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Abstract. A topological game “Dense Gδσ-sets” (also denoted by
DG) is introduced as follows: for any n ∈ ω at the n-th move the player
I takes a point xn ∈ X and II responds by taking a Gδ-set Qn in the

space X such that xn ∈ Qn. The play stops after ω moves and I wins if
the set

⋃
{Qn : n ∈ ω} is dense in X. Otherwise the player II is declared

to be the winner. We study classes of spaces on which the player I has
a winning strategy. It is evident that the I-favorable spaces constitute a
generalization of the class of separable spaces. We show that there exists a
neutral space for the game DG and prove, among other things, that Lindelöf
scattered spaces and dyadic spaces are I-favorable. We characterize I-
favorability for the game DG in the spaces Cp(X); one of the applications
is that, for a Lindelöf Σ-space X, the space Cp(X) is I-favorable for DG if
and only if X is ω-monolithic.

1. Introduction

We present one more version of the well known point-open game PO which
was discovered and studied independently by F. Galvin [6] and R. Telgársky
[8]. Recall that in the game PO at the n-th move the first player I takes
a point xn ∈ X while the second player II replies choosing an open set
Un ⊂ X with xn ∈ Un. The play is finished after ω moves and I is announced
to be the winner if

⋃
{Un : n ∈ ω} = X . Otherwise II wins in the play

{(xn, Un) : n ∈ ω}.
F. Galvin [6] proved that it is independent of ZFC whether PO is de-

termined on all subsets of the real line R. Telgársky proved in [8] that if
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X is a σ-Čech-complete or pseudocompact space then PO is determined on
X . Later in [9] he gave a ZFC example of a neutral space (i.e., a space on
which neither of the players has a winning strategy) with respect to the game
PO. P. Daniels and G. Gruenhage [4] as well as S. Baldwin [3] studied the
point-open game which does not end after ω moves.

Tkachuk introduced two new games θ and Ω both in the paper [11] and
in the book [10] (where they were called T and TT and their main properties
were formulated as exercises). The games θ and Ω differ only a little from the
point-open game G. The moves in θ are exactly the same as in PO but the
assessment of the play {(xn, Un) : n ∈ ω} is different: the player I wins if the
set

⋃
{Un : n ∈ ω} is dense in X . Otherwise the second player is declared to

be the winner.
In the game Ω the first player still has to pick a point xn ∈ X at his

(or her) n-th move, while the second player has more freedom — he/she also
chooses an open set Un ⊂ X but only xn ∈ Un is required. And again I wins
the play {(xn, Un) : n ∈ ω} if the set

⋃
{Un : n ∈ ω} is dense in X .

It is straightforward that for any separable space X the first player has
a winning strategy on X in both θ and Ω. It was proved in [11] that any
product of separable spaces is I-favorable in both games θ and Ω, and if an
Eberlein compact space K is I-favorable in the game Ω, then K is metrizable.
The games θ and Ω do not give interesting facts for Cp-theory because every
space Cp(X) is I-favorable with respect to both games θ and Ω: this was also
proved in [11].

In this paper we develop an idea of Telgársky to obtain a new version of
the game θ. Telgársky briefly considered in [9] a game PO′ in which at the
n-th move the first player picks a point xn and II responds with a Gδ-set
Gn ∋ xn. A play {xn, Gn : n ∈ ω} is won by the first player if

⋃
n∈ω Gn = X .

Telgársky proved that this game is the same as the point-open game for the
first player, i.e., I has a winning strategy on a space X in PO if and only if
he has a winning strategy on X in PO′. Our game DG which we call “Dense
Gδσ-sets” has the same moves as PO′ but the player I is the winner of a play
{xn, Gn : n ∈ ω} if the set

⋃
n∈ω Gn is dense in X . This game turns out to

be radically different from the game θ and has non-trivial applications for the
spaces Cp(X).

To provide a more intuitive notation we denote the game θ by DO also
calling it “Dense Open Sets”. We study the main categorical properties of
spaces on which the first player has a winning strategy in DG and prove that
hereditarily I-favorable spaces for DG coincide with hereditarily separable
spaces. We show that Lindelöf scattered spaces are I-favorable for DG and
give a characterization of existence of a winning strategy for the first player
in DG on a space Cp(X). One of the consequences of this characterization is
that, for a Lindelöf Σ-space X , the space Cp(X) is I-favorable for DG if and
only if X is ω-monolithic.
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2. Notation and terminology

All spaces under consideration are assumed to be Tychonoff; if X is a
space then τ(X) is its topology and τ∗(X) = τ(X)\{∅}. If A ⊂ X then
τ(A,X) is the family of all open subsets of X which contain A; we write
τ(x,X) instead of τ({x}, X). A family B ⊂ τ(A,X) is an outer base of A in
X if for every U ∈ τ(A,X) there is B ∈ B such that B ⊂ U . The Stone-Čech
compactification of a space X is denoted by βX . The character of X at its
subspace A ⊂ X , denoted by χ(A,X), is the minimal of the cardinalities of
all outer bases of A in X ; let χ(X) = sup{χ({x}, X) : x ∈ X}. A space X is
Čech-complete if it is a Gδ-set in βX . The space X is of pointwise countable
type if for any point x ∈ X there exists a compact K ⊂ X such that x ∈ K
and χ(K,X) ≤ ω.

Given a space X the space Cp(X) is the set of all real-valued continuous
functions on X endowed with the pointwise convergence topology. If X is a
space and A ⊂ X , let πA(f) = f |A for every f ∈ Cp(X), i.e., πA : Cp(X) →
Cp(A) is the restriction map. We denote by Cp(A|X) the set πA(Cp(X)) with
the topology induced from Cp(A). The symbol R stands for the set of reals
with its natural topology, N = ω\{0} and Q ⊂ R is the set of rationals. We
denote by D the doubleton {0, 1} with the discrete topology. Let Cp,0(X) = X
and Cp,n+1(X) = Cp(Cp,n(X)) for every n ∈ ω. The space Cp,n(X) is called
the n-th iterated function space of X .

If a game G is considered, a space X is called I-favorable with respect to
G if the player I has a winning strategy on the space X . In the game DG
(called “Dense Gδσ-sets”) the n-th move on a space X consists in the player
I picking a point xn ∈ X and II replying by taking a Gδ-set Qn ∋ xn. In
the play {(xn, Qn) : n ∈ ω} the first player wins if

⋃
{Qn : n ∈ ω} is dense

in X ; otherwise the victory is assigned to the second player. If at the n-th
move the second player picks an open set Un ∋ xn and, again, the player I
wins if

⋃
n∈ω Un is dense in X , then the respective game is denoted by DO

and called “Dense Open Sets”. Observe that the game DO was denoted by θ
in the paper [11].

A space X is ω-monolithic if A has a countable network for any countable
A ⊂ X . The space X is Lindelöf Σ if it is a continuous image of a space which
can be perfectly mapped onto a second countable space. For information on
cardinal functions see Hodel’s paper [7]. All facts of Cp-theory we use can be
found in [2]. The rest of our notation is standard and follows [5].

2. Basic properties of the game DG of dense Gδσ-sets.

The class of I-favorable spaces for the game DG of dense Gδσ-sets is,
evidently, an extension of the class of separable spaces. We will see that in the
spaces of countable pseudocharacter this property coincides with separability;
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besides, checking I-favorability results in finding non-trivial and interesting
properties both in general spaces and in spaces Cp(X).

Definition 2.1. Given a space X, say that a game DGfin is played on
X if at the n-th move the first player takes a finite set An ⊂ X (which can
be empty) and the second player responds by taking a Gδ-subset Pn such that
An ⊂ Pn. A play {An, Pn : n ∈ ω} is favorable for I if the set

⋃
n∈ω Pn is

dense in X. Otherwise the second player wins.

Theorem 2.2. (i) If X is I-favorable for the point-open game of
Galvin–Telgársky then X is I-favorable for the game DG of dense Gδσ-
sets;

(ii) The game DG is equivalent to the game DGfin in the sense that, on
any non-empty space X, a player J ∈ {I, II} has a winning strategy
in DG if and only if J has a winning strategy in DGfin on the space
X;

(iii) any continuous image of a space I-favorable with respect to DG is I-
favorable with respect to DG;

(iv) if Y is I-favorable with respect to DG and dense in X then X is also
I-favorable with respect to DG;

(v) if X is I favorable for DG on a space X then, for any set U ∈ τ∗(X),
the space U is also I-favorable for DG;

(vi) if Xn is I-favorable with respect to DG for each n ∈ ω and X =
⋃
{Xn :

n ∈ ω} then X is also I-favorable with respect to DG.

Proof. (i) Given a space X which is I-favorable in the game PO, apply
Theorem 5.1 of [9] to see that in the game where I chooses at the n-th step
a point xn and II responds with a Gδ-set Qn ∋ xn the first player has a
winning strategy under which the sets chosen by the second player cover the
whole space X . In particular, the space X is I-favorable in the game DG.

(ii) It is clear that any winning strategy for the first player in DG is also
a winning strategy for I in DGfin. Analogously, any winning strategy for the
player II in DGfin is also a winning strategy for the second player in DG.
Now if s is a winning strategy of the first player for DGfin on a non-empty
space X then all moves according to s can be assumed to be non-empty so
we can define a strategy σ for the player I in DG by taking one-by-one the
points of the current finite set provided by s. When the set supplied by s is
covered by our choices we take the union of the Gδ-sets chosen by II for our
points and apply the strategy s to obtain one more finite set. This gives a
winning strategy σ for the first player in DG because any play P according
to σ can be split into a play P ′ in DGfin such that I applies s in P ′ and the
unions of Gδ-sets chosen by II in P and P ′ coincide.

Now if σ is a winning strategy for the second player on a non-empty space
X in DG and a finite set An ⊂ X is chosen at the n-th move in a play in
DGfin then II can consider that he/she plays in DG and the points of An are
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taken one-by-one by the first player (if An = ∅ then II responds by Pn = ∅).
Applying the strategy σ for this accompanying play he/she obtains a Gδ set
Pn ⊃ An as the union of the sets the strategy σ gave for the points of An. It
is straightforward that this gives a winning strategy s for the second player
in DGfin.

(iii) Suppose that X is I favorable with respect to DG and fix a winning
strategy s for the first player on the space X . If f : X → Y is a continuous
onto map then let x0 = s(∅) and σ(∅) = f(x0). Proceeding inductively
suppose that an initial segment y0, G0, . . . , yn, Gn of a play in DG is given on
the space Y and, besides, we have x0, . . . , xn ∈ X such that f(xi) = yi for all
i ≤ n and x0, f

−1(G0), . . . , xn, f
−1(Gn) is an initial segment of a play in X

in which I applies the strategy s.
Let xn+1 = s(f−1(G0), . . . , f

−1(Gn)) and yn+1 = σ(G0, . . . , Gn) =
f(xn+1). This defines a strategy σ for the first player on the space Y and we
omit the simple verification that σ is winning.

(iv) If s is a winning strategy on Y for the first player then s can be
considered a strategy on X if we use s applied to the intersections of the
moves of the second player with the set Y . It is evident that this gives a
winning strategy on X , so X is also I-favorable for DG.

(v) Apply (ii) to find a winning strategy s in the game DGfin for the first

player on the space X and let W = X\U . Consider the set A0 = s(∅) ∩ U
and let σ(∅) = A0. If n ∈ ω and moves A0, P0, . . . , An, Pn are made on
the space U in the game DGfin, then Qi = W ∪ Pi is a Gδ-subset of X for

each i ≤ n, so the set An+1 = s(Q0, . . . , Qn) ∩ U is consistently defined; let
σ(P0, . . . , Pn) = An+1. This gives us a strategy σ in DGfin for the first player

on the space U and it is easy to check that σ is a winning strategy. Applying
(ii) once more we conclude that U is I-favorable for DG.

(vi) For each n ∈ ω let sn be a winning strategy for the first player on
the space Xn. Choose a disjoint family {An : n ∈ ω} of infinite subsets of
ω such that ω =

⋃
n∈ω An. There is a unique n ∈ ω such that 0 ∈ An; let

x0 = sn(∅) and s(∅) = x0. Proceeding inductively assume that k ∈ ω and we
are given an initial segment x0, G0, . . . , xk, Gk of a play in DG on the space
X . There is a unique m ∈ ω such that k + 1 ∈ Am. A part of our play
say, xj1 , Gj1 , . . . , xjl

, Gjl
is done in Xk+1 and, by the induction hypothesis,

constitutes an initial segment of DG in Xk+1 if we intersect the sets Gji
with

Xk+1. Letting xk+1 = s(G0, . . . , Gk) = sk+1(Gj1 ∩Xk+1, . . . , Gjl
∩Xk+1) we

conclude the definition of a strategy s on the space X .
If {xn, Gn : n ∈ ω} is a play on X in which I applies s, then for every

k ∈ ω the family {xn, Gn ∩Xk : n ∈ Ak} is a play on Xk in which I applies sk

so
⋃
{Gn ∩ Xk : n ∈ Ak} is dense in Xk. An immediate consequence is that⋃

n∈ω Gn is dense in X so s is a winning strategy of the first player on X .
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It was proved in [11] that if a space X is I-favorable with respect to
the game of dense open sets on a space X then X is weakly Lindelöf. The
I-favorable spaces for the game DG have an analogous stronger property.

Proposition 2.3. If a space X is I-favorable with respect to the game
DG of dense Gδσ-sets and Q is a cover of X with Gδ-sets then there exists a
countable Q′ ⊂ Q such that

⋃
Q′ is dense in X.

Proof. If no countable subfamily of Q has a dense union in X then
pick, for any point x ∈ X , a set Qx ∈ Q with x ∈ Qx. This gives a strat-
egy for the second player on X defined as follows: if n ∈ ω and moves
x0, G0, . . . , xn−1, Gn−1, xn are made then the second player responds with
Gn = s(x0, . . . , xn) = Qxn

. It is clear that s is a winning strategy for II on
X so the space X is not I-favorable which is a contradiction.

Corollary 2.4. If ψ(X) = ω and the space X is I-favorable with respect
to DG then X is separable.

Proof. Observe that {{x} : x ∈ X} is a cover of X with Gδ-sets and
apply Proposition 2.3.

Corollary 2.5. If a space X is of pointwise countable type (in particular,
if X is Čech-complete) and I-favorable for the game DG of dense Gδσ-sets then
it has a dense σ-compact subspace.

For a normal weakly Lindelöf spaceX it was proved by Bell, Ginsburg and
Woods (see [7, Theorem 4.13]) that |X | ≤ 2χ(X). Since it is an open question
whether this inequality holds for all Tychonoff weakly Lindelöf spaces X , it is
natural to prove it for new classes of weakly Lindelöf spaces. In our context
this is the class of I-favorable spaces with respect to the game DO of dense
open sets; we will show that in this class the inequality of Bell, Ginsburg
and Woods still holds. To do so, we will need the following generalization of
Theorem 2.11(i) of [11].

Theorem 2.6. If X is a I-favorable with respect to the game DO of dense
open sets then d(X) ≤ χ(X). Consequently, if X is I favorable for the game
DG of dense Gδσ-sets then d(X) ≤ χ(X).

Proof. Let κ = χ(X) and fix, for any x ∈ X , a local base B(x) of the
space X at the point x such that |B(x)| ≤ κ. Take a winning strategy s of the
first player on the space X in DO and let A0 = {s(∅)}; proceeding inductively
assume that we have sets A0 ⊂ . . . ⊂ An and |An| ≤ κ.

The cardinality of the set

A′

n+1 = {s(G0, . . . , Gn) : Gi ∈
⋃

{B(x) : x ∈ An}

and there are x0, . . . , xn ∈ An such that x0, G0, . . . , xn, Gn is an initial seg-
ment of a play in which I applies the strategy s} does not exceed κ. Therefore
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the set An+1 = An∪A′

n+1 also has cardinality at most κ and hence our induc-
tive procedure can be continued to give us an increasing sequence {An : n ∈ ω}
of subsets of X of cardinality ≤ κ.

It suffices to show that A =
⋃

n∈ω An is dense in X so assume that it is
not. Fix a non-empty open set O ⊂ X\A. It is easy to see that A has the
following property:

(1) if x0, . . . , xn ∈ A while x0, G0, . . . , xn, Gn is an initial segment of play
in which I applies s and G0, . . . , Gn ∈ B =

⋃
{B(x) : x ∈ A} then

s(G0, . . . , Gn) ∈ A.

By regularity of X we can find a set O1 ∈ τ∗(X) such that O1 ⊂ O.
Since x0 = s(∅) ∈ A ⊂ X\O, we can find U0 ∈ B(x0) for which U0 ∩O1 = ∅.
Proceeding inductively suppose that x0, G0, . . . , xn, Gn is an initial segment
of a play in which I applies s while G0, . . . , Gn ∈ B and Gi ∩ O1 = ∅ for all
i ≤ n. The property (1) shows that the point xn+1 = s(G0, . . . , Gn) belongs
to A and hence xn+1 /∈ O1. Therefore there exists Gn+1 ∈ B(xn+1) ⊂ B with
Gn+1 ∩ O1 = ∅. This shows that our inductive procedure can be continued
to obtain a play {xn, Gn : n ∈ ω} in which the first player applies s while
Gn ∩O1 = ∅ for all n ∈ ω. This implies that the set

⋃
n∈ω Gn is not dense in

X , i.e., the strategy s is not winning which is a contradiction.

Corollary 2.7. If a space X is I-favorable in the game DO of dense
open sets then |X | ≤ 2χ(X).

Proof. By Theorem 2.6 we have c(X) ≤ d(X) ≤ χ(X) so we can apply a
theorem of Hajnal–Juhasz (see [7, Theorem 4.9]) to see that |X | ≤ 2c(X)χ(X) =
2χ(X).

Example 2.8. There exists a space X which is I-favorable with respect
to DG while c(X) > ω and l(X) > ω.

Proof. Let X0 be the one-point compactification of a discrete space
of cardinality ω1. If x0 = s(∅) is the unique non-isolated point of X0 and
the second player takes a Gδ-set G0 ∋ x0 then X0\G0 is countable; take an
enumeration {xn : n ∈ N} of the set X0\G0. If the first player chooses xn

at the n-th move for all n ∈ N then he/she wins no matter what the second
player does. Therefore the space X0 is I-favorable.

Now if X1 = Dω1\{p}, where p ∈ Dω1 is an arbitrary point, then X1 is
a separable non-Lindelöf space. Consequently, X1 is I-favorable for DG and
hence so is X = X0 ⊕X1 by Theorem 2.2.

It was proved in [11] that it is consistent with ZFC that there exist
non-separable spaces which are hereditarily I-favorable with respect to the
game DO of dense open sets. It turns out that the hereditary version of
I-favorability for DG coincides with hereditary separability.
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Theorem 2.9. A space X is hereditarily I-favorable in the game DG of
dense Gδσ-sets if and only if X is hereditarily separable.

Proof. Since sufficiency is clear, assume that X is hereditarily I-
favorable for DG. A discrete I-favorable space for DG is countable by Corol-
lary 2.4 so s(X) = ω. If X is not hereditarily separable then there is an
uncountable left-separated space Y ⊂ X . Any left-separated space of count-
able spread is hereditarily Lindelöf (see [1, Theorem 1.2.9]) so hl(Y ) = ω and
hence ψ(Y ) = ω. Applying Corollary 2.4 to the space Y we conclude that
d(Y ) = ω and hence Y is countable which is a contradiction.

Proposition 2.10. Any Lindelöf scattered space is I-favorable with re-
spect to the game of dense Gδσ-sets.

Proof. Given a Lindelöf scattered space X apply Theorem 9.3 of the
paper [8] to see that X is I-favorable in the game of Galvin–Telgársky. Now
it follows from Theorem 2.2(i) that X is also I-favorable for DG.

Example 2.11. The space ω1 of all countable ordinals with its interval
topology is countably compact and scattered; however, it follows from Theo-
rem 2.6 that ω1 is not I-favorable even with respect to the game DO of dense
open sets because d(ω1) = ω1 > χ(ω1) = ω.

Example 2.12. There exists a Lindelöf P -space which is neutral with
respect to the game DG.

Proof. It was proved in [11] that there exists a neutral Lindelöf P -space
X for the game DO; since in P -spaces the games DO and DG coincide, the
space X is also neutral for DG.

Definition 2.13. Given a space X and Y ⊂ Cp(X) say that Y is strongly
separating if for any f, g ∈ Y we have f + g ∈ Y and, for every J ∈ τ∗(R), if
F ⊂ X is a closed set and x ∈ X\F then there exists a function f ∈ Y such
that f(F ) ⊂ {0} and f(x) ∈ J .

Lemma 2.14. If Y is a strongly separating subset of Cp(X) then for every
closed F ⊂ X, if K ⊂ X\F is a finite set and a set Jx ∈ τ∗(R) is chosen
for each x ∈ K then there exists a function f ∈ Y such that f(F ) ⊂ {0} and
f(x) ∈ Jx for all x ∈ K.

Proof. For every x ∈ K we can find a function fx ∈ Y such that fx(x) ∈
Jx and fx(F ∪ (K\{x})) ⊂ {0}. It is clear that f =

∑
{fx : x ∈ K} is the

required function.

Theorem 2.15. Suppose that X is a space and Y is a strongly separating
subset of Cp(X). Then Y is I-favorable with respect to the game DG of dense
Gδσ-sets if and only if, for any countable set A ⊂ X, the space πA(Y ) is
separable.
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Proof. For any A ⊂ X and f ∈ Y let [f,A] = {g ∈ Y : g|A = f |A}.
Assume first that Y is I-favorable with respect to DG and fix a countable
set A ⊂ X . The space πA(Y ) is also I-favorable with respect to DG being a

continuous image of the space Y ; besides, ψ(πA(Y )) ≤ ψ(Cp(A)) = ω so the
space πA(Y ) has to be separable by Corollary 2.4. This proves necessity.

Now assume that the space πA(Y ) is separable for any countable A ⊂ X
and fix any function u ∈ Y . Let s(∅) = f0 = u and suppose that the second
player takes a Gδ-set G0 ∋ f0. It is easy to find a countable set A0 ⊂ X such
that [f0, A0] ⊂ G0; by our assumption there exists a countable set E0 ⊂ Y
such that πA0

(E0) is dense in πA0
(Y ). Choose an infinite set M0 ⊂ ω\{0}

such that ω\M0 is also infinite and let {gl : l ∈M0} be an enumeration of the
set E0 in which every g ∈ E0 occurs infinitely many times.

Proceeding inductively, assume that k ∈ ω and we have an initial segment
f0, G0, . . . , fk, Gk of a play in DG on the space Y and countable sets Ai, Ei,Mi

for all i ≤ k with the following properties:

(2) A0 ⊂ . . . ⊂ Ak ⊂ X and [fi, Ai] ⊂ Gi for all i ≤ k;
(3) E0, . . . , Ek ⊂ Y and πAi

(Ei) is dense in πAi
(Y ) for each i ≤ k;

(4) the family Mi = {Mj : j ≤ i} is disjoint,
⋃
Mi ⊂ ω\{0, . . . , i} and

the set ω\(
⋃
Mi) is infinite for every i ≤ k;

(5) for every i ≤ k, an enumeration {gl : l ∈Mi} of the set Ei is taken in
which every g ∈ Ei occurs infinitely many times;

(6) if i ≤ k and i ∈Mj for some j < i then fi = gi.

If the number k + 1 does not belong to
⋃
Mk, the first player’s move

is to take the function fk+1 = u and let s(G0, . . . , Gk) = fk+1. If k + 1 ∈⋃
Mk then there exists a unique i ≤ k such that k + 1 ∈ Mi; the first

player’s move in this case is fk+1 = gk+1 and s(G0, . . . , Gk) = fk+1. If
the second player responds with a Gδ-set Gk+1 ∋ fk+1 then it is easy to
see that there exists a countable set Ak+1 ⊂ X for which Ak ⊂ Ak+1 and
[fk+1, Ak+1] ⊂ Gk+1. Our assumption about the space Y makes it possible to
find a countable set Ek+1 ⊂ Y such that πAk+1

(Ek+1) is dense in πAk+1
(Y ).

Choose an infinite set Mk+1 ⊂ ω\((
⋃
Mk) ∪ {0, . . . , k + 1}) in such a way

that the set ω\((
⋃
Mk) ∪ Mk+1) is still infinite and take an enumeration

{gl : l ∈ Mk+1} of the set Ek+1 in which every g ∈ Ek+1 occurs infinitely
many times.

It is straightforward that the properties (2)–(6) are still fulfilled for all
i ≤ k+1 so we completed our definition of a strategy s for the first player in the
game of dense Gδσ-sets on Y . Suppose that {fi, Gi : i ∈ ω} is a play in which
I applies the strategy s. We also have the family {Ai, Ei,Mi : i ∈ ω} with the
properties (2)–(6). To prove that G =

⋃
i∈ω Gi is dense in Y fix a function

g ∈ Y , a finite set K ⊂ X and ε > 0. Let O = {f ∈ Y : |f(x) − g(x)| < ε for
all x ∈ K}; we must prove that G ∩O 6= ∅.
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For A =
⋃

i∈ω Ai there exists k ∈ ω such that K ′ = K∩A = K∩Ak. The
set O′ = {f ∈ πAk

(Y ) : |f(x)− g(x)| < ε for every x ∈ K ′} is non-empty and

open in πAk
(Y ) so the properties (3) and (5) guarantee that there is l ∈ Mk

such that l ≥ k and |gl(x) − g(x)| < ε for all x ∈ K ′. Since fl = gl by the
property (6), we also have |fl(x) − g(x)| < ε for all x ∈ K ′. By our choice of
k, the set K ′′ = K\K ′ does not meet Al; since Y is strongly separating, we
can apply Lemma 2.14 to find a function h ∈ Y such that h(Al) ⊂ {0} and
|h(x)+ fl(x)− g(x)| < ε for all x ∈ K ′′. Now, if w = h+ fl then w|Al = fl|Al

so w ∈ [fl, Al] ⊂ Gl; since also w ∈ O, it follows from w ∈ O ∩ Gl that
O ∩ G 6= ∅ and hence the set G is dense in Y , i.e., s is, indeed, a winning
strategy for the first player in the game DG on the space Y .

Corollary 2.16. A space Cp(X) is I-favorable in the game DG of dense

Gδσ-sets if and only if, for every countable A ⊂ X, the set Cp(A|X) is sepa-
rable.

Corollary 2.17. If X is normal, then Cp(X) is I-favorable for the game

DG of dense Gδσ-sets if and only if iw(A) = ω for any countable A ⊂ X.

Proof. Normality of X implies that Cp(A|X) = Cp(A) for each A ⊂ X ;

besides, d(Cp(A|X)) = d(Cp(A)) = iw(A) so Cp(A|X) is separable if and only

if iw(A) = ω; Corollary 2.16 does the rest.

Corollary 2.18. If l∗(A) = iw(A) = ω for any countable A ⊂ X (in
particular, if X is an ω-monolithic space) then Cp(X) is I-favorable for the
game DG of dense Gδσ-sets.

Proof. If A ⊂ X is countable then Cp(A) has countable tightness; this,

together with separability of Cp(A) implies that any dense subspace of Cp(A)

is separable. The set Cp(A|X) being dense in Cp(A) we conclude that it is
separable so Cp(X) is I-favorable in DG by Corollary 2.16.

Corollary 2.19. If X is a scattered Lindelöf space then Cp(X) is I-

favorable for the game DG of dense Gδσ-sets if and only if A is countable for
any countable set A ⊂ X.

Proof. Sufficiency is a trivial consequence of Corollary 2.18. If Cp(X)

is I-favorable for DG and A ⊂ X is countable then A has a weaker second
countable topology by Corollary 2.17. Since every continuous second count-
able image of a Lindelöf scattered space is countable, we conclude that A is
countable.

Corollary 2.20. If Cp(X) is ω-stable then it is I-favorable for DG.

Corollary 2.21. If X is ω-stable (in particular, if X is a Lindelöf Σ-
space) then Cp,2n+2(X) is I-favorable for DG for all n ∈ ω.
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Corollary 2.22. If X is ω-monolithic (in particular, if X is metrizable)
then Cp,2n+1(X) is I-favorable for DG for all n ∈ ω.

Theorem 2.23. If X is a Lindelöf Σ-space then Cp(X) is I-favorable with
respect to the game DG of dense Gδσ-sets if and only if X is ω-monolithic.

Proof. Sufficiency is a consequence of Corollary 2.18. Now, if Cp(X) is
I-favorable for DG and A ⊂ X is countable then it follows from normality of
X and Corollary 2.17 that iw(A) = ω. However, if a Lindelöf Σ-space has
countable i-weight then it has a countable network (see [2, Corollary II.6.27])
so nw(A) = ω and hence X is ω-monolithic.

Theorem 2.24. Any product of separable spaces is I-favorable with re-
spect to the game DG of dense Gδσ-sets.

Proof. If Y is a product of separable spaces then it is easy to see that
there exists a cardinal κ such that Y contains a dense continuous image of ωκ.
By Theorem 2.2 it suffices to show that the space ωX is I-favorable for DG
for every set X . It is immediate that ωX is a continuous image of the space
QX . If we consider X with the discrete topology then Cp(X) = RX and QX

is a strongly separating subset of Cp(X). Since A = A for every countable
A ⊂ X , the space πA(QX) = πA(QX) = QA is even second countable so we
can apply Theorem 2.15 to see that QX is I-favorable for DG.

Corollary 2.25. Any dyadic compact space is I-favorable with respect
to DG.

Proposition 2.26. Suppose that Xt is a space and a set Yt ⊂ Cp(Xt)
is strongly separating for each t ∈ T . If Yt is I-favorable with respect to the
game DG of dense Gδσ-sets for every t ∈ T then Y =

∏
t∈T Yt is I-favorable

with respect to DG. In particular, if every Cp(Xt) is I-favorable for DG then∏
{Cp(Xt) : t ∈ T } is I-favorable with respect to DG.

Proof. If X =
⊕

{Xt : t ∈ T } then Cp(X) is canonically homeomorphic
to

∏
{Cp(Xt) : t ∈ T } and it is easy to see that, applying this canonical home-

omorphism, we can identify Y with a strongly separating subset of Cp(X). If
A ⊂ X is a countable set then let At = A∩Xt for each t ∈ T ; there is a count-
able S ⊂ T such that A =

⋃
{At : t ∈ S} and hence A =

⊕
{At : t ∈ S}. It

is straightforward that πA(Y ) is homeomorphic to
∏
{πAt

(Yt) : t ∈ S}; since

every πAt
(Yt) is separable by Theorem 2.15, the space πA(Y ) is also separable

so we can apply Theorem 2.15 again to conclude that Y is I-favorable for DG.

3. Open problems

This paper is the very first step on the way of the study of the game
DG of dense Gδσ-sets. We hope that the obtained results show that this
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game provides an interesting insight into generalizations of separable spaces.
The open problems presented below outline possible new ways to develop the
subject.

Problem 3.1. Suppose that iw(A) = ω for any countable A ⊂ X . Must
Cp(X) be I-favorable for DG?

Problem 3.2. Suppose that X and Y are I-favorable spaces with respect
to the game DG of dense Gδσ-sets. Must the space X ×Y be also I-favorable
with respect to DG?

Problem 3.3. Suppose that G is a pseudocompact topological group.
Must G be I-favorable with respect to DG?

Problem 3.4. Is true that any product of spaces I-favorable with respect
to DG is I-favorable with respect to DG?

Problem 3.5. Suppose that a space X is I-favorable with respect to DG.
Must Cp(Cp(X)) be I-favorable with respect to DG?

Problem 3.6. Is it true that d(X) ≤ ψ(X) for any space X which is
I-favorable with respect to DG?

Problem 3.7. Is there a compact space which is neutral for the game
DG?

Problem 3.8. Is it true that Lp(K) is I-favorable with respect to DG for
any compact space K?

Problem 3.9. Find a characterization for an Eberlein compact space K
to be I-favorable for DG. For example, is it true that K is I-favorable for DG
if and only if K is metrizably scattered, i.e., any non-empty subspace of K has
a non-empty open metrizable subspace?

Problem 3.10. Suppose thatK and L are Eberlein compact spaces which
are I-favorable for DG. Must X × Y be I-favorable for DG?
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Universidad Autónoma Metropolitana
San Rafael Atlixco, 186, Col. Vicentina
Iztapalapa, C.P. 09340
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