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A very large number of molecular-graph-based structure descriptors, the so-called topological

indices (TIs), have been proposed in the recent and current chemical literature. Many of these
are highly intercorrelated, which makes their application in QSPR and QSAR studies difficult
and purposeless. A class of such TIs (including the Platt number, the connectivity index, and
the Zagreb indices) has been examined by methods of mathematical statistics and probability
theory, and the reasons for their mutual correlation are revealed. The analysis has shown that
by a slight modification of these TIs, their mutual correlation can be reduced or completely
eliminated. These theoretical inferences have been corroborated by a computer experiment done
on a database consisting of over 126000 distinct molecular structures.
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INTRODUCTION

The idea of representing relevant structural features of
an organic molecule by means of a number that can be
deduced from its structural formula or (in more recent
interpretations) from its molecular graph is more than a
century old.1,2 Nowadays, such molecular-graph-based
structure-descriptors are usually called topological indi-

ces (TIs), the term that was proposed by Hosoya3 and
was eventually generally accepted.2 Until the end of the
1970s, only a limited number (about a dozen) of TIs had
appeared in the chemical literature.4 In more recent times,
the number of proposed TIs has enormously increased
(and is still increasing) and exceeds one thousand.5

The fact that many of the proposed TIs are mutually
correlated (almost always linearly) was reported on many
occasions.6–10 This causes major problems in their appli-

cations in designing QSPR and QSAR models. (Recall
that almost all QSPR and QSAR approaches are based
on constructing linear combinations of molecular-struc-
ture descriptors, not all of which need to be TIs. If two
such descriptors are highly linearly correlated, then the
outcomes of the respective model become arbitrary and
meaningless.)

In view of the above, it is of great practical impor-
tance to know when (and why) two TIs are mutually cor-
related, and if yes, how this correlation could be reduced
or eliminated.

In a series of recently published papers,11–14 one of
the present authors arrived at a solution to this problem,
applicable to a wide class of TIs. Because these papers
employ sophisticated methods of mathematical statistics
and probability theory,15 they may evade the attention of
chemists interested in practical aspects and applications



of QSPR and QSAR. In order to bridge this gap, in this
paper we briefly and in a somewhat simplified manner
re-state the main result of Refs. 11–14, and then illus-
trate them by means of a pertinently designed computer
experiment.

At this point it is worth mentioning that another ap-
proach to reducing correlation between TIs was propos-
ed by Randi}:16,17 the use of orthogonalized linear com-
binations of (several) TIs. This method was eventually
much applied and further elaborated.18–21 It, however,
has nothing in common with the approach outlined in
the present paper.

THEORY

In Refs. 11–13 random graph models were used to ana-
lyze TIs of the form

TIX (G) = X Xu v

uv E{ }�

� (1)

where G = (V, E) is a molecular graph, and V and E are,
respectively, its vertex- and edge-sets. Thus, the summa-
tion on the right-hand side of (1) goes over all pairs u,v

of adjacent vertices of the graph G, i.e., over all edges
�u,v� of G.

Under a random graph model11–13 we understand a
set of graphs with a probability distribution defined on it.
Thus, our random graph is a graph chosen at random
from the respective (large) set of graphs, according to the
respective probability distribution. The random graph
models considered in Refs. 11–13 differ in the assump-
tions made on the underlying probability distribution.

In what follows, the number of edges of the graph
G, i.e., the number of elements of the set E, will be de-
noted by m.

The quantity Xv in formula (1) is some property as-
sociated with the vertex v. This quantity is viewed as a
random variable and it is assumed that its expectation
value15 E(X) is independent of the vertex v and also in-
dependent of the graph G.

Under these assumptions, the following holds:11

(i) Topological indices TIX and TIY are linearly cor-
related if the expectation values E(X) and E(Y) of the ver-
tex properties X and Y are large. As E(X) and E(Y) tend
to infinity, the correlation coefficient15 Corr(TIX,TIY) tends
to 1. Then, in addition, these TIs are linearly correlated
with the parameter m.

(ii) Topological indices TIX, TIY are uncorrelated (and
their correlation coefficient is equal to zero) if E(X) = 0
or E(Y) = 0.

(iii) Topological indices TIX and m are uncorrelated
if E(X) = 0.

Thus, even if completely different properties X, Y are
encoded, the resultant indices TIX, TIY are strongly correlat-

ed if Xu, Xv have large expectation values. All information,
except the number of edges, is lost. In particular, it was
shown11 that if E(X), E(Y) > 4.1 then Corr(TIX,TIY) > 0.7.

On the other hand, according to (ii), these correla-
tions are eliminated if on the right-hand side of (1) Xu Xv

is replaced by Xu Xv – E(X) E(X).

The above results hold also in the case when the sum-
mation in (1) goes over pairs of vertices u,v at a fixed
distance d, d � 1.

* * *

Although the above results may look interesting, their
practical applicability is limited. Namely, contrary to the
assumptions on which the results (i)–(iii) are based, the
vertex properties of interest in chemical applications are
not independent of the molecular graph. In view of this,
a different model was considered,14 in which the vertex
property depends on the degree of a vertex. (Recall that
the degree deg(v) of the vertex v is the number of its first
neighbors.)

Let

TIX (G) = X uv

uv E{ }�

� (2)

be a topological index with

Xuv = f �deg(u) deg(v)� (3)

where f is some function. The Platt number,22 the con-
nectivity index,23,24 the 2nd Zagreb index,25–28 and its
modified version27,29 are topological indices of this kind;
for details see the book.5

As in the case of independent vertex properties, it
was shown that TIX can be transformed to an index TI

X
v ,

such that

X

v

uv = Xuv –
Cov TI m

Var m

X( , )

( )
(4)

where Var and Cov stand for variance and covariance,15

respectively. Then TI
X
v and m are uncorrelated, with a

zero correlation coefficient. (This means that there is no
linear correlation between TI

X
v and m. It could be

shown14 that also any curvilinear dependence between
TI

X
v and m is absent.)

For properties Xu, Xv that both depend on the ver-
tex-degree as in (3), we cannot expect TI

X
v and TI Y

v to
become uncorrelated. It is reasonable to assume that
�Corr(TI

X
v ,TI Y

v )� < �Corr(TIX, TIY)� as the correlation with
m is eliminated. The validity of relations of this kind
needs, however, to be tested on concrete examples, which
we actually do in what follows.

In the subsequent section we verify these theoretical
results for the connectivity index �, the 2nd Zagreb in-
dex M2, the modified 2nd Zagreb index M'2 and the Platt
number F. These indices are defined as follows:
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� =
1

deg( ) deg( )u vuv E{ }�

� (5)

M2 = deg( ) deg( )u v
uv E{ }�

� (6)

M'2 =
1

deg( ) deg( )u vuv E{ }�

� (7)

F = [ ]deg( ) deg( )u v
uv E

	 

�

� 2
{ }

(8)

COMPUTATIONAL RESULTS

The molecular structures used in our calculations were
taken from the free NCI 127k database30 of the National
Cancer Institute that contains connection tables for about
127,000 structures. These structures are the compounds
in the NCI database from July 27, 1993 that met three
conditions:

(I) A complete connection table existed.

(II) The compound was not covered by a proprietary agree-
ment.

(III) A CAS registry number was given to the compound.

Some of these structures were not connected and were
therefore discarded, leaving 126,674 structures for the
computer experiment. Table I shows the relative means
(mean/variance) for the vertex properties Xv in formula
(1) for the respective TI. For the Platt number F, which
is not of the form required by (1), the relative mean of
deg(u) + deg(v) – 2 was used.

TABLE I. Relative means of vertex properties

TI � M2 M'2 F

E(TI)/Var(TI) 31.02 3.61 9.33 3.27

As can be expected from the theoretical results, the
TIs with highest relative means are those most strongly
correlated (see Table II).

TABLE II. Correlation matrix for untransformed topological indi-
ces; quantities �, M2, M'2, F are defined via Eqs. (5)–(8); m is the
number of edges.

m � M2 M'2 F

M 1.0000 0.9939 0.9545 0.9748 0.9703
� 1.0000 0.9214 0.9930 0.9415
M2 1.0000 0.8830 0.9950
M'2 1.0000 0.9052
F 1.0000

Table III shows the correlations for these indices af-
ter Xuv in (2) has been replaced by X

v

uv, see Eq. (4).

TABLE III. Correlation matrix for topological indices transformed
according to Eq. (4). Other data same as in Table II.

m c
v

M2

v

M'
2

v

F
v

m 1.0000 0.0000 0.0000 0.0000 0.0000
c
v

1.0000 –0.8256 0.9788 –0.8518

M2

v

1.0000 –0.7119 0.9547

M'
2

v

1.0000 –0.7519

F
v

1.0000

The correlations with m are eliminated by construc-
tion, whereas all other correlations are significantly re-
duced. As already mentioned, we cannot expect all cor-
relations to vanish since all four TIs are sums of vertex
properties that depend on the vertex-degree. A greater
reduction of correlations is to be expected for TIs with
substantially different vertex properties.

REFERENCES

1. D. H. Rouvray, in: D. Bonchev and D. H. Rouvray (Eds.),
Chemical Graph Theory – Introduction and Fundamentals,
Gordon & Breach, New York, 1990, pp. 22–39.

2. A. T. Balaban and O. Ivanciuc, in: J. Devillers and A. T.
Balaban (Eds.), Topological Indices and Related Descrip-

tors in QSAR and QSPR, Gordon & Breach, Amsterdam,
1999, pp. 21–57.

3. H. Hosoya, Bull. Chem. Soc. Jpn. 44 (1971) 2332–2339.
4. A. T. Balaban, I. Motoc, D. Bonchev, and O. Mekenyan,

Topics Curr. Chem. 114 (1983) 21–55.
5. R. Todeschini and V. Consonni, Handbook of Molecular

Descriptors, Wiley-VCH, Weinheim, 2000.
6. I. Motoc, A. T. Balaban, O. Mekenyan, and D. Bonchev,

MATCH–Commun. Math. Comput. Chem. 13 (1982) 369–
404.

7. K. Kova~evi}, D. Plav{i}, N. Trinajsti}, and D. Horvat, Stud.

Phys. Theor. Chem. 63 (1989) 213–224.
8. D. Horvat, A. Graovac, D. Plav{i}, N. Trinajsti}, and M.

Strunje, Int. J. Quantum Chem.: Quantum Chem. Symp. 26
(1992) 401–408.

9. S. C. Basak, B. D. Gute, and A. T. Balaban, Croat. Chem.

Acta 77 (2004) 331–344.
10. A. Kerber, R. Laue, M. Meringer, and C. Rücker, MATCH–

Commun. Math. Comput. Chem. 51 (2004) 187–204.
11. B. Hollas, MATCH–Commun. Math. Comput. Chem. 45 (2002)

27–33.
12. B. Hollas, J. Math. Chem. 33 (2003) 91–101.
13. B. Hollas, MATCH–Commun. Math. Comput. Chem. 47

(2003) 79–86.
14. B. Hollas, MATCH–Commun. Math. Comput. Chem. 54

(2005) 341–350.
15. For details on statistical concepts encountered in this paper

(expectation value, variance, covariance, correlation coeffi-
cient) see appropriate textbooks, e.g., B. L. Van der Wer-
den, Mathematical Statistics, Springer-Verlag, Berlin, 1969;
J. Czerminski, A. Iwasiewicz, and Z. Paszek, Statistical

Methods in Applied Chemistry, Elsevier, Amsterdam, 1990.
16. M. Randi}, New J. Chem. 15 (1991) 517–525.

REDUCING CORRELATIONS BETWEEN TOPOLOGICAL INDICES 491

Croat. Chem. Acta 78 (4) 489¿492 (2005)



17. M. Randi}, J. Chem. Inf. Comput. Sci. 31 (1991) 311–320.
18. B. Lu~i}, S. Nikoli}, N. Trinajsti}, and D. Jureti}, J. Chem.

Inf. Comput. Sci. 35 (1995) 532–538.
19. M. [o{ki}, D. Plav{i}, and N. Trinajsti}, J. Chem. Inf. Com-

put. Sci. 36 (1996) 829–832.
20. O. Araujo and D. A. Morales, Chem. Phys. Lett. 257 (1996)

393–396.
21. O. Araujo and D. A. Morales, J. Chem. Inf. Comput. Sci. 38

(1998) 1031–1037.
22. J. A. Platt, J. Chem. Phys. 15 (1947) 419–420.
23. M. Randi}, J. Am. Chem. Soc. 97 (1975) 6609–6615.
24. M. Randi}, J. Mol. Graphics Modell. 20 (2001) 19–35.

25. I. Gutman and N. Trinajsti}, Chem. Phys. Lett. 17 (1972)
535–537.

26.
I. Gutman, B. Ru{~i}, N. Trinajsti}, and C. F. Wilcox, J.

Chem. Phys. 62 (1975) 535–538.
27. S. Nikoli}, G. Kova~evi}, A. Mili~evi}, and N. Trinajsti},

Croat. Chem. Acta 76 (2003) 113–124.
28. K. C. Das and I. Gutman, MATCH–Commun. Math. Com-

put. Chem. 52 (2004) 103–112.
29. D. Vuki~evi} and N. Trinajsti}, Croat. Chem. Acta 76 (2003)

183–187.
30. National Cancer Institute, Connection Tables for 127000

Structures: ftp://helix.nih.gov/ncidata/2D/nciopen.mol.Z.

SA@ETAK

O umanjivanju korelacije izme|u topolo{kih indeksa

Boris Hollas, Ivan Gutman i Nenad Trinajsti}
U novijoj je kemijskoj literaturi predlo`en veliki broj strukturnih deskriptora zasnovanih na molekularnome

grafu, takozvanih topolo{kih indeksa. Mnogi od njih su u velikoj mjeri me|usobno korelirani {to ote`ava ili
onemogu}ava njihovu primjenu u QSPR i QSAR studijama. Jedna skupina ovakvih topolo{kih indeksa (koja
obuhva}a Plattov broj, indeks povezanosti kao i Zagreba~ke indekse) prou~avana je s pomo}u metoda mate-
mati~ke statistike i teorije vjerojatnosti. Otkriveni su razlozi za njihovu uzajamnu koreliranost. Analiza je poka-
zala, da se malom modifikacijom ovih topolo{kih indeksa njihova koreliranost mo`e umanjiti ili potpuno otklo-
niti. Dobiveni teorijski zaklju~ci potvr|eni su kompjutorskim eksperimentom u kojem je upotrebljena jedna
baza podataka s vi{e od 126000 molekularnih struktura.
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