Anti-Inflammatory Effects of Exercise Training in the Early Period after Myocardial Infarction

Sanja Balen1, Nada Vukelić-Damijanić, Viktor Peršić2, Alen Ružić, Bojan Miletić3, Marina Samardžija4, Dragoslav Domanović4, Jure Mirat5, Dario Nakić6, Ivan Soldo7 and Aleksandar Včev8

1 Institute for Transfusion Medicine, University Hospital Center Rijeka, Rijeka, Croatia
2 Department of Cardiology and Cardiac Rehabilitation, »Thalassotherapia« Opatija, Opatija, Croatia
3 Department of Transfusion Medicine, School of Medicine, University »J.J. Strossmayer«, Osijek, Croatia
4 Blood Transfusion Center of Slovenia, Ljubljana, Slovenia
5 Clinic for Internal Medicine, General Hospital «Sveti Duh», Zagreb, Croatia
6 Department of Internal Medicine, General Hospital «Zadar», Zadar, Croatia
7 Department of Infectology, School of Medicine, University »J.J. Strossmayer«, Osijek, Croatia
8 Department of Internal Medicine, School of Medicine, University »J.J. Strossmayer«, Osijek, Croatia

ABSTRACT

The aim of this investigation was to determine the effect of exercise training on the levels of plasma cytokines and acute phase reactants in the early post acute myocardial infarction (AMI) period. Sixty patients were enrolled into this three-week cardiac rehabilitation study. The mean time from AMI was 7.08±1.60 days, and the patient mean age was 60±10 years. Subjects were randomly assigned to one of the two groups: the control group treated with standard measures, and the group with additional regular moderate-intensity exercise training. Physical activity was based on the ergospirometry test results. Apart from clinical follow-up and routine laboratory analysis we determined the levels of plasma cytokines: tumor necrosis factor (TNF-α), soluble TNF-α receptor 1 (TNF-αSR1), interleukin (IL)-8, IL-10, and acute phase reactants: high sensitivity C-reactive protein (hsCRP) and fibrinogen. The obtained results confirmed the hypothesis that the early post AMI period is an inflammatory state the intensity of which gradually decreases with standard treatment during the first month after AMI, while including patients into early exercise training improves their inflammatory profile by decreasing the level of acute phase reactant and TNF-αSR1.

Key words: early cardiac rehabilitation, cytokine, acute phase reactants

Introduction

Cardiovascular diseases (CVD) are the leading cause of mortality and one of the greatest health problems in the developing countries. Investigating mechanisms of their origin and the possibilities of improving existing healthcare are therefore of particular importance. In spite of the established significance of the degree of coronary obstruction1 and great expectations regarding the investigation of endothelial dysfunction2, the existing scientific data demonstrate that inflammation is one of the crucial factors of occurrence and clinical course of most CVD. It is actively involved in all levels of atherogenesis, and so today atherosclerosis is recognized as a low grade inflammatory vascular disease.1 In a series of therapeutic possibilities affecting the inflammatory component of atherosclerotic disease, exercise training is the most outstanding. The success of regular exercise in reducing the risk of coronary disease development and complications was convincingly associated with the reduction of C-reactive protein (CRP) and fibrinogen3 levels, while on a sample of 28 263 healthy postmenopausal women a prospective study of Ridker et al. has demonstrated the predictive values of CRP and interleukin-6 (IL-6) on the development of cardiovascular events4. Some results have shown a relation between increased CRP and soluble tumor necrosis factor-α (TNF-α) values with increased risk of coronary disease in both gen-
period.

kines and acute phase reactants in the early post AMI pe-

rformance of exercise training on the levels of plasma cyto-

changes with long-term effects develop.

after AMI during which the most important adaptive

flammation have not yet been examined in the early period

sible data, the positive effects of exercise training on in-

generally very poorly investigated11. According to acces-

changes in the postinfarction CHF development, it is

myocardial infarction (AMI) covers a period of critical

reinfarction7,8. In patients with congestive heart failure

significant predictor of the development of myocardial

Church et al. is an interesting observation, especially

exercise level with CRP values reported in a study of

migration of vascular smooth muscle cells and the pro-

responsible for the recruitment of inflammatory cells

into the subendothelial space, adhesion of monocyte, the

mation of metalloproteinase expression. According to the

IL-8 therapeutic responses, there is a paucity of data on

the effects of regular physical training. The anti-inflam-

IL-8 primarily inhibits the release of

Exercises induce a cascade of cytokine inhibitors,

but also the protective role of IL-1010.

Although the time of early rehabilitation after acute

myocardial infarction (AMI) covers a period of critical

changes in the postinfarction CHF development, it is

generally very poorly investigated11. According to acces-
sible data, the positive effects of exercise training on in-

flammation have not yet been examined in the early period

after AMI during which the most important adaptive

changes with long-term effects develop.

The aim of this investigation was to determine the in-

fluence of exercise training on the levels of plasma cyto-

kines and acute phase reactants in the early post AMI pe-

riod.

Materials and Methods

Patients after AMI (n=60) were enrolled into this

randomized, multi-center study. All patients had success-

fully undergone a percutaneous coronary intervention
(PCI), approximately 6–9 days before entry into the

study. They were included in the second phase of a

three-week rehabilitation program. During a three week

follow-up there were no significant complications. All en-

rolled patients successfully completed the program.

Exclusion criteria were: uncontrolled arrhythmias,

uncontrolled hypertension (systolic blood pressure >180

mmHg or diastolic >100 mmHg), unstable post-infar-

ction angina, acute heart failure, abnormal hemodynamic

response or ischemic changes on electrocardiogram (ECG)
during the initial incremental load of 50 W on the ergo-

spirometry test, uncontrolled metabolic diseases, signifi-
cant orthopedic limitations, significant peripheral vascular
disease, infectious states or other inflammatory diseases,

and over 80 years of age.

Patients were randomized into the exercise training
(n=30) and the control group (n=30) by flipping a coin.
The control group without active training was provided
with standard care, whereas the training group participat-
ed in regular physical training. Before starting exer-
cise training patients were ergospirometry tested with a
Meta Max 2 Cortex (Leipzig, Germany) device, the VO2
peak was established by the respiratory spectrometry
which is routine measurement for oxygen uptake in com-
pliance with the guidelines of the American Heart Asso-
ciation10. Exercise training consisted of a 45-minute aer-
obic activity on a cycle-ergometer with exercise intensity
reaching a level of heart rate 50–60 % peak oxygen up-
take (VO2peak) monitored on ergospirometry. Addition
to this training was a daily 30-minute organized program
of supervised walking on a standardized track.

All subjects had given informed consent to the in-
clusion in the study and the research was carried out in ac-
cordance with the principles of the Declaration of Hel-
sinki.

Inflammatory markers were determined at rest on the
second and twentieth day of the rehabilitation pro-
gram. Blood samples were collected for all investigated
patients at the same time, under the same conditions, by
venipuncture without homeostasis, after a 20 minute
rest and no physical training for 24 hours before. Test
values were determined in duplicate. Cytokines mea-
sured in the study were: TNF-α, TNFαSR1, IL-8 and
IL-10, while from the acute phase reactants we analyzed:
high sensitivity C-reactive protein (hsCRP) and fibrino-
gen.

The commercial enzyme-linked immunosorbent assay
(ELISA) test (Amersham Biosciences, UK), was used for
the analysis of serum values of IL-8, IL-10 and TNF-α,
as well as for TNFαSR1 (R&S Systems), whereas fibrino-
gen serum values were determined by an automated co-
gulation analyzer, and hsCRP by a immunoturbidimeti-
crinal commercial method (both Dade-Behring, USA).

Data base created by the MS Excel program was sta-

istically analyzed on a PC using the Statistical Data

<table>
<thead>
<tr>
<th>TABLE 1</th>
<th>DEMOGRAPHIC AND ANTHROPOMETRIC PARAMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All patients (N=60)</td>
</tr>
<tr>
<td>Age (years)</td>
<td>60±10</td>
</tr>
<tr>
<td>Gender (M/F)</td>
<td>44/16</td>
</tr>
<tr>
<td>BMI (kg/m^2)</td>
<td>28.4±3.8</td>
</tr>
<tr>
<td>Waist / hip ratio</td>
<td>1.030±0.059</td>
</tr>
</tbody>
</table>
Results

Patients’ demographic and anthropometric data are listed in Table 1. There was no significant difference in age, sex, body mass index (BMI) and waist/hip ratio at the start of the trial. To the end, BMI significantly decreased in the total sample (28.4±3.8 kg/m² to 28.2±3.6 kg/m², p = 0.047), but without significant changes within the analyzed groups (in trained patients BMI changed from 28.8±3.8 kg/m² to 28.6±3.5 kg/m², p = 0.120 while in the control group 28.0±3.8 kg/m² to 27.9±3.8 kg/m², p = 0.226), and without changes in the waist/hip ratio (for total sample 1.03±0.06 changed to 1.02±0.08, p = 0.626; for trained patients from 1.026±0.07 to 1.027±0.08, p = 0.975 and for controls from 1.034±0.07 to 1.022±0.07, p = 0.299).

Of the total sample 43.3% of patients had diabetes or glucose intolerance, without significant difference in the prevalence between the trained (40.0%) and the control (46.7%, p = 0.587) group. Standard medical therapy did not differ between studied groups, and it was not discontinued during the investigation. Angiogenesis converting enzyme inhibitor (ACE-inhibitor) was administered to 98.3% of patients, β-blockers to 91.67%, Aspirin to 96.67%, clopidogrel or ticlopidine to 70%, statins to 98.33%, calcium-blocking agents to 23.33%, diuretics to 20.0%, nitrates to 20.0%, peroral antidiabetics to 36.67% and 10.41% of patients were on insulin therapy.

The initial ergospirometry test reached VO2peak values of 18.9±4.6 mL/kg min for the entire group (training

<table>
<thead>
<tr>
<th>TABLE 2</th>
<th>CHANGES IN CLINICAL-LABORATORY PARAMETERS OF CARDIOVASCULAR RISK</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All patients (N=60) Training group (N=30) Controls (N=30) p</td>
</tr>
<tr>
<td>Total cholesterol (mmol/L)</td>
<td></td>
</tr>
<tr>
<td>Baseline</td>
<td>4.50±1.36</td>
</tr>
<tr>
<td>Week 3</td>
<td>3.96±1.06</td>
</tr>
<tr>
<td>Δ*</td>
<td>-0.10±0.16</td>
</tr>
<tr>
<td>P</td>
<td><0.001</td>
</tr>
<tr>
<td>Triglyceride (mmol/L)</td>
<td></td>
</tr>
<tr>
<td>Baseline</td>
<td>1.65±0.80</td>
</tr>
<tr>
<td>Week 3</td>
<td>1.53±0.86</td>
</tr>
<tr>
<td>Δ*</td>
<td>-0.06±0.30</td>
</tr>
<tr>
<td>P</td>
<td>0.088</td>
</tr>
<tr>
<td>HDL-cholesterol (mmol/L)</td>
<td></td>
</tr>
<tr>
<td>Baseline</td>
<td>0.75±0.21</td>
</tr>
<tr>
<td>Week 3</td>
<td>0.82±0.31</td>
</tr>
<tr>
<td>Δ*</td>
<td>0.10±0.36</td>
</tr>
<tr>
<td>P</td>
<td>0.045</td>
</tr>
<tr>
<td>LDL-cholesterol (mmol/L)</td>
<td></td>
</tr>
<tr>
<td>Baseline</td>
<td>2.98±0.99</td>
</tr>
<tr>
<td>Week 3</td>
<td>2.50±0.79</td>
</tr>
<tr>
<td>Δ*</td>
<td>-0.14±0.21</td>
</tr>
<tr>
<td>P</td>
<td><0.001</td>
</tr>
<tr>
<td>Total cholesterol / HDL-cholesterol</td>
<td></td>
</tr>
<tr>
<td>Baseline</td>
<td>6.4±2.8</td>
</tr>
<tr>
<td>Week 3</td>
<td>5.5±2.3</td>
</tr>
<tr>
<td>Δ*</td>
<td>-0.14±0.26</td>
</tr>
<tr>
<td>P</td>
<td>0.009</td>
</tr>
<tr>
<td>HbA1C (%)</td>
<td></td>
</tr>
<tr>
<td>Baseline</td>
<td>6.5±1.3</td>
</tr>
<tr>
<td>Week 3</td>
<td>6.3±1.2</td>
</tr>
<tr>
<td>P</td>
<td>0.044</td>
</tr>
</tbody>
</table>

relative change = [(week 3 value – baseline value) / baseline value]
At the end of the investigation VO$_{2\text{peak}}$ values increased considerably in the trained patients (23.2±6.0 mL/kg min, p<0.001), while there was no significant change (18.5±5.3 mL/kg min, p=0.339) in the control group. Comparison of VO$_{2\text{peak}}$ values after three weeks of rehabilitation revealed significantly higher values in trained patients (p=0.002).

Changes in the clinical-laboratory parameters of cardiovascular risk are shown in Table 2. A significant decrease of total-cholesterol, LDL-cholesterol, tryglicerides and glycolised hemoglobin (HbA1C) values, and a significant rise of HDL-cholesterol were found among trained patients after three weeks of rehabilitation revealed significantly higher values in trained patients (p=0.002).

Changes in the circulating levels of inflammatory markers are shown in Table 3. During the early post AMI period, the values of fibrinogen, hsCRP and IL-8 decreased in both study groups and they were significantly lower in the group of patients with regular physical training at the end of the study. Anti-inflammatory cytokine IL-10 increased significantly in the trained group, while the change in the control group was insignificant.

The changes of TNF-α serum concentration were of borderline significance in the control group, with no difference with regard to training during the study, but the values of TNF-αSR1 dropped significantly in trained patients reaching statistically significant lower values at the final measurements.
At the beginning, the decrease of hsCRP values in the study revealed a reverse correlation with the patient BMI. The decrease of hsCRP for the normal (BMI <25 kg/m²), overweight (BMI 24–30 kg/m²) and obese (>30 kg/m²) weight groups is presented graphically (Figure 1). In accordance with the study design, its focus on the first 3 postinfarction weeks and the absence of significant anthropometric value changes in analyzed patients groups, we found no correlation of these parameters with the inflammatory markers, hsCRP included.

Discussion

We demonstrated in our study that the early period of reaching clinical stability after AMI is marked by a generalized inflammatory reaction. Passive recovery and continued medical treatment during the following three weeks led to slow inflammatory regression, while physical training of moderate intensity had an additional anti-inflammatory effect. Considering the study design, we excluded the unstable and high-risk patients and established that the applied training protocol is safe and effective in the early period of uncomplicated AMI. Beside the inflammatory markers, active rehabilitation triggered a significant improvement of the metabolic risk profile.

The VO₂ peak was defined as the best single predictor of cardiac and total mortality in patients with known CVD, and is considered one of the best indicators of survival. Early rehabilitation after AMI is inadequately researched. Most studies investigating the effects of regular physical training on cardiovascular capacity and the inflammatory status of cardiovascular patients are based on modalities of chronic stable coronary disease.

Regular exercise training of 40–90 % VO₂ peak intensity is recommended to patients with coronary disease, although such training programs are performed at lower values in that range. The starting VO₂ peak in our research corresponds to values registered during early cardiac rehabilitation. However, the VO₂ peak increase of 16 % recorded during early post-infarction training of moderate intensity corresponds more to the high-intensity (18 %) training results than to a moderate-intensity regime (8 %) in late cardiac rehabilitation. These data could suggest significantly higher cardiorespiratory effects of the same training protocol in the early post-infarction phase than if applied later.

Serum hsCRP values increase after AMI as a consequence of tissue lesions. Their levels are slightly increased immediately after myocardial infarction; they redouble after 8 hours, reach maximal levels on the second to fourth day, and return to normal 3–4 weeks after AMI. In our study, changes in hsCRP concentration clearly correlate with exercise training and the degree of BMI. Since the anthropometric parameters of the subjects have not changed significantly during the three weeks of investigation, registered changes of hsCRP cannot be attributed to the decreased body weight. The correlation between hsCRP regression and weight loss is the major limitation of all investigations with exercise training of longer duration, because it leaves an open possibility for their association and relativizes the direct anti-inflammatory effect of physical activity. Considering the great public health and clinical importance of obesity, our study introduces an interesting observation: hsCRP decrease inversely correlates with BMI. Since adipose tissue is the source of IL-6, which is the precursor of CRP, we presume that exercise training could directly affect the fatty cells metabolism and cause suppression of the inflammatory pathway. Although additional research is required, these data suggest that overweight and obese patients, who for their inclination towards the metabolic syndrome represent a high-risk group in secondary cardiovascular prevention, would particularly benefit from early rehabilitation after AMI.

A number of studies investigated the effect of physical activity on specific inflammatory markers. Thus, in patients with CHF a 12-week aerobic training reduces TNF-α concentration, 6-week bicycle ergometry training reduces the concentration of TNF-αSR1, and a 16-week combined aerobic/endurance training reduces the values of both TNF soluble receptors, but not of TNF-α. In our investigation of post infarction TNF-α and TNF-αSR1 dynamics we recorded a decrease of only TNF-αSR1 values in the trained group. The absence of TNF-α change supports the earlier reports on the lower sensitivity of its serum concentration in relation to TNF-αSR1 suggesting that a greater sample size is required to reliably evaluate the influence of an intervention on TNF-α concentration than for TNF-αSR1. In the study, we measured only the immunoactivity of the free trimeric TNF-α molecule. It is therefore also possible that a non significant reduction in TNF-α is linked to the significant reduction of its soluble receptor in the trained group, while in the control group the significantly lower value of TNF-α is defined by the absence of its soluble receptor decrease.

Effects of regular training on IL-10 levels are poorly investigated. A study by Smith et al. reported an increase of IL-10 by 36 % in subjects with high risk of developing CVD during a 6-month exercise training. In our study, a similar increase of IL-10 was associated with exercise training of post-myocardial patients in a significantly shorter period. The initial values of inflammatory markers in our study are higher than those in other studies of secondary cardiovascular prevention, possibly because they include patients with stable coronary disease.

The significant role of IL-8 in stimulating atherosclerosis is well documented and considered one of the leading generators of increased cardiovascular risk in diabetic and obese subjects. Our study has shown that IL-8 plasma concentration in the control and training group decreased significantly but the decrease is more obvious in trained patients. Comparing our results with the study of Niessner A. et al., it becomes evident that training decreased circulating IL-8, which may to some extent explain its beneficial effect on coronary risk.
The Framingham study established fibrinogen a cardiovascular risk factor of equal significance as elevated blood pressure, obesity, smoking and diabetes\(^32\), stressing the fact that extended physical activity correlates with blood pressure, obesity, smoking and diabetes\(^32\), stressing cardiovascular risk factor of equal significance as elevated fibrinogen levels and with the increase of fibrinolytic capacity\(^33,34\). Our study demonstrated the decrease of fibrinogen with exercise training in the early period after AMI, for which there are no elaborated data. Data presented in this study point out the possible positive effects of early postinfarction physical training are new reference points for further investigation of the cardiovascular diseases associated with low intensity inflammations, first of all atherosclerotic CVD that are of great importance for public health\(^32\). The obtained results confirmed the hypothesis that the early post AMI period is an inflammatory state the intensity of which gradually decreases with standard treatment during the first month after AMI, while including patients into early exercise training improves their inflammatory profile by decreasing the level of acute phase reactant and TFN-α SRI.

According to the results of cardiorespiratory improvement and anti-inflammatory potentials, the modality of early exercise training after AMI that we have tested is a safe and effective procedure that may possibly become a routine modality in current cardiological practice. However, long-term effects, especially those on post-infarction myocardial remodeling, require further verification and assessment.

REFERENCES

trijskog testa. Pored kliničkog praćenja i rutinskih laboratorijskih nalaza, određivane su razine plazmatskih citokina: tumor nekrotizirajućeg faktora α (TNF-α), topivog TNF-α receptor 1 (TNF-αSR1), interleukina 8 (IL-8), IL-10 i reaktanata akutne faze: visokoosjetljivog C-reaktivnog proteina (hsCRP) i fibrinogena. Dobiveni rezultati potvrđuju pretpostavku da upalno stanje u ranom razdoblju nakon AIM postupno regredira uz standardne mjere liječenja tijekom prvog mjeseca praćenja, dok uključenje u rani fizički trening dodatno poboljšava upalni status poticanjem značajnijeg pada reaktanata akutne faze upale i TNF-αSR1.