An extension of Knopp’s core theorem for complex bounded sequences

Seyhmus Yardimic

Abstract. In this paper, using the idea used by Choudhary, we extend previously known results on the core for complex bounded sequences.

Key words: core of a sequence, Knopp core theorem, core theorem, functionals on the bounded sequences

AMS subject classifications: Primary 40A05; Secondary 11B05, 26A03, 26A05

Received August 15, 2007 Accepted December 20, 2007

1. Introduction

Let m, c be linear spaces of complex bounded and convergent sequences $x = \{x_n\}$, respectively, normed by $\|x\| = \sup |x_n|$. We define functionals l and L on linear space of a real bounded sequence by

$$l(x) = \liminf x_n; L(x) = \limsup x_n.$$

Let $A = (a_{nk})$ be an infinite matrix and write

$$(Ax)_n := \sum_k a_{nk} x_k$$

if the series converges for each $n \in \mathbb{N}$. By Ax we denote the sequence $\{(Ax)_n\}$. If $\lim Ax = \lim x$ for each $x \in c$, we say that A is regular [2], [9] and write $A \in (c, c; p)$. Silverman Toeplitz theorem gives the necessary and sufficient conditions for regularity of the matrix A [2], [9].

Matrix $A = (a_{nk})$ is called normal if it is a lower semi-triangular matrix with non-zero diagonal entries [2].

For brevity we shall denote the Knopp core of x by $K - core \{x\}$; recall [2], [4] that

$$K - core \{x\} := \bigcap_{n=1}^{\infty} C_n(x)$$

*Department of Mathematics, Faculty of Science, Ankara University, Tandoğan 06100, Ankara, Turkey, e-mail: yardimci@science.ankara.edu.tr
where $C_n(x)$ is the least closed convex hull of $\{x_k\}_{k \geq n}$. If x is a real bounded sequence, then $K - \text{core} \{x\}$ will be a closed interval $[\bar{f}(x), L(x)]$.

The famous Knopp’s core theorem (see [2], [3], [5], [6], [8], [11]) determines a class of regular matrices for which $L(Ax) \leq L(x)$ for all real bounded sequences x; that is $K - \text{core} \{Ax\} \subseteq K - \text{core} \{x\}$.

Let \mathbb{C} denote the set of complex numbers. In Shcherbakoff [10] it is shown that for every bounded x,

$$K - \text{core} \{x\} := \bigcap_{z \in \mathbb{C}} B_x(z),$$

where

$$B_x(z) := \left\{ w \in \mathbb{C} : |w - z| \leq \limsup_k |x_k - z| \right\}.$$

Shcherbakoff [10] generalized the notion of the core of a bounded complex sequence by introducing the idea of the generalized α-core of a bounded complex sequence x as

$$K^{(\alpha)} - \text{core} \{x\} := \bigcap_{z \in \mathbb{C}} B^{(\alpha)}_x(z),$$

where

$$B^{(\alpha)}_x(z) := \left\{ w \in \mathbb{C} : |w - z| \leq \alpha \limsup_k |x_k - z|, \alpha \geq 1 \right\}.$$

when $\alpha = 1$, $K^{(\alpha)} - \text{core} \{x\}$ reduces the usual Knopp core.

In [7] Natarajan has proved the following theorem.

Theorem A. When $K = \mathbb{R}$ or \mathbb{C}, an infinite matrix $A = (a_{nk})$, $a_{nk} \in K$, $n, k = 0, 1, 2, \ldots$ is such that

$$K - \text{core} \{Ax\} \subseteq K^{(\alpha)} - \text{core} \{x\}, \alpha \geq 1$$

for any bounded sequence x if and only if A is regular and satisfies

$$\limsup_{n \to \infty} \left(\sum_{k=0}^{\infty} |a_{nk}| \right) \leq \alpha.$$

This result for the case $\alpha = 1$ yields a simple proof of Knopp’s core theorem.

In this paper, using the idea used by Choudhary [1], we generalize inclusion (1).

2. Main results

Before giving the main result we first state a result due to Choudhary [1] that we need for our purposes.

Lemma 1. Let n be fixed. In order that, whenever Bx is bounded, $(Ax)_n$ should be defined, it is necessary and sufficient that

(i) $c_{nk} = \sum_{v=k}^{\infty} a_{nv} b_{vk}^{-1}$ exist for all k;
An extension of Knopp’s core theorem

(ii) \(\sum_{k=0}^{\infty} |c_{nk}| < \infty \) (for all \(n \));

(iii) \(\sum_{k=0}^{\infty} \left| \sum_{v=j+1}^{\infty} a_{nv} b_{vk}^{-1} \right| \to 0 \) (\(j \to \infty \))

should hold for the \(n \) considered. If these conditions are satisfied, then for bounded \(Bx \),

\[
(Ax)_n = (Cy)_n
\]

(2)

where \(y := Bx \).

Whenever \(B \) is normal, \(B \) has a reciprocal. Denote its reciprocal by \(B^{-1} = (b_{nk}^{-1}) \). Note that if \(B \) is a normal matrix, then the space \(m_B := \{ x : Bx \in m \} \) is isometrically isomorphic to \(m \). Hence given a sequence \(y \in m_B \), there exists a unique sequence \(x \in m_B \) so that \(y := Bx \).

Now we are ready to state our first result:

Theorem 1. Let \(B = (b_{nk}) \) be a normal matrix and \(A \) any matrix. In order that, whenever \(Bx \) is bounded, \(Ax \) should exist and be bounded and that

\[
K^{(\alpha)} - \text{core} \{ Ax \} \subseteq K^{(\alpha)} - \text{core} \{ Bx \}, \ \alpha \geq 1
\]

(3)

it is necessary and sufficient that

(i) \(C = AB^{-1} \) exists;

(ii) \(C \) is regular;

(iii) \(\limsup_{n \to \infty} \left(\sum_{k=0}^{\infty} |c_{nk}| \right) \leq \alpha \)

(iv) for any fixed \(n \)

\[
\sum_{k=0}^{j} \left| \sum_{v=j+1}^{\infty} a_{nv} b_{vk}^{-1} \right| \to 0 \quad (j \to \infty)
\]

Proof. Assume that (3) holds. Write \(y := Bx \). Let \((Ax)_n \) be exist for each \(n \) whenever \(y \) is bounded. Then by Lemma 1, (i) and (iv) of Theorem hold. Moreover, for every bounded \(y \) we have (2). Hence, by (3) we get

\[
K^{(\alpha)} - \text{core} \{ Cy \} \subseteq K^{(\alpha)} - \text{core} \{ y \}, \ \alpha \geq 1
\]

for every bounded \(y \). Now it follows from Theorem A that (ii) and (iii) hold.

Sufficiency. Observe that conditions (i) and (iv) imply the conditions of Lemma 1. So (2) holds and \(Cy \) is bounded whenever \(y \in m \). Now from Theorem A, (ii) and (iii) imply that

\[
K^{(\alpha)} - \text{core} \{ Cy \} \subseteq K^{(\alpha)} - \text{core} \{ y \}, \ \alpha \geq 1
\]

provided \(y \) is bounded. Writing \(y = Bx \) we immediately get (3), whence the result.

Recall that the matrix \(A \) is called row-finite if every row contains only a finite number of non-zero elements. In this case (iii) of Theorem 1 is zero for sufficiently large \(j \); hence (iii) is evidently satisfied. So, Theorem 1 reduces to the following
Theorem 2. Let $B = (b_{nk})$ be a normal matrix. Then for a row-finite matrix A,

$$K - \text{core } \{Ax\} \subseteq K^{(\alpha)} - \text{core } \{x\}, \alpha \geq 1, \text{ (for all } x \in m_B)$$

if and only if (i) and (iii) hold.

If we interchange the roles of matrices A and B in Theorem 1, we immediately get the following

Theorem 3. Let $B = (b_{nk})$ and $A = (a_{nk})$ be normal matrices. Then for all $x \in m_B \cap m_A$ we have that

$$K - \text{core } \{Ax\} = K^{(\alpha)} - \text{core } \{Bx\}$$

if and only if

a) $C = AB^{-1}$ and $D = BA^{-1}$ exist;

b) C and D are regular;

c) $\limsup_{n \to \infty} \left(\sum_{k=0}^{\infty} |c_{nk}| \right) \leq \alpha$

$$\lim_{n \to \infty} \left(\sum_{k=0}^{\infty} |d_{nk}| \right) \leq \alpha$$

d) for any fixed n

$$\sum_{k=0}^{j} \sum_{v=j+1}^{\infty} a_{nv} b_{vk}^{-1} \to 0 (j \to \infty),$$

and

$$\sum_{k=0}^{j} \sum_{v=j+1}^{\infty} b_{nv} a_{vk}^{-1} \to 0 (j \to \infty).$$

References

