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AUTOMORPHISM GROUPS OF FINITE RINGS OF
CHARACTERISTIC p?> AND p?

CHITENG’A JOHN CHIKUNJI
Botswana College of Agriculture, Botswana

ABSTRACT. In this paper we describe the group of automorphisms of
a completely primary finite ring R of characteristic p? or p3 with Jacobson
radical J such that J3 = (0), J? #£ (0); the annihilator of J coincides
with 72; and the maximal Galois (coefficient) subring R, of R lies in the
center of R.

1. INTRODUCTION

Throughout this paper we will assume that all rings are finite, associative
(but generally not commutative) with identities, denoted by 1 # 0, that ring
homomorphisms preserve 1, a ring and its subrings have the same 1 and
that modules are unital. Recall that an Artinian ring R with radical J is
called primary if R/J is simple and is called completely primary if R/J is
a division ring. The object of this paper is to describe explicitly, the group
of automorphisms of a completely primary finite ring R of characteristic p?
or p® such that if J is the Jacobson radical of R, then J3 = (0), J? # (0),
the annihilator of J coincides with J2 and the coefficient subring R, lies in
the center of R. The automorphisms of R are determined by their images on
the generators of the additive group of R and on the invertible element b of
order p" — 1 of the Galois subring R, of R. This supplements the author’s
earlier work [1] on rings of characteristic p. We freely use the definitions and
notations introduced in [1, 2, 3, 5].

Let R be a completely primary finite ring, J the set of all zero divisors in
R, p a prime, k, n and r be positive integers. Then the following results will
be assumed (see [5]): |R| = p™", J is the Jacobson radical of R, J" = (0),
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|T| =p"=V7 R/T = GF(p"), the finite field of p” elements and charR = p*,
where 1 < k < n; the group of units G is a semi-direct product Ggr =
(14+7) x ¢ (b), of its normal subgroup 1+7 of order p(* =" by a cyclic subgroup
(b) of order p" — 1. If n = k, it is known that, up to isomorphism, there is
precisely one completely primary ring of order p™* having characteristic p*
and residue field GF(p"). It is called the Galois ring GR(p™, p*) and a
concrete model is the quotient Z,x[X]/(f), where f is a monic polynomial of
degree r, irreducible modulo p. Any such polynomial will do: the rings are all
isomorphic. Trivial cases are GR(p™, p") = Zp» and GR(p", p) = Fpn. In
fact, R = Zyn [b], where b is an element of R of multiplicative order p” — 1;
J = pR and Aut(R) = Aut(R/pR) (see [5, Proposition 2]).

Let R be a completely primary finite ring, |R/J| = p" and charR = p*.
Then it can be deduced from [4] that R has a coefficient subring R, of the
form GR(p*", p*) which is clearly a maximal Galois subring of R. Moreover,
if R, is another coefficient subring of R then there exists an invertible element
z in R such that R, = xR,z (see [5, Theorem 8]). Furthermore, there exist

h
my,...,mp € J and o1,...,05 € Aut(R,) such that R = R, & > Rom; (as
i=1
R,-modules), m;r, = r%im,, for all r, € R, and any ¢ = 1,...,h (use the
decomposition of R, ®z R, in terms of Aut(R,) and apply the fact that R is
a module over R, ®z R,). Moreover, o1,...,0, are uniquely determined by
R and R,. We call o; the automorphism associated with m; and o1,...,0p
the associated automorphisms of R with respect to R,.

Now, let R, = Z,x[b] be a coefficient subring of R of order p*” and
characteristic p* and let K, = (b)U{0}, denote the set of coset representatives
of J in R. Then it is easy to show that every element of R, can be written
uniquely as Zf:o a;p’, where a; € K,.

2. CUBE ZERO RADICAL COMPLETELY PRIMARY FINITE RINGS

We now assume that R is a completely primary finite ring with Jacobson
radical J such that J2 = (0) and J? # (0). These rings were studied by
the author who gave their constructions for all characteristics, and for details
of the general background, the reader is referred to [2] and [3]. Since R is
such that J2 = (0), then by one of the above results, charR is either p, p?
or p>. The ring R contains a coefficient subring R, with charR, = charR,
and with R,/pR, equal to R/J. Moreover, R, is a Galois ring of the form
GR(p*", p*), k =1, 2 or 3. Let ann(J) denote the two-sided annihilator of
J in R. Of course ann(J) is an ideal of R. Because J3 = (0), it follows easily

that 72 C ann(J).
h
We know from the above results that R = R, ® >_ R,m;, where m; € J,
i=1

and that there exist automorphisms o; € Aut(R,) (i = 1,...,h) such that
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mire = r9imy, for all r, € R, and for all ¢ = 1,..., h; and the number A and
the automorphisms o1, ..., o0, are uniquely determined by R and R,. Again,
because J3 = (0), we have that p>m; = 0, for all m; € J. Further, pm; = 0
for all m; € ann(J). In particular, pm; = 0 for all m; € J2.

2.1. A construction of rings of characteristic p?> and p>. Let R, be the Galois
ring GR(p*", p?) or GR(p®", p?). Let s, d, t be integers with either 1 < 1+t <
s2orl<d+t<s®ifcharR, =p?>and 1 < 1+d+t < s?if charR, = p°.
Let V be an R,/pR,-space which when considered as an R,-module has a
generating set {v1,...,v:} and let U be an R,-module with an R,-module
generating set {u1, ..., us}; and suppose that d > 0 of the u; are such that
pu; # 0. Since R, is commutative, we can think of them as both left and
right R,-modules.

Let (aéj), forl=0,1,...,torl=1, 2,...,d+t be s x s linearly indepen-
dent matrices with entries in R,/pR, if charR, = p?> and [ =0, 1,...,d +t
be s x s linearly independent matrices with entries in R,/pR, if charR, = p®.

On the additive group R = R, ® U @ V we define multiplication by the
following relations:

d ¢
_ o 1 dtt, .
Uity = aijpf + E a;;pur + E i Uk;
=1 k=1

(2.1) UV = VpU; = UUjUN = PUk = VU = VU = 0;

wie = aug, vpa = avg; (1 <4, j, A<s; 1<1<d; 1<k<t);
where a, af;, aéj, af;rk € R,/Jo, and f = 1 or 2, depending on whether
charR, = p? or p3.

By the above relations, R is a completely primary finite ring of character-
istic p? or p? in which the maximal Galois subring lies in Z(R), the center of
R, and with Jacobson radical 7 = pROU @V, ann(J) = J?, J?> =pROV
or J? = pU @ V(if charR = p?); J? = p?R& pU @V (if charR = p?), and
J? = (0). We call (aéj) the structural matrices of the ring R and the numbers
p, n, 1, s, d and t invariants of the ring R.

Throughout, we need the following result proved in [2, Theorem 6.1]

THEOREM 2.1. Let R be a ring. Then R is a completely primary finite
ring of characteristic p> or p® in which the maximal Galois subring lies in
Z(R), with mazimal ideal J such that J3 = (0), J? # (0), annihilator of J
coincides with J? if and only if R is isomorphic to one of the rings given by
the relations in (2.1).

REMARK 2.2. We know that R = R,®R,m1P...H R,mp, where m; € J;
and that J = pR, ® Rym1 ® ... D Rymy. Since J3 = (0) and J? = ann(J),
with 72 # (0), we can write

{ma,...,mp} ={u1,...,us, v1,...,0¢}
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where, uq,...,us € J —J% and vq,...,v: € J?, so that s+t = h.
In view of the above considerations and by 1.8 of [2], the non-zero elements
of

(2.2) {1, p, u1,...,Us, PUL,...,DUs, V1,..., Ut}
form a “basis” for R over K,.
Since pm = 0, for all m € J?2, it is easy to check that if charR = p?, then
either
(i) pe J% or
(i) pe T — T~
For clarity of our work, we consider the two cases separately in the rest of the
paper.
REMARK 2.3. Suppose that charR = p? and p lies in J2. In this case,
(2.2) becomes
{15 D, Ury...,Usy Viy--ny ’Ut};
and by [2, Proposition 3.2], 1 < 1+t < s2. Hence, every element of R may
be written uniquely as

s t
ao + arp + Zbiui + Z ckVk; (G0, a1, by, cp € K,);
i=1 k=1

and therefore,

t
o k
Uil = Qy;P + g ;5 Vk
k=1

o
where af,

aj; € Ro/pRo.

REMARK 2.4. If charR = p? and p lies in J —J?2, suppose that d > 0 is the
number of the elements pu; in (2.2) which are not zero and suppose, without
loss of generality, that puy,...,pug are the d non-zero elements. Then, (2.2)
becomes

{1, p, u1,...,Us, PUL,...,PUG, V1,..., Ut}
and by [2, Proposition 3.2], we have 1 < d +t < s2. Hence, every element of
R may be written uniquely as

s d t
ao + a1p + Zbiui + chpuz + de’vk; (ao, ai, b, ¢, dy € K,)
i=1 =1 =1

and
d t
_2 : l k+d
Ui = aijpul—i— E Ay Uk,
=1 k=1

where aéj, affd € Ro/pR,.
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REMARK 2.5. If the characteristic of R is p?, the argument is similar to
that given in the case where charR = p?. However, in this case, p € J — J?>
and p? € J2 and an arbitrary element in R is of the form

s d t
ao + a1p + azp® + Z biu; + Z cpuy + Z divg,
i =1 3

and we define multiplication by

d t
_ 0,2 l k+d, .
Uilj = QP + E aijpulJr E a5 Uk;
=1 k=1

and the only parameters left in defining R are the s x s linearly independent
structural matrices A; = (aéj) over R,/pR,, foralll =0, 1,...,t+1,...,t+d.

3. THE GROUP OF AUTOMORPHISMS

First note that since R is generated by b, u; and v, it is sufficient to give
the images of these elements to completely determine the automorphisms.
Next, any automorphism from R to R when reduced to R, must fix R,. So
to determine this group, we first show that the Galois subring R, of R and
the ideal J2 given by J2 = pU @V (if charR = p?, and p € J — J?), are
invariant under any automorphism ¢ € Aut(R). We then compute the image
of the rest of the generators, by a fixed element of Aut(R).

LEMMA 3.1. Let ¢ € Aut(R). Then ¢(R,) is a mazimal Galois subring
of R which is equal to R,.

PROOF. Suppose there is an automorphism ¢ : R — R. It is obvious
that ¢(R,) is a maximal Galois subring of R so that there exists an invertible
element z € R such that z¢(R,)z~! = R,.

Now, consider the map 1 : R — R given by r — x¢(r)z 1. Then, clearly,
1 is an automorphism of R which sends R, to itself. O

LEMMA 3.2. Let ¢ € Aut(R) and suppose that charR = p? and p €
J — J?. Then ¢(J?) = J>.

PRrOOF. This follows easily since for any v € J2, we have ¢(v) € J?
because [¢(v)]? = ¢(v?) = 0. O

REMARK 3.3. Following the above two results, we remark that if charR =
p? and p € J2, then ¢(pR,) C J?; and if charR = p?, then ¢(p*R,) C J>.

LEMMA 3.4. Let R be a ring of Theorem 2.1 and let ¢ € Aut(R). Then
foreachj=1,... s, eachk=1,...,t; and each I =1,...,d;

2 s d t
O(u) =D aip’ + Y bujup+ Y cipur+ Y dijvg;
i=1 pu=1 =1 k=1
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2 d t
¢(Uk) = Z eiRp’ + Z gnkPUn + Z fpkvpa
=1 n=1 p=1

and
d

d(pur) = aup® + Y bupuy,
p=1
where aij, bu, cij, dijs €iks gnk, for € Ro/pRo; and for ro € Ro, ¢(r,) =17,
for some o € Aut(R,).

PROOF. Since

s t
u; € J =pRodUdV :pRO@ZRouH@ZRovk,
j=1 k=1

foralli=1,...,s; and

t
v € T2 =pR, &V =pR, & Y Rov,,

p=1
or
d t
(S jQ =pUV = ZRopun@ZRovm
n=1 p=1
(if charR = p?), or
d t
v €T =P Ro®pU BV =p*Ro @ Y Roptiy @ Y Rov),
n=1 p=1

(if charR = p3) for all p=1,...,t and all n = 1,...,d; the result follows.
The last part may be deduced from Lemma 3.1 since ¢|g, = 0 € Aut(R,).
o

REMARK 3.5. In Lemma 3.4, if charR = p? and p € J?, then the coef-
ficients of p?, pu, pu,, and pu, are all equal to zero; and if charR = p? and
p € J — J?, the scalars asj, €;; and the coefficient of p?, are all zero.

3.1. Notation. We first establish some notation that will be useful in the rest
of the paper. So, let R be a ring of Theorem 2.1. If 0 € Aut(R,) and = € Gpg,
the group of unit elements in R, define the mappings a,, 1, from R to R as
follows:

2 s d t
aa(z a;p" + Z bjuj + Z cipu; + Z divg)
i=0 j=1 1=1 k=1
2 s d t
= Za;’pl + Z bgu]- + Z c]pu; + Z dj vy,
i=0 j=1 =1 k=1
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and
2 ) s d t
’lﬁx(z a;p’ + Z bjUj + Z cpu; + Z dkvk)
i=0 j=1 =1 k=1
2 s d t
= :E(Z a;p* + Z bju; + Z cipu + Z drvg)x
i=0 j=1 1=1 k=1

Also, if

2 s d t
Q/J(Z aipi + Z bjuj + Z Ccipuy + Z dk’l)k)
i=0 j=1 =1 k=1
2 4 s d t
= aip' + Y bio(wy) + > app(u) + Y drd(vr),
i=0 j=1 =1 k=1

where ¢ € Autg, /pr,(U) and ¢ € Autg, /g, (V), let Yo = ag; if
2 . s d t
BO aip' + > bju, + chpuz + devk)
i=0 j=1 = _
*Zazp +Zbu]+zza2] ]p +chl] 5 PU

11]1 =1 j=1

+ ZZZ) dijvr + chpul + devk,

k=1 j=1

where a;;, ¢ij, dij € Ro/pRo, let Bo = Bay; if

2 s d t
v(z aip’ + Z bjuj + Z cpug + Z divk)
i=0 j=1 =1 k=1
2 s d d t
= Z aip’ + Z bju; + Z cipug + Z ancp® + Z divg,
i=0 j=1 =1 =1 k=1

where ay; € Ro/pR,, let yo = ya,; and if

2 s d t 2 s
5(2 a;pt + Z bju; + Z cpu; + Z drvg) = Z a;ipt + Z bjuj
i=0 j=1 _ — = =
+ Z cipug + Z dror + Z Z drgnkpun + Z Z dreirp’,

n=1k=1 i=1 k=1
where ex, gyt € Ro/pRo, let 60 = da,. Finally, if A = (a;;), define A7 =
(ag;)-
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Due to some similarities of these rings, we present in this paper, detailed
proofs of results on rings of characteristic p? in which p € J2. The other two
cases may be proved in a similar manner with minor modifications.

We start with the following.

3.2. Rings in which p € J?2.

THEOREM 3.6. Let R be a ring of Theorem 2.1 and of characteristic p?
in which p € J?, with the invariants p, n, r, s, and t. Then, ¢ € Aut(R) if
and only if

s t
Y(ao+arp+ Y biui+ Y cxvy)
i=1 k=1

s t
—1 —1 —-1 —1
=zalzr  +zafr p+ E ayzbiz " p+ E E1RTCRT P

i=1 k=1
s t s t
+ be‘;:c_lga(ui) + Z Z dpizbdz " oy + Z zegx  p(v),
i=1 k=11i=1 k=1

where 0 € Aut(R,), x € Gg, ¢ € Autg,/pr,(U), ¢ € Autr, /pr, (V); a1i, dii,
e € Ro/pRo.

PROOF. Let ¢ € Aut(R). Then there exists © € Gr such that ¢¥(R,) =
rR,x™!, and hence, ¥(r) = zr°z~1, for any r € R,, for some automorphism
o of R,. Since

R=49(Ro) ® Y (Ro)tb(ui) ® Y th(Ro)tb(vr)

and conjugation is an automorphism of R,
R=R,® Z Roaflw(ui)x D Z Roafld)(vk)x.

But J3 = (0), J? # (0), hence, 2~ '(u;)r = a;b(u;) and x~1(vg)z =
Br(vr), where o, O € Ro/pRo, foralli=1,...,s;k=1,...,t
Thus,

R=R,®Y Roayp(u;) &> Rofrt(vy)
and hence,
R=Ro®Y Roto(ui) ® Y  Roth(vp).

Therefore, for any ¢ € {1,...,s} and any k € {1,...,t}, ¥(u;) = o(u;) +
ayp + Y drivr and P(vg) = ep + ¢(vr), where ¢ € Autg /,r, (U); ¢ €
AutRo/pRo (V), and a1q, dkia e € Ro/pRo.
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Conversely, let ¥ be as defined above. We need to check that for every
r=a,+ap+ Zle bu; + 2221 ek € R,

S
0:r — al+aip+ Zah—b‘i’er Zelkcngr

i=1 k=1
Zbﬂpul —l—ZZd;ﬂb Uk—i-chqb k),
k=1 i=1

where p(u;) = x_le(ui)x, and ¢(vg) = 2710(vg)x, is an automorphism of R.
So, let s = dy + dip+ Y i eiu; + 2221 frvr be another element in R.
Then,

s t
f:5 — dg+d‘fp+2a1iefp+zemf;?p+

Ze o(u; +szk16 vk+2fk¢ V).

k=11=1

0(r)8(s) = agdg +[agd] +afdglp+ Y [agavie] +aib7dglp

=1

t
+Y_lagen 7 + ewneidg p+Za 4 b7d3)p(us)
k=1

—l—ZZa dgied + dg;ib?d2) uHZ aS fg + ¢dg) (v,

k=1 1i=1

+Zb €7 p(us)p(uy).

4,j=1
On the other hand,

0(rs) = (todo)” + (aods +a1do)"p+ > ari(ace; + bido)"p

=1

t s
+ > ewn(aofi + cudo)p+ Y _(aoei + bido)” p(us)

k=1 i=1

+22d;ﬂaoez+bd UkJrZaokaerd 7o (vk)

k=11=1

+ Z (biejag;)p + Z Z (biejag;)” d(v).

i,j=1 k=14,j=1



34 C. J. CHIKUNJI

From the above equalities, we deduce that
t s
(3.1) (@g)p+ > (i) dlon) = > @lu)p(uy).
k=1 ij=1
Now, it is obvious that ¢ = 1,0 and hence, v is an automorphism of R. 0

From the assumptions that o € Aut(R,), x € Gr, ¢ € Autg, /g, (U)
and ¢ € Autp, /pr,(V) one obtains the following: ¢(u;) = Y. _; byiu, and
o(vg) = ZZ=1 CokUp, With by, cpr € Ro/DPRo.

Hence, (3.1) implies that

t t s
(ai;)’p+ Z cpk(afj)"vp = Z Z buibugal, vy
p.k=1 p=0v,u=1
or
t t s
Z Cpk(a;cj)a’”p = Z Z buibujag,vp,
pk=0 p=0v,p=1
where c,, = 1, ¢ = ey and v, = p. It follows that
s t
(3.2) D buibpal, =Y cato(al;) (p=0, 1,....1).
v,u=1 k=0

Hence, in matrix form, (3.2) implies that
t

BTA,B =) cuAf (p=0, 1,....1),
k=0
where o € Aut(R,), B € GL(s, R,/pR,) and C = (¢x,) € GL(1+1t,R,/pR,).
Conversely, suppose there exist o € Aut(R,), B € GL(s,R,/pR,) and
C = (cox) € GL(1 +t, Ro/pR,), with

t
BTA,B = ZcpkAg (p=0,1,...,1),
k=0

where ¢, = 1, c1x = e1k.
Consider the map ¥ : R — R defined by

Ylao+arp+ Y by cwor) = af +laf + Y aubf + Y eweflp +
i k i k
D> bbuiu, +
v %
Z[Z b7 dpi + Z Cr Cok]vp.
P 7 k

Then it is routine to verify that ¢ is a homomorphism from R to R and
that it preserves the identity element.
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But Kery consists of all elements

s t
ao—l—alp—i—Zbiui—l—chvk €R

i=1 k=1
such that

al + [a] + Z ay;b + Z e1Lchlp + Z Z b7 byiu,+
i k v
Z[Z b7 dpi + Z e Corlvp = 0;
p A k
which implies that

ag + [a] + Zaub;’ + Z eikcylp =0,
i k

D> bbyu, =0

and
S D o 0dei + Y cZeprlv, = 0.
P i k

Now,

Z Z b7b,u, = 0 implies that Zb;’b,ﬂ- =0, foreveryv=1,...,s;

v [ %

since {u;, ..., us} is linearly independent over R,/pR,. Further, (b,;) is in-
vertible, so that the homogeneous system ), b7b,; = 0; v =1,...,s, has the
trivial solution as its unique solution and hence, b; = 0 (for every i =1,...,s)
since o € Aut(R,).

Similarly, ¢, = 0 for every k =1,...,t since (c,r)exs is invertible. Hence,

ag + [af + Zaubf + Z eikcy]p = 0,
i k

with ¢ =0 forevery k=1,...,tand b; = 0 for every i = 1,..., s implies that
al + ajp =0, so that a{p = —aJ. But aip € pR,, implying that af € pR,, a
contradiction, since a, € K,. Hence, a, = a1 = 0.

Hence, Kery = (0) and therefore, v is injective, and since R is finite, ¢
is also surjective. Thus, 1 is an automorphism of R.

We have thus proved the following:

PRrOPOSITION 3.7. Let R be a ring of Theorem 2.1 and of characteristic
p? with the invariants p, n, r, s, t. Then v is an automorphism of R if
and only if there exist o € Aut(R,), B € GL(s,R,/pR,) and C = (cpk) €
GL(1 +t,R,/pR,) such that BTA,B = Z;ZO corAY, where A, and Ay are
structural matrices for R and coo = 1, c1 = e1.
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Thus, the set of elements ¢ € Aut(R,/pR,), C = (cor) € GL(1 +
t,R,/pR,), B € GL(s,R,/pR,) and 1+ J = pR, ® U @ V, determines all the
automorphisms of the ring R.

Consider the set of equations BTAPB = 22:1 cokAf, given in Proposition
3.7, with B = (b;;) € GL(s, Ro/pR,). Then, it is easy to see that B = (b;;)
is the transition matrix between the bases (u;) of J/J?2. Equally, C = (c,k)
is the transition matrix between the bases (vy) (k = 0, 1,...,t) of J2. By
calculating w,u, (the images of the u; under 1)) and comparing coefficients
of (v,) (p=0, 1,...,t) (the images of the v; under ) we obtain equations,
which in matrix form, are BTA,B = ZZ=1 Cok AT

The problem of determining the groups of automorphisms of our rings
amounts to classifying (1 4 ¢)—tuples of linearly independent matrices A,,
Ay, ..., A; under the above relation, B, C' being arbitrary invertible matrices,
o being an arbitrary automorphism and 1+ J being the normal subgroup of
Gr of order p(»—1r,

Let A be the set of all (1 + ¢)—tuples (A,, A1,...,A;) of s X s matrices
over R,/pR,. The group GL(s, R,/pR,) acts on A by “congruence”:

(Ao, A1,...,A;)-B=(BTA,B, B"A\B,..., BT A;B)
and on the left via

C- (A, Ap,... Ay)
= (c10A7 + c11AT + -+ 1t AT, . oA + e AT + -+ e AT,

where C' = (c,i). Thus, these two actions are permutable and define a (left)
action of G = GL(s, R,/pR,) x GL(1 +t, R,/pR,) on A:

(B, C) - (Ag, Ar,...,A)=C-(AZ,... A%) - B2,

for some fixed automorphism o. By restriction, G acts on the subset Y con-
sisting of (1 + t)—tuples Ag, Ai,..., A, linearly independent. This amounts
to studying the “congruence” action (via B) on GL(s, R,/pR,) on the set ) of
1+ t—dimensional subspaces of My s(R,/pR,), C just representing a change
of basis in a given space. In the same way, the whole action of G on A may
be represented as an action of GL(1 + ¢, R,/pR,) on the set A of subspaces
of dimension < 1 + ¢t. We may call two (1 + ¢)-tuples in the same G-orbit as
equivalent.

3.3. Rings in whichp € J — J>.

THEOREM 3.8. Let R be a ring of Theorem 2.1 and of characteristic p* in
which p € J — J?, with the invariants p, n, r, s, t, and d. Then, 1 € Aut(R)



AUTOMORPHISM GROUPS OF FINITE RINGS 37

if and only if

s d t
YP(a, + arp + Z biu; + Z crpuy + Z dyvr) = zaJa ' + zafz ' p
i=1 =1 k=1
+be"x ol(u; —I—Zthxb x~ pul—i-zz:cmxb T v,
=1 i=1 v=11=1

d ¢t
+ Zxcl " pp(uy) + Z xdx ™  p(vy) Z Z dperd s puy,
=1 k=1 n=1k=1

where o € Aut(R,), x € Gg, v € Autp, /pr,(U), ¢ € Autr, /pr,(V); bii, cui,
dnk S Ro/pRo.

Like we did for Theorem 3.6, we deduce from this the following:

PROPOSITION 3.9. Let R be a ring of characteristic p? in which R, lies in
the center, with the invariants p, n, r, s, t, d and in which p does not lie in
J?2. Then 1) is an automorphism of R if and only if there exist o € Aut(R,),
B € GL(s,R,/pR,) and C = (cpx) € GL(t +d, R, /pR,) such that BT A,B =

Z?g cokAf, where A, and A, are structural matrices for R.

3.4. Rings of characteristic p*>. We now consider the case of rings of Theorem
2.1 and of characteristic p3.

THEOREM 3.10. Let R be a ring of Theorem 2.1 and of characteristic p>
with the invariants p, n, r, s, t, d.Then ¢ € Aut(R) if and only if
s d t
Y(ap + arp + asp® + Z biu; + Z cpug + Z drvg)
i=1 1=1 k=1
s d
=zalz ' + zafzlp + zazp? + Z boirbx 1 p? + Z gorxcf x ™ p?
i=1 1=1

t s d s
+ Z eoprdlr'p? + Z bz o(ug) + Z Z bz puy
= i=1

=1 i=1
+Zch,sz x~ Uu-l-ZJUClI po(uy —l—Zxd x~ ¢Uk
v=11=1
+ Z Z dnkxd‘;x_lpun,
n=1k=1

where o € Aut(R,), v € Ggr, ¢ € Autg,/pr,(U), ¢ € Autgr, /pr,(V); bois €oks
Gol, bui, cuiy dpr € R, /pR..

From this we deduce the following matrix version of the result.
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PROPOSITION 3.11. Let R be a ring of Theorem 2.1 and of characteristic
p® with the invariants p, n, r, s, t, d. Then v is an automorphism of R if
and only if there exist o € Aut(R,), B € GL(s,R,/pR,) and C = (cpi) €
GL(1 +t+d,R,/pR,) such that BTD,B = Z;‘:é cok A7, where Ay and A,
are structural matrices for R.

4. THE MAIN RESULTS

We now describe explicitly, the group of automorphisms of the ring R. In
what follows, we provide the proof for the case when the characteristic of R is
p? and p € J?; while the proofs for the other cases may be obtained through
minor modifications of the proof of Theorem 4.1.

THEOREM 4.1. Let R be a ring of Theorem 2.1, of characteristic p in
which p € J? and with the invariants p, n, v, s, t. Then

AU’t(R) = [M(1+t)><s(Ro/pRo) X Mlxt(Ro/pRo) X (pRo oUd V)]X92
[Aut(R,) %, (GL(s, R,/pR,) X GL(t, R,/pR,))].

PROOF. Let G be the subgroup of Aut(R) which contains all the auto-
morphisms 1 defined by

s t s t
Y(ao+arp+ Y biui+ > cxvr) = al +afp+ Y b7o(u) + Y cfd(vr),
k=1

i=1 k=1 i=1

where o € Aut(R,), ¢ € Autg, /pro(U) and ¢ € Autg, /pr, (V).
Let Gy be the subgroup of G which contains all the automorphisms a,
such that

s t s t
ay(a, + a1p+ Z biu; + Z ckvg) = ad +aip+ Z b7 w; + Z 3 Uk,
i=1 k=1 i=1 k=1

where o € Aut(R,). Then Gy = Aut(R,). Let G1 be the subgroup of G which
contains all the automorphisms v such that

S t S t
Y(ao + a1p + Z bju; + Z CLUK) = Go + a1p + Z bip(u;) + Z CL Uk,
i=1 k=1 i=1 k=1

where ¢ € Autg,/pr,(U); and let G be the subgroup of G which contains all
the automorphisms 1 such that

s t s t
Ylao+ap+ Y biui+ Y cxop) = ag+arp+ ¥ b+ Y crd(vr),
i=1 k=1 i=1 k=1
where ¢ € Autg,/pr, (V). Then G and G2 are subgroups of G and G x G
is a direct product. Moreover, G1 = Autg, /g, (U) = GL(s, R,/pR,) and
Gs = AUtRO/pR,, (V) = GL(ta Ro/pRo)'
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Finally, let H be the subgroup of Aut(R) containing all the automor-
phisms 1 defined by

s t s
Y(ao + a1p + Z biu; + Z ckvr) = x(ao + a1p + Z biu;

i=1 k=1 i=1
s t s t t
+ Z biai:p + Z Z bidyiv, + Z CrUE + Z crekp)r
i=1 p=1i=1 k=1 k=1

where € 1+ 7, a1;, dpi, eix € Ro/pRo; Hi be the subgroup of H which
contains all the automorphisms v defined by

s t S t S t
w(ao+a1p+z biuiJFZ CrUE) = ao+a1p+z biui+z Z bidm‘erZ CL Uk,
i—1 k=1 i=1 k=1

p=0 =1

where d,; € R,/pR, and v, = p; Hy be the subgroup of H which contains all
the automorphisms 1 such that

s t S t t
Y(ao+aip+ Z bju; + Z CRUK) = Qo + 1D+ Z biu; + Z CrUg + Z CLe1kP,
i=1 k=1 i=1 k=1 k=1

where ey, € R,/pR,; and let Hs be the subgroup of H which contains all the
automorphisms v such that

s t s t
U(ao+ap+ Y biuwi+ Y cxv) = x(ao + arp+ D biui + Y crve)a !,

i=1 k=1 i=1 k=1

where x € 1+ J C Gg. Then it is easy to check that the direct product
H = Hy, x Hy x Hz and the semidirect product G = (G1 x G2) X, Go are
subgroups of Aut(R), where if ¢ € G1 XxGz and o, € Gy, then 3(as)(p) = @o.

Let ¢ € H N G. Since every element of H is either fixing R, elementwise
or sending R, to another maximal Galois subring of R and ¢ € G, ¢ fixes R,
elementwise.

Let ¢ = (., where 8 € Hy x Hy and ¥, € Hs. Since x € 1+ 7,
clearly, ¢ = B, = (. Since § € G, f(U) = U and 8(V) = V. But the
only element of H; x Hs which fixes U and V is the identity. Thus, ¢ = idg
and hence, H N G = idg. Now, it is easy to see that Aut(R) = H X, G,
where if B¢, € H1 x Hy and pa, € G, then 01 (pas)(0vYz) = Bopya, (). Tt
is trivial to check that the mappings g : Hy — M14)xs(Ro/pRo) given by
9(Bm) = 3 —g dpivy and b : Hy — Mixi(Ro/pR,) given by h(Bu) = ewrp,
are isomorphisms, and hence, combining with f : H3 — pR,®U @V, we obtain
an isomorphism H = M 4)xs(Ro/pRo) X Mix¢(Ro/pRo) X (pRo U @ V).
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Hence,

AUt(R) = [M(1+t)Xs(Ro/pRo) X Mlxt(Ro/pRo) X (pRo U V)]><92
[Aut(R,) %o, (GL(s, Ro/pRo) x GL(t, Ro/pR,))],
where
01(0)(B, C)-(Ag,...,A)=C-(AZ,..., A7) - c1
and
02(0, B, C)(Ao,...,Ay) = (BTAyB, B"A1B,...,B" A,B).
O

THEOREM 4.2. Let R be a ring of Theorem 2.1, of characteristic p* in
which p € J — J? and with the invariants p, n, v, s, t, d. Then

Aut(R) = [M(ayt)xs(Ro/PRo) X Maxt(Ro/pRo) X (pRo ® U & V)] Xy,
[Aut(R,) X, (GL(s, R,/pRs) x GL(t, R,/pR,) X GL(d, R,/pR,))].
Proor. Modify the proof of Theorem 4.1. O

THEOREM 4.3. Let R be a ring of Theorem 2.1 and of characteristic p>
with the invariants p, n, r, s, t, d. Then Aut(R) is isomorphic to

M1 dtyxs () X M144)xa(K) X Mixa(K) x (pR, @ U © V)] xp,
[Aut(R,) %o, (GL(s, K) x GL(t, K) x GL(d, K))]:
where K = R,/pR,.

PROOF. Similar to Theorem 4.1 with some modifications. |

REFERENCES

[1] C. J. Chikunji, Automorphisms of completely primary finite rings of characteristic
p, Collog. Math. 111 (2008), 91-113.

[2] C. J. Chikunji, On a Class of Finite Rings, Comm. Algebra 27(1999), 5049-5081.

[3] C. J. Chikunji, A classification of cube zero radical completely primary finite rings,
Demonstratio Math. 38 (2005), 7-20.

[4] W. E. Clark, A coefficient ring for finite non-commautative rings, Proc. Amer. Math.
Soc. 33(1972), 25-28.

[5] R. Raghavendran, Finite associative rings, Compositio Math. 21 (1969), 195-229.

C. J. Chikunji

Department of Basic Sciences
Botswana College of Agriculture
Gaborone

Botswana

E-mail: jchikunj@bca.bw

Received: 5.7.2007.
Revised: 16.8.2007.



