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Abstract
The installation of indoor radio systems requires rather detailed propagation characteristics for any arbitrary configuration, 
so appropriate wave propagation model must be established. In spite of a number proposed solutions for prediction of the 
propagation characteristics in WLAN environment, it is difficult to say that we have completely satisfied solution. A neural 
network propagation model that was trained for particular environment was developed.  The network architecture is based 
on the multilayer perceptron. The neural network results are additionally compared with the numerical results obtained by the 
deterministic 3-D ray tracing model. The ray tracing model includes three reflected rays from the walls and other obstacles 
what was enough accurate for the given environment.  The neural network is used to absorb the knowledge about given 
environment through training with three access points. Using such obtained knowledge the network is used to predict 
signal strength at any spot of space under consideration. The various training algorithms were applied to the network to 
achieve the best convergence results and best possible network model behavior. The network model was trained by Scaled 
Conjugate Gradient (SCG), Conjugate Gradient of Fletcher-Reeves (CGF), Quasi-Newton (QN), and Levenberg-Marquardt 
(LM) algorithms. The comparison of the obtained results is presented.  

Key words: indoor propagation model, 3-D tracing model, WLAN, multilayer perception, training algorithm 

Sažetak
Uvođenje bežičnih komunikacijskih sustava u bilo kakav prostor zahtijeva prilično detaljno poznavanje propagacijskih 
karakteristika, tako da je potrebno izraditi odgovarajući model rasprostiranja elektromagnetskoga polja. Unatoč većem broju 
do sada predloženih rješenja za predviđanje propagacijskih karakteristika u bežičnim lokalnim mrežama (WLAN), teško je reći 
da postoji potpuno zadovoljavajuće rješenje. Razvijen je propagacijski model zasnovan na neuronskoj mreži, koja je obučena 
za određeni okoliš. Arhitektura je mreže zasnovana na višeslojnom perceptronu. Rezultati dobiveni s pomoću neuronskoga 
modela uspoređeni su s rezultatima postignutima s determinističkim trodimenzionalnim modelom zasnovanim na metodi 
slijeđenja zrake.  Metoda slijeđenja zrake koristi se trima reflektiranim zrakama od zidova, što osigurava dostatnu točnost 
za zadani prostor. Neuronska je mreža upotrijebljena za prikupljanje znanja povezanoga s propagacijskim karakteristikama 
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određenog prostora, i to za tri priključne točke. Uporabom tako prikupljenog znanja mreža je upotrijebljena za predviđanje 
snage signala u bilo kojoj točki razmatranoga prostora. Neuronska je mreža obučavana s nekoliko različitih algoritama kako bi 
se postigla najbolja konvergencija, to jest model s najboljim karakteristikama. Upotrijebljeni su algoritmi: Konjugirani gradijent 
(SCG), Konugirani gradijent Fletcher-Reevesa, Quasi_newton (QN) i Leveberg-Marquardt. Prikazani su postignuti  usporedni 
rezultati. 

Ključne riječi: propagacijski model zatvorenog prostora, trodimenzionalno slijeđenje zrake, bežična lokalna mreža, višeslojni 
perceptron, algoritam za učenje. 

Very good input-output mapping make these networks useful 
in signal strength prediction with the same accuracy as other 
deterministic methods. Through the learning process the 
relevant network has possibility to absorb the knowledge 
about propagation characteristics for given indoor space, 
based on the relationship between input and output. 

The network is trained with measured data, and tested with 
different data, also obtained by measurement. Additionally, 
the adequacy of using neural networks in indoor propagation 
prediction problems is proved by comparison with ray tracing 
results.  

In WLAN frequency band of 2.4GHz or 5GHz the diffraction 
influence to signal strength can be neglected, and the sum 

INTRODUCTION / Uvod

The popularity of indoor wireless communication systems 
- phones, hand-held terminals, various PDA devices - 
are constantly increasing.  These portable devices tend 
to be mobile and in principle can be located anywhere, 
while access points need to provide good link to the 
communications backbone of the system. The base 
stations need to be positioned carefully so that they cover 
the building with adequate signal level. Generally problem 
can be reduced to given building, where we need to 

answer to questions like how many access points will be 
needed, at which positions they will be placed to cover 
the building with minimum power level.  

Prediction of the signal strength for indoor propagation 
environments is faced with effects of multipath propagation, 
such as signal attenuation, reflection, diffraction, and 
interference, due to diversity of building geometrical 
and construction characteristics [1],[2],[3],[4]. The 
Maxwell’s equations with the relevant boundary conditions 

enable the most accurate solving indoor propagation 
problems, but with extreme calculation complexity. To avoid 
this complexity a lot of empirical propagation models have 
been developed. The ray tracing model based on geometric 
optics is enough accurate when include more then one 
reflected ray, and also diffraction effects.  This model requires 
detailed information about building characteristics and 
too much computation time, so it can’t be feasible for real 
buildings.  

Artificial neural networks can be used as an alternative 
to various deterministic propagation prediction methods. 
Several authors have already proposed such solutions [5], [6] 
with different approaches and neural network architectures. 

Fig. 1. Plan of the second floor university building 
Sl. 1. Tlocrt drugog kata sveučilišne zgrade
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Table 1.  The Coordinates of the access points
Tablica 1. Koordinate prijemnih točaka

Acess points x y z
AP1 0.0 4.85 2.2
AP2 17.0 7.65 2.2
AP3 33.0 7.65 2.2
AP5 30.0 2.3 2.2

SIGNAL STRENGTH PREDICTION BY RAY 
TRACING MODEL / Predviđanje snage signala 
s pomoću modela slijeđenja  zrake 

The transmitter was the access point one, denoted by 
AP1 and receiving points are marked as mobile phones 
in the Fig. 1. The computation begins with the line of sight 
path (the corridor), followed with the receiving points in the 
side rooms. The reflection and transmission coefficients 
are calculated for each surface (wall, floor, ceiling, door 
or window). We assumed that all reflecting surfaces are 
orthogonal, what was really true in our case. 

The methodology of finding the reflection or the 
transmission points is illustrated in the Fig. 2 in two-
dimensional space. The points denoted with T and R 
are the locations of the transmitter and the receiver, 
respectively. The two reflection ray is considered. It is easy 
to realize that coordinates of the points S3 and S34 are (2L3 
–xr, yr) and (2L3 – xr,2L4 – yr), respectively . According to that 
the coordinates of the points of reflection can be obtained 
as intersection of the line T-S34 with wall 4, and intersection 
of the line r1-S3 with the wall 3, respectively.

of directed ray and  the reflected rays is enough accurate to 
describe  behavior of channel propagation.  Hence, main task 
is to describe main obstructions and the surfaces that affect 
the signal propagation. This description includes geometric 
characteristics of the propagation environment as well as 
electromagnetic parameters of surfaces to determine the 
surface reflection coefficients. In this paper the 3-D ray-optical 
model is presented to describe the WLAN signal propagation 
in an indoor environment. Using the model, signal strengths 
are calculated in various points of indoor environment.  This 
analytical model is verified by neural network simulation and 
measurement. The predicted values obtained by the ray-
tracing technique and neural network model are compared 
with measurement and it is found that they follow the same 
trend. 

The multilayer perception (MLP) is trained with different 
algorithms to achieve the best convergence results and 
the best possible model behavior in signal strength 
prediction. The comparison is made for algorithms: 
Scaled Conjugate Gradient (SCG), Conjugate Gradient 
of Fletcher-Reeves (CGF), Quasi-Newton (QN), and 
Levenberg-Marquardt (LM), and Bayesian regularization 
(BS). The models are compared based on the mean, root 
mean squared error (RMSE) and standard deviation. 

PROPAGATION MODEL / Propagacijski model
The second floor of Dubrovnik University B building is 
chosen for simulation environment. The dimensions of the 
floor are 33x11x2.40 m3, as it is shown in Fig. 1 with origin 
of coordinate system in left lower corner and locations of 
base stations for neural network training purposes. The 
environment under consideration ends with folding door. 
The access points are CISCO Aironet 1100 series for 
WLAN 802.11b standard. Coordinates of access points 
are shown in the Table 1. The walls are made of the bricks 
with wooden doors, while the ceiling and floor are made 
of the concrete.

Measurements of the received signal strength for the 
various locations of the receiver and each base station 
(Fig.1) have been made in the first step. The each WLAN 
access point was operating on the 7th channel at 2.437 
GHz (100mW), and transmitter antenna gain was 8.5 dBi. 
The signal strength measurements were made by a laptop 
computer with PCMCIA wireless card positioned 1.2 m 
above the floor. The measurements were performed for 
98 receiving points (locations) that were 1 m apart from 
each other. There were made three measurements for 
each location and mean value was saved with location 
coordinates.  These values will be used in the training and 
testing of the neural network, as well as for comparison 
with the results obtained by the ray tracing technique. 

Fig. 2. Ray tracing methodology
Sl. 2. Metodologija slijeđenja  zrake
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The signal strength in the arbitrary receiving point for 
the rays with one and two reflections is given as

 

(1)

d0 = length of the direct path

di ,dk = length of the paths with one and two 
reflections, respectively

Ri = reflection coefficient for the path with one 
reflection

R1k , R2k = reflection coefficients for the paths with one 
and two reflections, respectively

Δ φ i, Δ φk = phase diferences between direct and 
reflected paths

The reflection coefficients were computed by the 
Fresnel’s equation for the vertical polarization

                          (2)

where i is the angle of incidence. The receiving signal 
strength is computed for  one direct component and 
rays with maximum 3 reflections. The non-uniformities of 
the reflected surface materials; such that can produce 
scattering were neglected, because their contribution 
to signal strength is insignificant in the environments 
such is the environment under consideration. Further 
reflected rays are not taken into account because 
of the computing time. It is useful to investigate 
their contribution to total signal strength. The vertical 
polarization has been assumed. Received power (dBm) 
was calculated for 93 points that have been 1m apart 
and 1.5 m above floor. Adequate computer software is 
developed for the ray tracing model calculation. The 
geometrical and construction characteristics of the 
environment under consideration were included in the 
computation from the appropriate database.  

The obtained results are saved and processed to 
compare with calculated values. The results are shown 
in the Fig. 3. It is shown the change in signal strength 
with increasing transmitter-receiver separation. The 
differences between measured and calculated results 
are more significant in the proximity of the transmitter. 
The results show that reflected rays of higher order 
need to be taken into account, as well as, the influence 
of diffracted rays with more accurate model of the walls. 
Mean variation of calculated values is 3.74 dBm.

 

SIGNAL STRENGTH PREDICTION BY NEURAL 
MODEL / Predviđanje snage signala uz pomoć 
neuronskoga  modela
The basic component in the neural network model is 
neuron. The network function and its position in the 
network architecture determine behavior of the each 
neuron. According to the recommendations from [7] 
we chose multilayer perception (MLP) for propagation 
simulation that is shown in the Fig. 4 with two hidden 
layers. The input layer as inputs receive location 
coordinates of access points and receiving points. 
The network has one neuron in output layer for relevant 
signal strength value. Such neural network architecture 
can be learned applying a set of labeled training 
samples that involve modification of the synaptic 

Fig. 3. Calculated and measured signal strength
for ray tracing model  

Sl. 3. Usporedba izmjerenih i izračunatih vrijednosti za 
model slijeđenja  zrake

Fig. 4. Neural network architecture
Sl. 4. Arhitektura neuronske mreže
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weights of neural network to produce corresponding 
(desired) output.

The training of the network is repeated for many 
input samples until the network reaches a steady state 
where there are no significant changes in the synaptic 
weights. After training phase the neural network is 
tested or simulated  with input data from the set of 
examples but different of that used in the training, and 
if the outputs are reasonable  the network generalizes 
well.

In this network construction the output of the each 
neuron of the kth layer is given by derivable nonlinear 
function f

                    (3)

The function f is called activation function and it can 
be of different type. In our case we choose sigmoidal 
hyperbolic tangent function 

                                   (4)

   

The synaptic weights of the connection between 
the neuron j and neuron i are denoted as wji, while yj is 
the output of the neuron j in the (k-1)th  layer.

Appropriate initial values of synaptic weights (also 
called free parameters) and learning algorithm are 
crucial for learning phase, after the architecture of 
the network has been determined. As training rule we 
decided to compare several algorithms that update 
the weight and bias values producing minimal error 
between the network output and desired output. During 

the training phase the known input-output pairs are 
applied to the network. When the network has correctly 
learned the task specification, it can be used in the test 
phase with test samples as it is shown in the Fig. 5. 

The way to make neural network training process 
more efficient some preprocessing steps need to be 
performed on the network inputs and targets (Fig. 5). 
The network inputs and targets scaling can be done 
by normalization of mean and standard deviation of the 
training set. The results of the normalization process are 
zero mean and unity standard deviation of the training 
set. The target data need to be in un-normalized form, 
so adequate opposite process need to be applied 
(Fig. 5).  

The back propagation algorithm is usually used as 
training algorithm with multilayer perception [8].  There 
are several training rules for the neural model with the 
task to adjust the synaptic weights to optimize neural 
network configuration. The back propagation algorithm 
is based on the steepest descent gradient method 
applied to change the value of the each synaptic 
weight to minimize the output error [7].  During the 
training proces the synaptic weights are adjusted to 
minimize the sum of the squared differences between 
the desired  and actual outputs expressed like

 (5)

where vdj is the desired output value for the jth output 
neuron, and yj is the output value obtained by the 
network for the same neuron. The changes in the 
synaptic weight value depend of the learning rule, 

Fig. 5 Training and testing process for MLP
Sl. 5. Proces učenja i testiranja višeslojnog perceptrona
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determine function slope before the training starts. For 
the change of the slope parameter a from (4) is applied 
the same approach as for the weight change and for ith 
neuron in any layer is given by

                             (8)

The parameter a mustn’t be smaller than some 
predefined value amin to avoid linearization of the network 
mapping, so if amin > ai(k+1) then ai(k+1)=amin.

In this work we compared several training algorithms.  
First, the absolute error between the measured and 
predicted signal strength is computed as

but generally, for the back propagation algorithm the 
weight change between ith and jth neuron at any layer 
can be expressed as

                   (6) 

where μ > 0 is the learning rate. The minus sign is for gradient 
descent in weight space. There is seeking a direction for 
weight change to reduce the value of E [7].   The new value of 
the weight in kth iteration is given by

      (7)

The training process starts with small random values of 
the weights. This initial values need to be sufficiently small so 
that training does not start from a point in the error space. This 
error space is connected with location on the curve of the 
activation function (Fig. 6).  It can be seen in the Fig. 6 that 
for the argument values distant from the zero the value of the 
function is very small as well as the value of its first derivative. 

As updating of the weights is directly dependable of the 
function’s first derivative, so the learning rate is very slow in 
this case.  The commonly used initial values of the weights 
are uniformly distributed random numbers in the interval 
from -0.5/fan_in to 0.5/fan_in, where fan_in is total number of 
neurons that are connected with these weights to preceding 
layer [8]. 

It is obvious that during back propagation algorithm 
running the saturated values of the activation function 
derivative should be avoided. This can be done by 
decreasing the slope of the curves (Fig. 6). The slope 
decreasing makes the network more linear, what 
diminishes the multilayer effect. In the linear case one 
layer is enough. It is possible to find an optimum value 
for the activation function slope to satisfy learning rate 
and network mapping capabilities. The parameter a, 
as it is visible from (4) can be used for function slope 
adjusting. The function slope can be different from 
neuron to neuron, even in the same layer. The structure 
of MLP is very complex, so it is practically impossible to 

Fig. 6 Sigmoidal hyperbolic tangent function and it’s first derivative
Sl. 6. Sigmoidalna funkcija hiperbolnog tangensa i njezina derivacija

                              (9)

where i denotes the number of the mesured sample. The 
absolute mean error is calculated by

                                        (10)

where N is total number of measured samples. These two 
errors leads to the standard deviation:

                 (11)
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EXPERIMENTAL RESULTS / Eksperimentalni 
rezultati

As it is visible in the Fig. 1 base stations AP1, AP2, and 
AP3 are chosen for training and testing of the network. 
Randomly there are determined 78 receiving locations 
for training purpose and 20 for network testing of the 
total number of 98 receiving locations for which the 
measurement have already been made (Fig. 1). This 
has been made for each base station that for training 
results in 78x3 pairs of receiver coordinates - signal 
strength and 20x3 such groups for testing. Good 
network generalization is shown in the Fig. 7, where the 
change in signal strength with increasing transmitter-
receiver separation is shown for neural network 
model, ray tracing calculation, and measured data. 
The differences between measured, simulated and 
calculated results are more significant in the proximity 
of the transmitter. 

 

Fig. 7 Comparison of neural network simulation, 
measurement and ray tracing for base station AP1 

and receiving points in main corridor

Sl. 7. Usporedba rezultata dobivenih s pomoću 
neuronske mreže, mjerenjem i metodom slijeđenja 

zrake

Neural network simulation results for base stations 
AP2 and AP3 are shown in Fig. 8 and 9 respectively. 
Receiving points denoted with numbers from 1 to 12 
are located in main corridor, with beginning at x = 
0, while the receiving points denoted with numbers 
from 13 to 20 are located in different rooms. We can 
see acceptable matching between neural network 
simulation results and measurement data for various 
testing locations of receiver according to the Fig. 1. The 

Finally, the RMS error is obtained with absolute 
mean error and standard deviation:

                               (12)

For each training algorithm adequate computer 
software is developed. The algorithms are briefly  
described hereafter.

Scaled conjugate gradient (SCG)

The scaled conjugate gradient algorithm, develped 
by Moller, was designed to avoid the time consuming 
line search. The algorithm is rather complex to be 
explained in few lines, but basic idea was to combine 
the model-trust redgion approach with conjugate 
gradient approach [7].

Fletcher-Reeves conjugate gradient (CGF)

This algorithm starts with searching into the steepest 
descent direction (negative of the gradient). The line 
search is then performed to determine the optimal 
distance to move along the current search direction. 
The succeeding directions are determined so that it 
is conjugate to previous search directions. The norm 
square of the previous gradient and the norm square 
of the current gradient are used in a Fletcher-Reeves 
version of conjugate gradient to calculate the weights 
and biases [7].

Quasi-Newton method (QN)

This algorithm is based on Newton’s method but it 
doesn’t require the calculatin of second derivatives. 
They update an approximate Hessian Matrix at each 
iteration. The update is computed as a function of the 
gradient. It has more computations in each iteration 
than conjugate gradient algorithms, but usually 
converges very fast [7].

Resilient propagation (RP)

The main purpose of this backpropagation algiorithm 
is to avoid harmful effects of the size of the partial 
derivative on the weight upadte. This is simple batch 
mode training algorithm with fast convergence and 
minimal storage requirements [7].

Levenberg-Marquardt algorithm (LM)

The best features of the Gauss-Newton method 
and the steepest-descent method are combined in 
this algorithm avoid many of their limitation. Its main 
characteristic is fast convergence [7]. 
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Fig. 9 Comparison of neural network simulation and 
measurement for base station AP3

Sl. 9. Usporedba rezultata dobivenih s pomoću 
neuronske mreže i mjerenjem za pristupnu točku AP3

    The worst results are obtained for CSG algorithm, 
and best test results are achieved training with BR 
algorithm. The Fig. 11 shows signal strength for each 
testing receiving point for the worst and the best training 
algorithm comparing it with measured data.  

 

Fig. 10 Comparison of neural network simulation and 
measurement for base station AP5

Sl. 10. Usporedba rezultata dobivenih s pomoću 
neuronske mreže i mjerenjem za pristupnu točku AP5

overall mean variation of neural results in comparison 
with measured data was 3.8 dBm.  

Additional testing is performed for base station 
AP5, that is not been participating in the training of 
the network.  It is located at (30, 2.3) coordinates and 
results of comparison with measured data are shown 
in the Fig. 10. This is the worst case, so the mean 
variation between neural and measured data was little 
bit less than 10 dBm. In spite of this not encouraging 
result, we think that this method is still usable.  

Additional testing is performed for base station 
AP5, that is not been participating in the training of 
the network.  It is located at (30, 2.3) coordinates and 
results of comparison with measured data are shown 
in the Fig. 10. This is the worst case, so the mean 
variation between neural and measured data was little 
bit less than 10 dBm. In spite of this not encouraging 
result, we think that this method is still usable.  

Fig. 8 Comparison of neural network simulation and 
measurement for base station AP2

Sl. 8. Usporedba rezultata dobivenih s pomoću 
neuronske mreže i mjerenjem za pristupnu točku AP2

The comparison of six chosen training algorithms 
for MLP is expressed in terms of  absolute mean error, 
root squared mean error  and standard deviation.  
The achieved performance of the MPL network for 
mentioned training algorithms and ray-tracing results 
are presented in the Table2.
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Table 2. Error statistics for signal strength prediction by  
NN and ray-tracing models 

Tablica 2. Statistika pogrešaka predviđanja snage signala 
za neuronske mreže i model slijeđenja zrake

Prediction 
model

Mean error 
[dB]

RMSE [dB] Standard 
drv. [dB]

MPL-SCG 6.015 7.845 5.036
MPL-CGF 3.640 4.406 2.843
MPL-QN 4.272 5.162 2.899
MPL-RP 5.141 6.516 5.139
MPL-LM 3.308 3.978 2.210
MPL-BR 2.451 2.967 1.672

Ray-tracing 4.474 5.237 2.722

Fig. 11 Comparison of the worst and the best algorithm 
case

      Sl. 11. Usporedba najlošijeg i najboljeg slučaja

CONCLUSION / Zaključak
The contribution presented in this paper is that we 
incorporate a lot of propagation phenomena without 
complex and long last computations with practically 
equal accuracy as it is with more deterministic methods 
(like ray tracing method).    

The two signal strength prediction models based on 
neural networks and ray tracing have been developed.  
The main advantage of the neural model is that it 
doesn’t require any knowledge about dimensional 
or construction characteristics of the building under 
consideration, what is unknown in many cases. The 
training algorithms include adaptive activation function 
slopes; hence the speed of the training process is 

significantly increased. The overall process is relatively 
short. In any case it doesn’t last longer then 10 
minutes.  

It is important to emphasize that the accuracy 
of the neural network model is comparable to the 
accuracy of the other propagation models. The 
behavior of several training algorithms has been 
investigated, and according to the obtained results, 
for the multilayer perception the best results show 
Bayesian regularization. This training algorithm has the 
smallest RMS error (2.97 dB).  The obtained results for 
this algorithm are even better then ones obtained by 
ray tracing method. In the ray tracing method ideally 
smooth surfaces were assumed and some obstacles 
were neglected (window frames).  The electromagnetic 
characteristics of the material of the walls and other 
obstacles are assumed in the ray tracing calculations. 
The more accurate values of the dielectric constants 
can be obtained by measurements. 

The introduced model can be used for improving 
the performances of existing indoor wireless networks, 
and it can serve as a good tool for wireless network 
planning in general. The future work need to introduce 
other neural network configurations, like Radial Basis 
Function networks (RBF). The training process is an 
optimization process, so some other optimization 
methods can be introduced in this process, like Particle 
Swarm Optimization algorithm.        
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