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ABSTRACT. The p-groups all of whose nonabelian maximal subgroups
are either absolutely regular or of maximal class, are classified (Theo-
rem 2.1). For the main result of [CP] and [ZAX] classifying the p-groups
all of whose proper nonabelian subgroups are metacyclic, we offer a proof
which is shorter and not so involved. In conclusion we study, in some
detail, the p-groups containing an abelian maximal subgroup.

1. INTRODUCTION

This note supplements papers [B5] and [BJ2].

Our notation is the same as in [B1-B3] and [BJ1, BJ2]. In what follows, p
is a prime and G a finite p-group. A group G is said to be an A,-group, if all
its subgroups of index p™ are abelian but it contains a nonabelian subgroup of
index p"~! (so that Aj-groups are minimal nonabelian). The A;-groups are
classified in [R] and As-groups are classified by L. Kazarin and V. Sheriev,
independently (see [BJ1, Theorem 5.6]). Set Q1(G) = (x € G | 2P = 1),
U1(G) = (2P |z € G). If H < G, then Hg = NyegH? is the core of H in
G. A group G is said to be absolutely regular if |G/U1(G)| < p?; by Hall’s
regularity criterion, such G is regular. Let cl(G) denote the class of G. A
group G of order p™ is of maximal class if cl(G) = m —1 > 2. A group G
is said to be an Ls-group [B3] (s is a positive integer) if ©4(G) is of order
p® and exponent p and G/Q1(G) is cyclic of order > p. By E,» we denote
the elementary abelian group of order p™. Let G', ®(G) and Z(G) denote the
derived subgroup, the Frattini subgroup and the center of G, respectively. We
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write pd(&) = |G : ®(G)|; then d(G) is the minimal number of generators of
G.

It is proved in [BJ2, Theorem 2.2] that if all nonabelian maximal sub-
groups of a nonabelian two-generator 2-group G are two-generator, then G is
either minimal nonabelian or metacyclic. The condition d(G) = 2 in that the-
orem, however, is very restrictive. Indeed, as [BJ1, §4] shows, classification of
nonabelian 2-groups G all of whose maximal subgroups are two-generator but
d(G) = 3, is one of outstanding open problems of p-group theory. (Note that,
for p > 2, Blackburn [Bla2] has proved that all such groups are As-groups.)

In Theorem 2.1, the main result of this note, the p-groups all of whose
nonabelian maximal subgroups are either absolutely regular or of maximal
class, are classified. In conclusion of this section we classify (Theorem 1.1)
the p-groups all of whose nonabelian maximal subgroups are metacyclic (this
is the main result of [ZAX]; in [CP] the case p = 2 is considered only). We do
not use, in our proof, as in [ZAX], the classification of metacyclic and minimal
nonmetacyclic p-groups; note that the proof in [CP] is more elementary. In
83 we treat nonabelian p-groups with abelian subgroup of index p.

The note is self contained modulo the following lemma.

LEMMA J. Let G be a nonabelian p-group.

(a) [T]; see also [I, Lemma 12.12]. If A < G is abelian of index p, then
|G| = plG"|[Z(G).

(b) [B2, Lemma 3] The number of abelian mazimal subgroups in G equals
0,1 orp+1.

(c) [B2, Proposition 19(a)] If B < G is nonabelian of order p* and
Ca(B) < B, then G is of mazimal class.

(d) [Blal] Let G be of mazimal class. If |G| > p?, then G is irregular. If
|G| > pPTL, then exactly one mazimal subgroup of G is not of mazimal
class (it is absolutely regular).

(e) [BJ1, Lemma 3.2(a)] If G’ < Z(G), exp(G’') = p and d(G) = 2, then
G is an Aj-group.

(f) [Bla2]; see also [B1, Theorem 7.6]. If G has no normal subgroup of
order p? and exponent p, it is either absolutely reqular or of maximal
class. A group G of mazimal class and order > pP™' has no normal
subgroup of order pP and exponent p.

(g) [Bla2]; see also [B1, Theorem 7.5]. Suppose that G is not absolutely
regular. If G contains an absolutely regular mazximal subgroup M, then
either G is of mazimal class or G = MQy(G) with |Q1(G)| = pP.

(h) [B1, Theorem 17.4] Suppose that G is not of maximal class. If G con-
tains a subgroup of maximal class and index p, then d(G) = 3 and the
number of subgroups of mazximal class and index p in G equals p®. If,
in addition, |G| > pP™1, then |G/U1(G)| = pP™ so G has no absolutely
regular mazximal subgroups.
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(i) [B1, Theorem 5.2] If p > 2, G is of maximal class and H < G is such
that A(H) > p — 1, then G is isomorphic to a Sylow p-subgroup of the
symmetric group of degree p?.

(G) [BJ2, Theorem 2.2] If all nonabelian maximal subgroups of a non-
abelian two-generator 2-group G are two-generator, then G is either
metacyclic or minimal nonabelian.

(k) Let G be an Ay -group. Then G is nonmetacyclic if and only if 1 (G) =
Eps. Neat, d(G) =2, Z(G) = ®(G) so, if N<G and G/N is noncyclic,
then N < Z(G).

(1) (Fitting) If A, B < G are normal, then cl(AB) < cl(A) + cl(B).

(m) [Bla2, Lemma 4.5]; see also [BJ2, Theorem 7.4]. If p > 2 and G has
no normal subgroup = K3, then G is either metacyclic, or 3-group of
mazimal class, or G = Q1(G)C, where Q1(G) is nonabelian of order
p® and exponent p and C is cyclic of index p? in G.

(n) If G has a cyclic subgroup of index p, then either G is a 2-group of
mazimal class or G = Mpn.

We use freely basic properties of regular p-groups.

In what follows we use freely the following fact. If G is a nonabelian two-
generator p-group, then Z(G) < ®(G). Assume that this is false. Then there is
in G a maximal subgroup H such that G = HZ(G); then H is nonabelian. In
that case, H/(HNZ(G)) = G/Z(G) is noncyclic so, setting D = HNZ(G), we
get G/D = (H/D) x (Z(G)/D) so d(G) > d(G/D) = d(H/D) + d(Z(G)/D) >
2+ 1 = 3, contrary to the hypothesis.

We offer a new proof of the following

THEOREM 1.1 ([CP] (for p = 2), [ZAX]). Suppose that a nonabelian p-
group G is neither minimal nonabelian nor metacyclic nor minimal nonmeta-
cyclic. If all nonabelian mazimal subgroups of G are metacyclic, then one and
only one of the following holds:

(a) G=M x C, where M % Qg is a metacyclic Ai-group and |C| = p.

(b) p > 2, d(G) = 2, G = QU (G)C, where Q1 (G) = Eps, C is a cyclic
subgroup of index p* in G, Cq = U1(C) = Z(G) is of index p* in G
(so that, if |G| > p*, then G is an Ls-group and As-group).

PROOF. Let us check that groups of (a) and (b) satisfy the hypothesis.
Indeed, let G = M x C be as in (a) and U < G maximal. If C < U, then,
by the modular law, U = C x (U N M) so U is abelian since M is an A;-
subgroup. If C € U, then G =C x U so U 2 G/C = M is metacyclic. Now
let G be as in (b) and V' < G maximal. If Q;(G) <V, then, by the modular
law, V = Q1(G)U1(C) so V is abelian since Q1 (G) is abelian and U1 (C) =
Z(G). Now assume that ,(G) £ V. Then Q1 (V) = VN Qi (G) = Ep2 so
[V/G1(V)] = |Q1(V)| = p? so V is metacyclic (Lemma J(m)).

Now, assuming that G satisfies the hypothesis, we have to prove that G is
either asin (a) or in (b). By hypothesis, there are in G two maximal subgroups
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M and A such that M is nonabelian so metacyclic and A is nonmetacyclic
so abelian; then d(A) > 2 and d(G) < d(M)+1=2+1=3. Since MN A
is a noncyclic metacyclic maximal subgroup of A, we get d(4) = 3. Set
E = Q(A); then E;3 =2 E <aG. By the product formula, G = ME so
M N E = Ep2. All maximal subgroups of G containing £, are nonmetacyclic
so abelian, hence d(G/E) = d(M/(M N E)) < 2 (Lemma J(b)). In what
follows, A, M and FE denote the subgroups defined in this paragraph.

Let d(G/E) = 2. Then there is a maximal subgroup B/E < G/E with
B # Aso E < AN B = Z(G) since B, being nonmetacyclic, is abelian. If
x € E— M, then G = M x X, where X = (z). Let N < M be maximal.
Then N x X is abelian. Indeed, assume that this is false; then d(N) = 2
so d(X x N) =3, and X x N is abelian, by hypothesis. Thus, all maximal
subgroups of M are abelian so M is an A;-group. We conclude that Q1 (G) =
FE, unless M = Dg.

Now let G/E be cyclic; then G’ < E.

(i) Let |G/E| = p; then |M| = p3. If Cg(M) < M, then G is of maximal
class (Lemma J(e)) and p > 2 since G is not metacyclic, and F = A is the
unique abelian maximal subgroup of G (Lemma J(1)) so exp(G) = p? since
M < G is metacyclic. If E = Z(G) x L, then Lg = {1} so G is isomorphic
to a subgroup of exponent p? of a Sylow p-subgroup of the symmetric group
Sp2; then G has a nonabelian subgroup of order p? and exponent p (Lemma
J(i)) which is nonmetacyclic, a contradiction. Thus, G = MZ(G). If Z(G)
is noncyclic, then G = M x L is as in (a) (in that case, M % Qs since G is
not minimal nonmetacyclic). If Z(G) is cyclic, then, since |Z(G)| = p?, we get
G = EZ(G), by the product formula, so G is abelian, a contradiction.

(ii) Now let G/E be cyclic of order > p; then G’ < E so |G'| < p*. We
have Ql(G/Ql(G)) < A/Ql(G) S0 Ql(G) = Ql(A) = F. Since M/(MQE) =
M/ (M) = G/E is cyclic, we get M = Myn, n > 3, since M is nonabelian
and has a cyclic subgroup of index p (Lemma J(n)). Thus, all nonabelian
maximal subgroups of G are = Mpn (it follows that G is an A-group so one
can use the classification of As-groups [BJ2, Theorem 5.6], however we prefer
to present independent, more elementary, proof).

Let d(G) = 2; then Z(G) < ®(G) and, since G is not an Aj-group, we
get G £ Z(G) so G' = E,2 (Lemma J(e)); then cl(G) = 3 and A is the
unique abelian maximal subgroup of G and |G : Z(G)| = p|G’| = p3 (Lemma
J(a)). Since G' < ®(G) < M, we get G' = Q1 (M) so M/G’ is a cyclic
subgroup of index p in the abelian group G/G’. Since Z(G) < M, then
Z(G) = Z(M) (compare indices!) so Z(G) is cyclic. Assume that there is a
cyclic U/Z(G) of index p in G/Z(G). Then U is abelian and metacyclic so
U # A, a contradiction. Thus, exp(G/Z(G)) = p so G/Z(G) is nonabelian
of order p3 and exponent p (recall that cl(G) = 3); then p > 2. We have
Z(G) < C < M, where C is cyclic of index p in M. Since |G : C| = p?, we
get G = EC, and C is not normal in G since G’ is noncyclic. Since a Sylow
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p-subgroup of Aut(E) is of exponent p, we conclude that Z(G) = U1(C) so G
is as in (b).

Now we let d(G) = 3. Then G/G’ has no cyclic subgroup of index p
so |G'| = p, and we get |G : Z(G)| = p|G'| = p? (Lemma J(a)). Since
|A : Z(G)| = p and d(A) = 3, the subgroup Z(G) is noncyclic. By what has
been proved already, M = M. In that case, Q1 (Z(G)) £ M since Z(M) is
cyclic. We have G = MZ(G) so M NZ(G) = Z(M) (compare orders!) is cyclic
and |Z(G)| = p|Z(M). In that case, Z(M) is a cyclic subgroup of maximal
order in Z(G) so, by basic theorem on abelian p-groups, Z(G) = Z(M) x L,
where |L| =p and L £ M. Then G =M x L so G is as in (a). O

SUPPLEMENT TO THEOREM 1.1. Let a nonabelian 2-group G be neither
metacyclic nor A;-group (¢ = 1,2) nor minimal nonmetacyclic. Suppose that
all proper nonabelian subgroups of G are two-generator. Then d(G) = 3
and nonabelian maximal subgroups of GG are either metacyclic or minimal
nonabelian. Let, in addition, |G| > 25. Then, if H < G is a nonmetacyclic
Aj-subgroup, then Q1 (G) = O (H) = E = Es. Next, G/E € {Qg,M2n} and
G’ is contained in the center of every nonmetacyclic maximal subgroup of G
so, if G has two distinct nonmetacyclic maximal subgroups, then cl(G) = 2.

PROOF. By Lemma J(j), nonabelian maximal subgroups of G are either
metacyclic or minimal nonabelian so d(G) = 3 [B1, Theorem 3.3].

There is a nonabelian maximal M < G which is not an A;-group so M
is metacyclic and, by Lemma J(e), |M’| > 2. In view of Theorem 1.1, one
may assume that G has a maximal subgroup H which is neither abelian nor
metacyclic; then H is an A;-group with 1 (H) = Eg (Lemma J(k)). f K < G
is nonabelian maximal, then K’ is cyclic, K/ < ®(K) < ®(G) < H and H/K'
is noncyclic since H is not metacyclic, so K/ < ®(H) = Z(H). Let z,y € G.
Then (z,y) < K, where K; < G is maximal (recall that d(G) = 3); then
[z,y] € K < Z(H), and we conclude that G’ < Z(H). If H; < G is another
nonmetacyclic maximal subgroup, then G’ < Z(H;) so Cq(G') > HH; = G
and cl(G) = 2. In what follows, H and FE are as defined in this paragraph.

Now we let |G| > 25. Assume that there is an involution z € G — F and
set L = E(z); then |L| = 2% since F < G. However, since M is metacyclic,
we get exp(M N L) > 2 so L is nonabelian since ;(L) = L. Then L is not
an A;-subgroup (Lemma J(k)), contrary to the hypothesis. Thus Q4 (G) = F
and G = ME so G/E = M/(M N E). However, M’ is cyclic of order > 2 so
G/E(= M/FE) is nonabelian.

If E <Z(G), then G = M x C for some C < E of order 2. Since |M'| > 2,
there is in M a nonabelian maximal subgroup M;. However, the nonabelian
maximal subgroup M; x C of G is neither A;-subgroup nor metacyclic, a
contradiction. Thus, E € Z(G).

If a noncyclic subgroup T/F < G/E is maximal, then £ < Z(T) (this is
obvious if T is abelian, and follows from Lemma J(k) if T is an .A;-subgroup;
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note that T is nonmetacyclic). Since E € Z(G), the nonabelian group G/FE
has at most one noncyclic maximal subgroup. If all maximal subgroups of
G/E are cyclic, then G/E = Qg. If G/E has exactly one noncyclic maximal
subgroup, then, by Lemma J(n), G/E = Myx. O

2. p-GROUPS, ALL OF WHOSE NONABELIAN MAXIMAL SUBGROUPS ARE
EITHER ABSOLUTELY REGULAR OR OF MAXIMAL CLASS

Let G be a nonabelian 2-group all of whose nonabelian maximal sub-
groups are of maximal class. Suppose that G is neither minimal nonabelian
nor a group of maximal class. Then G contains a subgroup of maximal class
and index 2 so, by Lemma J(h), d(G) = 3 and G contains exactly 4 subgroups
of maximal class and index 2. It follows that G contains exactly 3 abelian
maximal subgroups so cl(G) = 2, and we conclude that |G| = 2%. By Lemma
J(c), G = MZ(G), where M is nonabelian of order 8. Therefore, since ab-
solutely regular 2-groups are cyclic, we confine, in the following theorem, to
case p > 2.

THEOREM 2.1. Let a nonabelian p-group G be neither minimal nonabelian
nor absolutely regular, p > 2 and |G| > pP. If all nonabelian mazximal sub-
groups of G are either absolutely reqular or of mazimal class, then one of the
following holds:

(i) G is of mazimal class and order > pPT!,

(ii) G is of mazimal class and order pP*1 with |Q1(G)| = pP~1,

(iii) G is of mazimal class and order pP*! with abelian mazximal subgroup,

(iv) G is of mazimal class and order pP™', Q;(G) = G and all mazimal
subgroups of G of exponent p are of mazimal class,

(v) p=3, |G| = 3% G = MZ(G), where |Z(G)| = 3%, M is nonabelian of
order 33,

(vi) G = B x C where B is absolutely regular, |C| = p, |Q(G)| = p?,
0 (GQ) < Z(@), d(G/Q(G)) = 2. All mazimal subgroups of B con-
taining Q1(B), are abelian,

(vii) G is regular of order pP*t, Q1(G) of order pP is either abelian or of
mazimal class,

(viil) G is an Ly-group, |G : Ca(1(G))| = p.

Groups (i)—(viii) satisfy the hypothesis.

PROOF. The last assertion is checked easily as will be clear from the
proof. It remains to show that if G satisfies the hypothesis, it is one of groups
(i)—(viii).

(a) Suppose that G is of maximal class. If |G| > pP*!, then G satisfies the
hypothesis (Lemma J(d)). Now let |G| = pP*L. If G has an abelian subgroup
of index p, then all its nonabelian maximal subgroups are of maximal class
(Lemma J(1)) so G satisfies the hypothesis. Next assume that G has no abelian
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subgroup of index p. If all maximal subgroups of G are absolutely regular,
then |Q1(G)| = pP~! so G is as in (ii). If M < G is maximal and of exponent
p, it is of maximal class and G is as in (iv). In what follows we assume that
G is not of maximal class.

(b) Suppose that |G| = pP™L. Then G is regular, by assumption in (a).

Suppose that exp(G) = p. Then G has no absolutely regular maximal
subgroup. Since not all maximal subgroups of G are of maximal class, there
is in G a subgroup A = E,». By hypothesis, G has a nonabelian maximal
subgroup M; then M is of maximal class. By Lemma J(h), there are in G
exactly p? subgroups of maximal class and index p so it has exactly p+1 > 1
abelian maximal subgroups; then |G : Z(G)| = p?, |G'| = %|G D Z(@)| =p
(Lemma J(a)). Then |[M| = p3 so |G| = p*. Since |G| = pP*!, we get p = 3.
Since Z(G) € M, we get G = M x (z) for x € Z(G) — M, and G is as in (v).

Now let exp(G) > p. Then |Q1(G)| = pP since G is not absolutely regular
so Q1(G) is either abelian or of maximal class; then G is as (vii). Next we
assume that |G| > pP*1. By Lemma J(f), there is in G a normal subgroup R
of order pP and exponent p.

(c) Suppose that |G| > pP™2. Then all maximal subgroups of G' con-
taining R are neither absolutely regular nor of maximal class (Lemma J(f)).
Therefore, if R < A, where A is maximal in G, then A is abelian. Assume
that R < Q1(G). Let € G — R be of order p; then L = (x, R) is elementary
abelian of order pP*!. Consideration of intersection of a maximal subgroup,
say H, with L shows that H is neither of maximal class (Lemma J(i) or
J(f) since |H| > pP*1) nor absolutely regular. Then all maximal subgroups
of G are abelian, a contradiction since GG is not minimal nonabelian. Thus,
R = O,(G). Therefore, if G/R is cyclic, then G is an Ly-group so it is as in
(vii).

Suppose that G/R is noncyclic. Since all maximal subgroups of G, con-
taining R, are abelian, it follows that R < Z(G) and |G : Z(G)| = p? so
cl(G) = 2, and d(G/R) = 2 (Lemma J(b,k)). Since G is not minimal non-
abelian, it contains a nonabelian maximal subgroup B. Since |[BNR| > p, B
is not of maximal class so it is absolutely regular. Then R £ B so G = Bx C
for some C < R of order p, and G is as in (vi).

(d) Suppose that |G| = pP™2. If G/R is cyclic, then G is an Ly-group.
Indeed, let R < M < G. Then M is either abelian or of maximal class. If M is
abelian, then, as in (c), R = ©1(G) so G is an Ly-group. Assume that M is of
maximal class. Let D < R be G-invariant of index p?. Then M < Cg(R/D)
so M/D is abelian of order p® and M is not of maximal class, a contradiction.

Let G/R 2 Ep:.

(d1) Suppose that all M < G such that R < M, are abelian. Then
R =Z(G) and cl(G) = 2 so G has no subgroups of maximal class and index
p. By hypothesis, G has a nonabelian absolutely regular maximal subgroup
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B. Then R =M (G) £ Bso G = B x C, where C' < R is of order p so G is
as in (vi).

(d2) Now suppose that there is nonabelian M < G such that R < M.
Then M is of maximal class so the number of subgroups of maximal class
and index p in G is exactly p? (Lemma J(h)). Since d(G) = 3 and G has no
absolutely regular maximal subgroup (Lemma J(h)), the number of abelian
subgroups of index p in G is exactly p+ 1. In that case, as in (b), |G| = p* <
pPt2 | a final contradiction. O

3. NONABELIAN p-GROUPS CONTAINING AN ABELIAN MAXIMAL SUBGROUP

Let a nonabelian p-group contains an abelian maximal subgroup. Such
groups, playing important role in finite p-group theory, were classified in two
long papers [NR] and [NRSB], however, it is fairly difficult to extract from
these papers the results about their subgroup structure. A nonabelian two-
generator p-group G containing an abelian subgroup A of index p is considered
in [XZA, Lemma 3.1]. In Proposition 3.1 we consider more general situation.

To facilitate future considerations, we prove using induction on |G| that,
if a nonabelian p-group G contains an abelian maximal subgroup A and
|G : G'| = p?, then G is of maximal class. If |G| = p?, the assertion is obvious
so we let |G| > p®. By Lemma J(a), |Z(G)| = %|G G =psoZ(G) <G In
that case, |(G/Z(G)) : (G/Z(@))'| = |G : G’| = p? so, by induction, G/Z(G)
is of maximal class, and we are done since |Z(G)| = p.

ProprosSITION 3.1. Let A be a mazximal subgroup of a monabelian two-
generator p-group G. Suppose that R = (2P | x € G — A) < Z(G) and A/R
is abelian. Then Q1 (G/R) = G/R and G/R is of maximal class, unless G is
minimal nonabelian.

PrOOF. Write G = G/R; then G is noncyclic since R < Z(G). Since all
elements of the set G — A have the same order p, it follows that Q;(G) >
(G —A) = G so G’ = ®(G), and hence G/G' = E, since d(G) = d(G) = 2
in view of R < U1(G) < ®(G). If G' = {1}, then Z(G) = R = ®(G) so G is
minimal nonabelian. If G’ > {1}, then G is nonabelian so it is of maximal
class, by the paragraph preceding the proposition. O

Suppose that A is an abelian maximal subgroup of a nonabelian p-group
G; then Z(G) < A. Write G = G/Z(G). Then all elements of the set G — A
have the same order p so Q1(G) = G and G’ = ®(G). Indeed, if x € G — A,
then Cg(2P) > (x,A) = G so 2P € Z(G), and all claims in the previous
sentence follow. If, in addition, d(G) = 2, then either G/R is of maximal

class or G is minimal nonabelian (here R is as in Proposition 3.6). Thus,

COROLLARY 3.2. Let G be a nonabelian two-generator p-group and A < G
abelian of index p. Then R= (2P |z € G— A) < Z(G), U (G/R) = G/R and
either G/ R is of mazimal class or G is minimal nonabelian.
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PROPOSITION 3.3. Let A be an abelian mazximal subgroup of a nonabelian
p-group G and let x+ € G — A be fizred. Then the following conditions are
equivalent:

(a) cl(G) = 2.
(b) For every a € A — Z(QG), the subgroup H, = (x,a) is minimal non-
abelian.

PROOF. (a) = (b): Since G = A(x), we get C4(x) = Z(G). Therefore,
if a € A—7(G), then za # ax so cl(H,) = 2, where H, = {(a,x). Then
H,/Z(H,) is abelian and its exponent equals p (Corollary 3.2) since A N H,
is maximal abelian in H,. Since d(H,) = 2, we get H,/Z(H,) = E,2 so H, is
minimal nonabelian, and (b) is proved.

(b) = (a): Asin (a), Ca(z) =Z(G), and H, £ Aso |H, : (H,NA)| =p
hence H, N A is a maximal abelian subgroup of H,. Therefore, Z(H,) =
®(H,) < H, N A since H, is an A;-subgroup. Since C¢(Z(H,)) > AH, = G,
we get Z(H,) < Z(G). Set R = (Z(H) | b € A —Z(G)); then R < Z(G) and
H,NR=17Z(H,) for all a € A — Z(G). Write G = G/R. Assume that G is
not abelian. Then there is b € A — Z(G) such that K = (Z,b) is nonabelian.
In that case, H, = (x,b) is an A;-group since b € A — Z(G). However,
K = H, > H,/(H,NR) & Hy,/Z(H,) = E,2, a contradiction. Thus, G = G/R
is abelian so cl(G) = 2 since R < Z(G), and (a) is proved. O

REMARK 3.4. Let A be a normal abelian subgroup of a nonabelian p-
group G, A £ Z(G) and x € G — Cg(A); then A(z) is nonabelian. To prove
that there exists a € A—C 4 () such that the subgroup H, = (x,a) is minimal
nonabelian, we suppose that G is a counterexample of minimal order; then
G = A(x). Write C = Cg(z); then C = (2)Z(G) is a maximal abelian
subgroup of G = CA. Let C < B < G be such that |B : C| = p. Then B
is nonabelian, B = C(A N B) and AN B is an abelian normal subgroup of
B. Tt follows from G = CA = BA that B/(AN B) = G/A is cyclic, and so
AN B £ Z(B); therefore, G = B so |G : C| = p. Write G = G/Z(G); then
C = (x)/({z) N Z(G)) is cyclic of index p in G. Since G = CA, where C
and A are G-invariant abelian subgroups, we get cl(G) = 2 (Lemma J(1)) so
G is noncyclic abelian, and so it has a cyclic subgroup C; of index p which
is # C. Then C and C are different abelian subgroups of G of index p so
CNCy =7Z(G) and |G| = %|G : Z(@)| = p (Lemma J(a)). If a € A — Cg(x),
then H, = (z,a) is minimal nonabelian (Lemma J(e)) since H, = G’ is
of order p. In particular (Janko), if A < G is a maximal abelian normal
subgroup, then for every x € G — A there exists a € A such that (z,a) is
minimal nonabelian [BJ2, Lemma 4.1].

It is trivial that a p-group G is not covered by p proper subgroups. I am
indebted to Moshe Roitman (University of Haifa) for the following, probably,
known
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REMARK 3.5. Let Pi,...,P,y1 be pairwise distinct subgroups of a p-
group G of order p". First assume that these subgroups are maximal. We
prove by induction on k, 1 < k < p+ 1, that

k
| U le < pn—2 + k,(pn—l _pn—2)7

i=1

and that we have equality just if |ﬂf:1 P;| = p"~2. This is clear for k = 2.
Since the intersection of two distinct maximal subgroups of G has order p™ 2,
we get, by induction on k, that

k
|LJ1%|
=1

k—1 k—1
U Bl + 2] = (| P)n Pl

i=1 i=1
pn—2 4 (k’ _ 1)(pn—1 _pn—2) +pn—1 _ pn—2
_ pn—2 4 k(pn—l _pn—2).

Moreover, we have equality if and only if

IN

k—1 k—1
(UP)=p"2+ k-1 =p"?) and |(|J P) NP =p" %
i=1 i=1
this is equivalent to the condition | ﬂle P;| = p" 2. Now let k = p+ 1 and
maximal subgroups P,..., Pp41 cover G. Then, since
p+1

I(U P)=p"=p" 2+ (p+ 1)t —p" 3,

we obtain that | ﬂf:ll P;| = p"~2. In the general case, we have to show that all
the subgroups P; are maximal in G if they cover G. Assume, for example, that
P, is not maximal in G. For each i, let ; be a maximal subgroup containing
P, and let H = fill Q;. There exists an element x € Q1 — (P; U H). Since
H is equal to the intersection of any two distinct subgroups among the Q;’s
by what has been proved above, we see that x belongs to a unique subgroup

@i, namely to Q1. Hence z ¢ Uf:ll P;, a contradiction.

Let a3 (G) denote the number of A;-subgroups in p-group G. Recall that
a nonabelian p-group G is generated by A;-subgroups (see [B7] and [B4]).

REMARK 3.6. The result of Remark 3.4 allows us to produce in a p-group
G, which is neither abelian nor minimal nonabelian, a lot of A;-subgroups.
Indeed, let A < G be a maximal abelian normal subgroup; then Cg(A4) = A.
By Remark 3.4, the set-theoretic union U of all A;-subgroups of G contains
the set G — A so G = U U A (this coincides with [BJ2, Lemma 4.1]). Thus,
G is the set-theoretic union of a;(G) + 1 proper subgroups, one of which is
A and other a1 (G) are A;j-subgroups, so, by Remark 3.5, a1 (G) > p. Thus,
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if a1(G) = p, then all A;j-subgroups and A are maximal in G (Remark 3.5)
so G is an Aj-group. Next we prove that if @1(G) = p+ 1, then G is an
As-group again. Let A be as above and M < G be an As-subgroup; then
d(M) < 3. Assume that M < G. Then there is an 4;-subgroup L < G such
that L £ M so p+1 = a1(G) > a1 (M)+1. It follows that oy (M) = p, by the
above, and G = AUM UL is the set-theoretic union of three proper subgroups
(Remark 3.4) which is impossible for p > 2 (Remark 3.5). Now we let p = 2.
By Remark 3.5, A, M and L are maximal in G and their intersection has
index 4 in G. Next, L N A is maximal abelian in L so Z(L) = ®(L) < LN A,
and we get Cg(Z(L)) > AL = G. Thus, Z(L) < Z(G), |G : Z(L)| = 8. We
have Z(L) = ®(L) < ®(G) < M so |M : Z(L)| = 4. It follows that d(M) =3
(otherwise, M is minimal nonabelian) so M has exactly 7 maximal subgroups.
Then, by Lemma J(b), an(M) > 7—3 =4 > 3 = a1(G), a contradiction.
Thus, G = M so G is an Ay-group.!

4. PROBLEMS

Below we formulate some related problems.

1. Classify the irregular p-groups, p < 5, all of whose nonabelian maximal
subgroups are either minimal nonabelian or of maximal class. (If p > 5, then
our group has no minimal nonabelian subgroup of index p, by Lemma J(k,f,g),
so Theorem 2.1 solves the problem.)

2. Classify the p-groups all of whose nonabelian maximal subgroups are
either minimal nonabelian or metacyclic.

3. Let M < G be maximal and Z(G) < M. Study the structure of M
if, whenever x € G — M and a € M, then either xa = ax or (z,a) is (i) an
Aj-group, (ii) a group of maximal class, (iii) a metacyclic group, (iv) a group
of class 2 (four different problems).

4. Classify the p-groups all of whose maximal subgroups are of the form
M x E, where M is metacyclic and FE is abelian.

5. Classify the p-groups G such that |M’| < p for all maximal subgroups
of G.

6. Classify the 2-groups all of whose two-generator subgroups are meta-
cyclic.

7. Study the p-groups all of whose 4;-subgroups are metacyclic.

8. Classify the p-groups allowing irredundant covering by p+2 subgroups.

9. (i) Classify the p-groups all of whose maximal subgroups (nonabelian
maximal subgroups) are special. (ii) Does there exist a special p-group all of
whose maximal subgroups are special? If it exists, classify such groups.

!The remark yields a new proof of [B4, Lemma 6]. Moreover, it is proved in [B4,
Theorem 9] that, if a1 (G) < p?, then G is also an Az-group.
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10. Study the p-groups all of whose nonabelian maximal subgroups have
cyclic centers.

11. Classify the p-groups all of whose nonabelian maximal subgroups, but
one, are minimal nonabelian.
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