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In this paper, we present an efficient technique based on the extension of the Adaptive Integral Method
(AIM) that allows the full-wave analysis of microstrip reflectarrays. The reflectarray patches can have arbi-
trary shape and orientation and are modelled with subdomain triangular basis functions. The method makes
use of a 2D-FTT/CG scheme, reducing the CPU time per iteration to O(N logN) and the memory require-

ment to O(N).
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1 INTRODUCTION

Accurate and efficient electromagnetic simula-
tions are essential for the analysis and the design
of reflectarrays. Typically, however, a reflectarray
is a large-scale electromagnetic problem and it is
often necessary to employ a large number of un-
knowns for its solution. For the conventional MoM,
whether in the spectral or spatial domain, the me-
mory requirement is always proportional to O(N 2),
where N denotes the number of unknowns. This
requirement can easily become prohibitive even on
the most powerful computers. Even if the memory
permits, the computing time can, however, become
very excessive. Recently, a few techniques, based
on a modification of the classical method of mo-
ments (MoM), have been proposed for the analy-
sis of electrically large microstrip structures [1-3].
These techniques allow a fast evaluation of the re-
action integral and, when an iterative solver is
used, a fast matrix-vector multiplication.

Here, a new technique is presented, called Mul-
tiLayer Adaptive Integral Method (MLayAIM) that
is highly suitable for the analysis of multilayered
structures, such as reflectarrays, which present
large planar metallizations and a few vertical con-
ductors (Figure 1). In particular, the MoM solu-
tion technique is applied to the surface integral
equation, and the matrix equation is Z/ = V. The
impedance matrix Z = Z°+ 77 is then divided into
the sum of a non-planar (external) matrix Z¢ and
a planar-matrix Z”. The planar matrix represents
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Fig. 1 Geometry of the problem

the interaction relevant to those basis functions that
lie on a z-constant plane. Especially in a reflectar-
ray analysis, these basis functions represent the
majority; hence, the external matrix Z° is a very
sparse matrix and its storage does not present any
problem. As the classical Adaptive Integral Method
(AIM) [4], the efficiency is then achieved by split-
ting the reaction integral domain of the planar part
into a near-interaction (strong) region and a far-in-
teraction (weak) region, based on an appropriate
choice of the error of the reaction integral terms.
Hence, the planar impedance matrix Z” is further
divided into the sum of a strong- and a weak-ma-
trix, i.e., Z” = Z°+ Z”, where Z° represents the
(strong) near-field interaction and Z" the (weak)
non-near-field interaction. The near-interaction re-
gion requires that several reaction integrals have
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to be evaluated and stored in the strong-matrix Z°,
which is a sparse matrix. Concerning the weak-
-matrix, use has been made of a set of auxiliary
basis function supported by a two-dimensional
Cartesian grid. This allows us to operate a canoni-
cal grid expansion of the exact weak-matrix ele-
ments into a series of translationally invariant
terms. The so rewritten impedance matrix is then
applied in a conjugate gradient solution of the ma-
trix equation (Z¢+ Z°+ Z")V = I with the required
matrix-vector products performed rapidly due to
the sparse nature of the external- and strong- matri-
ces, and, for the weak-matrix, the use of the fast
2D Fourier transform (2D-FFT) and its inverse.
When more than one planar metallization is pre-
sent geometrical domain decomposition is used
and a parallel implementation of the algorithm is
feasible.

2 FORMULATION

Consider an arbitrarily microstrip structure con-
sisting of N, metallized layers in a multilayer
medium. Each layer is characterized by relative
permittivity &, relative permeability u,;, and thicks
ness h;. As well known, the equivalent currents J;
relevant to the microstrip structure can be found
by solving the following MPIE [5]

1)-Lax9 (6" v1,) (1)

AXE' = jwﬁx<GA,
jo

where G4 and G?® are the Green’s function for the
vector and scalar potential, respectively. The nota-
tion (,) is used for integrals of dot products of two
functions separated by the comma over their com-
mon spatial support. To solve the integral equation
(1), one first subdivides the surface S of the metal-
lic structure into small triangular patches, and the
unknown current is expanded by using a suitable-
set of basis functions J (7) (e.g., the Rao-Wilton-
-Glisson (RWG) basis functions [6]), i.e.,

N —
(7)=§1njn(7)

where /, are unknown coefficients and N the num-
ber of interior edges (unknowns). Then, the MoM
solution technique is applied to the surface inte-
gral equation (1), and the matrix equation is Z[ =
= (Z°+ ZF)I = V. The external matrix Z° is a spar-
se matrix and for its evaluation a classical MoM
formulation is used. Hence, in the following, we
will focus our attention on the planar-matrix Z”
evaluation only.
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Let P be the number of metallizations on which
the planar part of the structure lies, each element

Z", of the planar-matrix Z”can be expressed, as-

suming the Galerkin discretization scheme, as fol-
lows

-7, (7)) dF 7 +

(2)
PV G, (7) dFdF

Jwﬂjm(r) ﬂGpp
+—U V- (7) ff

where the basis function J, (%) lies on the p' meta-
11zat10n while J,,(7) on the p metallization. G%,,
and G ' are the dyadic Green’s function and the
scalar potent1al respectively, due to the interaction
between the metallization p and p'. It is worth not-
ing that to solve the planar problem by using the
formulation proposed in [7] it is sufficient to eva-
luate the xx-component Gy, of the dyadic Green’s
function.

As already mentioned, the planar-matrix Z” can
be written as the sum of the near-field (strong) Z°
and the far-field (weak) Z" matrices. The former
one is calculated Z° = 77 — Z" similarly as in [4],
and is the only one that we have to store. Concer-
ning the weak-matrix, we 1ntroduce a set of auxi-
liary basis functions ¢n(’”) and ¢n(”) which pro-
duce a good approximation of the field radiated
by a RWG basis function at a large distance. In
particular, for each RWG basis function lymg on a
plane z = z,, we chose a set of L = (M + 1)? point-
-like current elements located at the nodes of a
regular Cartesian two-dimensional grid, parallel to
the x,y plane and located at z = z,, i.e.,

L —
Jn () =1, (F) =X A, 0 (F~7) )

i=1
Vi, (7) ZA (F-7) 4

where A,, i A ; are the translation coefficients of
the expansion and 7, 7, is the position vector of the
i-th grid node. The translatlon coef01ents are cho-
sen so as to reproduce the first (M + 1) multipole
moments of the original basis function [4], i.e., for

0< q91-92 <M,

xc)q1 (yn,i_yc)q2 =
(5)
a (2.2, ) (x=x)" (y=2,)" dxdy
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ZAZ,i(xnz —Xe )ql (yn,i _yc)q2 =

g (x.3.2,)(x

(6)
—x. )" (y-y,)" dxdy

where, to minimize the numerical roundoff errors,
Xe Ve Zp are the center of the RWG basis function
support The set of auxiliary basis functions allows
us to approximate each element of the weak ma-
trix as

Zom szzAm] Aan;p ( P"lpi_pj |)+
J=li=1

lelAd AZZG;);( p':lz)i_z)j |)
j=li

(7)

ja)

By sorting the RWG basis functions with respect
to the P planar metallization it is possible rewrite
the weak matrix Z"={Z,,} as a Px P blocks ma-
trix with

Zs = jo[ Ay ] GoAY+
1

rjo[a,] G4 G

@®)

where A, A, and A are sparse matrices with each
row containing only (M + 1)? nonzero elements.
Considering the unknown vector relevant to the
weak part composed by P vectors as

1= 113551 ]

and by employing a conjugate gradient (CG) met-
hod as iterative solver, one can write the matrix-
vector multiplication V"=2Z"]"

w P T Np a X w
Yy :I:Ap:l ZthPPAP Iy +
=

Ty ©)
] Sepai
p =

T ]Vp a w
+[A;] Zlcpp/\; I+
p:

where V"=V, VY;..;V'p]. Tt is worth noting that
G,, and G, are Toeplitz block matrices and we
can evaluate the matrix-vector products in (9) by
using 2D-FFTs and their inverse.

Due to the sparsity of matrices Z°, Z* and A,
A 9 the memory requirement is proportlonal to
(0] N) El'he CPU time per CG iteration is domina-
ted by the 2D-FFT computation of the matrix—vec-
tor product, which, since the number of metalized
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planes is quite small (usually less than five), is
proportional to O(Nlog,N).

3 RESULTS

In this section we present some results obtained
with the MLayAIM approach. Firstly, we applied
the method to the analysis of the reflectarray pre-
sented in [8]. Figure 2 shows the reflectarray an-
tenna with its primary source (i.e., a 12—18 GHz
feed horn sustained by three rigid plastic struts)
and the reflectarray layout. In particular, the struc-
ture is a microstrip reflectarray consisting of 437
rectangular patches loaded with a centred slot,
printed on a single layer substrate (4 = 3.175 mm,
€, = 2.17). The reflectarray is excited by an offset
horn antenna and radiates a linearly polarized wave
at broadside. Figure 3 shows the radiation patterns
at 13 GHz in the H- and E-planes. A good agree-
ment between the measurements and the simula-
tion can be observed except around —30°. This dis-
agreement can be attributed to the feed horn block-
age and to the struts presence. Moreover, we can
observe a shift of 0.7° of the main lobe in the
H-plane, probably due to an antenna misalignment.
As a matter of fact, this justifies the presence of
the uncorrected measured cross-polar component
in the E-plane (it should be zero due to the anten-
na symmetry). As a confirmation, once we simu-
lated the radiation pattern in a plane squinted of
0.7° with respect to the nominal E-plane we ob-
tain a cross-polar component very close to that
measured, as shown in Figure 3 (b).

Concerning the effort required to perform the
numerical analysis, we used in average 200 un-
knowns to model each patch, with a total number
of 87639 unknowns. By setting the conjugate gra-
dient residual tolerance to 10-4 a computation time
of 1 hour and 35 minutes on a PC Xeon 2.8 GHz
has been required for each frequency step. The
computation time has been for the great majority
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Fig. 2 Geometry of the reflectarray shown in [8]
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Fig. 3 Co-polar and cross-polar component of the radiation
pattern at 13.0 GHz: H-plane (a), E-plane (b)

due to the time required to perform the CG algo-
rithm (i.e., 1 hour 16 minutes). When a MR pre-
conditioner [9] is used the computation time is re-
duced to about 29 minutes.

A similar agreement between simulated and
measured data has been observed also at 12 GHz
and 12.5 GHz, where measurements were avail-
able [10], even though with a faster numerical con-
vergence.

Then, the proposed method has been applied to
the analysis of the reflectarray presented in [11]
that uses the radiating element shown in the inset
of Figure 5.

A photo of the entire antenna is shown in Figure
4. It consists of 36x 36 elements printed on a & =
= 1.6 mm grounded substrate (¢, = 3, tan(d) =
0.003). The reflectarray is illuminated by a stan-
dard horn that radiates the maximum field in the
direction 6 = 15°, ¢ = 0°.
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Fig. 4 Photograph of the manufactured reflectarray
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Fig. 5 Measured and simulated directivity pattern of the re-

flectarray of Figure 4. Dashed lines are relevant to measure-

ments while continuous lines to the data obtained by using
the MLayAIM

Figure 5 shows the antenna directivity in the E-
-plane. In particular, continuous lines represent the
simulated data while dashed lines are relevant to
the measured ones. As we can notice there is a
quite good agreement between the measurements
and the simulation. The disagreement observed es-
pecially around 8 =-15° is due to the influence of
the open test range environment that has not be
taken into account in the simulations.

Concerning the computational effort, we used
144181 unknowns to model the entire reflectarray.
By setting the conjugate gradient residual toler-
ance to 104 a computation time of 2 hours and
52 minutes on a PC Xeon 2.8 GHz has been re-
quired for each frequency step. For this specific
case both MR and ILU(0) preconditioners failed.
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Efikasna metoda analize reflektorskih nizova. U radu je opisana efikasna metoda analize zasnovana na
prosirenju adaptivne integralne metode (AIM) koja omogucuje punovalnu analizu mikrotrakastih reflektorskih
nizova. Plocice, elementi reflektorskih nizova, mogu imati proizvoljni oblik i orijentaciju pa su modelirane
trokutasnim baznim funkcijama s domenom na dijelu plo¢ice. Metoda rabi 2D-FTT/CG shemu, i pri tome
smanjuje potrebno vrijeme rada racunala na O(N logN) i memorijske zahtjeve na O(N).

Kljucne rijeci: numericke metode, reflektorski nizovi
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