and f = g ◦ h, where g(X) := X2 − ρ2X and h(X) := X2 + ρX , is a
nontrivial decomposition over over B. This decomposition is not equivalent to
a decomposition over A. However, it is sufficient to check the decompositions
f = G ◦ H with G(X) = X2 + aX and H(X) = X2 + bX , for which we get
b = ρ.

In the case of non-monic polynomials we have to make wider restrictions
on the rings. Namely, the following example shows that Theorem 2.1 fails
generally for arbitrary polynomials even over the rings of integers of number
fields (which are integrally closed).

Example 2.4. A quartic polynomial f(X) := uX4 + vX3 + zX2 + wX

is decomposable (over a field) if and only if there exist a 6= 0, α 6= 0, b and β

such that uX4 + vX3 + zX2 + wX = a(αX2 + βX)2 + b(αX2 + βX). It is

easy to see that this is satisfied if and only if the condition z = v3+8u2w
4uv

holds

(and then should be a = u
α2 , β = vα

2u
and b = 2uw

αv
).

Assume now that A := Z[
√
−5], the ring of integers of the quadratic field

K := Q[
√
−5], and that

f(X) := 3(1 +
√
−5)X4 + 12X3 + 2(4 −

√
−5)X2 + 2(1 −

√
−5)X.
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It is easy to see that f satisfies the condition of decomposability, so it is
decomposable over K. Assume that it is decomposable over A. Then a =
3(1+

√
−5)

α2 ∈ A, β = α(1−
√
−5)

3 ∈ A \ {0} and b = 6
α
∈ A with α ∈ A \ {0}. It is

well known that there exist non-principal different prime ideals P , Q and Q
(the conjugate of Q) in A satisfying
(2) = P2, (3) = QQ, (1 +

√
−5) = PQ and (1 −

√
−5) = PQ

(here, for any y ∈ A, we denote by (y) the principal ideal in A generated by
y).
Now, we get (β) = (α)PQ , and so Q|(α). Also (a)(α)2 = PQQ2, hence (α) =
Q, a contradiction.

In the following theorem (which is a generalization and an extension of
[1, Theorem 2.1]) we show that the restriction on f in Corollary 2.2 may be
omitted provided A is a unique factorization domain.

Theorem 2.5. Let A be a unique factorization domain of zero character-

istic and let f be a polynomial over A. Let K denote the field of fractions of

A. Assume that f = g ◦ h is a decomposition over an extension field of K.

Then it is equivalent to a decomposition over A.

Proof. It is sufficient to prove the theorem for primitive polynomials f ,
i.e. polynomials satisfying: if f = cg for c ∈ A, and g ∈ A[X ], then c is
invertible (in A). According to Theorem 1.1, the decomposition f = g ◦ h is

equivalent to a decomposition f = g̃ ◦ h̃ over K with h̃(0) = 0. Further, it is
equivalent to a decomposition

f = ǫG ◦ H

with G, H over A primitive, H(0) = 0 and ǫ ∈ K. We claim that ǫ is invertible
(in A). To see this, assume that vp(ǫ) > 0 for a prime p ∈ A. Then f̄ = 0,
where f̄ denotes the reduction of f modulo p. It contradicts the fact that
f is primitive. Namely, a polynomial over A is primitive if and only if its
reductions modulo p are non-zero for all primes p of A. Assume now that

vp(ǫ) < 0 for a prime p. Then 1
ǫ
f = 0, and so, since the reduction modulo p

is a homomorphism, Ḡ ◦ H̄ = 0. Since G, H are primitive we see that H̄ is
constant, and since H(0) = 0, we see that H̄ = 0, a contradiction. Therefore,
vp(ǫ) = 0 for all primes p, hence ǫ is invertible.

Remark 2.6. The fact that the product of primitive polynomials (over a
unique factorization domain) is a primitive polynomial is known as the Gauss
lemma, and it is a direct consequence of the fact that the reduction modulo
p is a homomorphism. The composition of primitive polynomials is not a
primitive polynomial, generally. To formulate a more precise result, let us
say that a polynomial f is super-primitive if the polynomial f(X) − f(0) is
primitive. However, if f is super-primitive, then it is primitive. It is easy
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to see that the following is valid: if g, h are primitive polynomials, and h is
super-primitive, then g ◦ h is primitive.

Note that Example 2.4 shows that Theorem 2.5 is not valid for Dedekind
domains, generally.

3. Open problems

Problem 3.1. Prove or disprove. Let A be an integral domain of zero

characteristic. Let B denote the integral closure of A in the field of fractions

of A. Assume that B 6= A. Then there exists a monic polynomial f over A

that is decomposable over B but not over A.

Problem 3.2. Prove or disprove. Let A be the ring of integers of a

number field K. Assume that A is not a unique factorization domain. Then

there exists a polynomial f over A that is decomposable over K but not over

A.
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