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A novel numerical approach for approximate solution of large linear systems of a dense type
has been developed. The method is based on Fourier transform although any unitary, orthogo-
nal transform which concentrates energy in a small number of coefficients can be used. The
idea comes from digital signal processing where pruning off insignificant information from
spectra or filtering of selected information in frequency domain is usual practice. The proce-
dure is to transform the linear system from the time and space domain to the frequency do-
main, generating a transformed system. The least significant portions in the transformed sys-
tem are deleted as the whole rows and columns, yielding a smaller pruned system. The pruned
system is solved in the frequency domain, generating the transform of approximate solution.
Inverting the transform of approximate solution yields the approximate solution of original
system. Numerical experiments illustrating feasibility of the method and quality of the approx-
imation for 1000 by 1000 eigenvalue problem in chemical graph theory are presented.
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INTRODUCTION

Solving a system of linear equations and solving eigen-
value problem is of fundamental importance in scientific
computing, with wide applications in chemistry, physics,
biology and engineering. For dense systems of size n, the
problem is generally of the order O(n3) number of opera-
tions unless a matrix is structured in a specific way. Practi-
cal limits with today’s computing technology for single
processor machines are matrices of the size around 10000
by 10000. In comparison, sparse matrices with dimensions
of millions are not uncommon. An approximate solution
for dense, large and/or ill conditioned systems which
otherwise defy classical approaches like a singular value
decomposition is needed. In particular, a method which
can efficiently decrease the size of column and/or row
dimension, while still yielding a good approximation of
solution for original large system would be useful.

The problem of solving a set of linear equations,
given in matrix form is:

y = Ax (1)

Here y is a column vector of size m representing a set of
known values, A is a known matrix of size m by n, that is,
m rows by n columns, and x is a column vector of size n.
The vector x represents the solution of the above system. A
system of linear equations for which m > n is called over-
determined and is typical for the least squares problems.

The eigenvalue problem involves finding the eigen-
values and eigenvectors of a diagonizable matrix B, ex-
pressed in matrix form is:

Bqi = �iqi (2)

Here B is a square matrix, �i is the i-th eigenvalue
of matrix B and qi is the associated i-th eigenvector of
matrix B.



THEORY

The approach presented here is comprised of the steps of
transforming a linear system using the Fourier or
Hartley transforms, discarding the least significant por-
tions of the transformed system and solving a reduced
size problem in the transform space. This yields approxi-
mate transform of solution constructed by using a lim-
ited bandwidth in the Fourier domain. The result is then
inverse transformed to give an approximate solution in
the time or space domain. The idea was first developed
by Jeri~evi}1 for analysis of geophysical signals.

Applying a Fourier transform to Eq. (1) is formally
done by premultiplying both sides with the Fourier ma-
trix F, yielding

Fy = FAx (3)

The product Fy is the Fourier transform of vector y

and is denoted as �y� below, while the matrix product
FA is the Fourier transform along the columns of matrix
A and is denoted �A�c below. Thus Eq. (3) can be re-
written as

�y� = �A�cx (4)

The Fourier transform along the rows of matrix A

can be developed in a similar fashion. Starting from Eq.
(1),

y = AF–1Fx (5)

Here F–1 is the matrix inverse of the Fourier matrix
F, the matrix product AF–1 is the inverse Fourier trans-
form along the rows of matrix A and is denoted �A�r

�1

below, and Fx is the Fourier transform of vector x and is
denoted �x� below. Thus Eq. (5) can be rewritten as

y = �A�r

�1 �x� (6)

Applying the Fourier transform along the columns in
Eq. (6) can be written as premultiplication with the Fou-
rier matrix F

Fy = F�A�r

�1 �x� (7)

Here the product Fy is the Fourier transform of vec-
tor y and is denoted as �y� below, the matrix product
F�A�r

�1 is a special two dimensional Fourier transform
of matrix A, is denoted as �A� below and is taken as a
Fourier transform along the columns and an inverse
Fourier transform along the rows. Note that the order in
which the two dimensional transform is taken is not im-
portant. Thus Eq. (7) can also be rewritten as

�A� = F�A�r

�1 = �A�cF
–1 = FAF–1 (8)

This leads to the following equation,

�y� = �A� �x� (9)

An equally valid result can be obtained by using FF–1

instead of F–1F in Eq. (5), but computationally, F–1F has
the advantage because normalization of the Fourier
transform is simplified when the two-dimensional trans-
form is used. The detailed numerical example for solv-
ing a small system of linear equations based on Hilbert
matrix is presented in Appendix 1 (only for the purpose
of illustrating the steps in presented methodology).

Using the same approach (inserting identity matrix
in a multiplication of matrix by vector and premultiply-
ing both sides with F) for the eigenvalue problem given
by Eq. (2) yields the following equation

FBF–1FQ = FQL (10)

This leads to

�B��Q�c = �Q�c L (11)

where �Q�c is a matrix containing Fourier transforms of
the eigenvectors (as columns), L is diagonal matrix of
eigenvalues and �B� is the two dimensional Fourier trans-
form of matrix B, taken as the Fourier transform along
the columns and the inverse Fourier transform along the
rows of matrix B. The detailed numerical example (only
for the purpose of illustrating the steps in presented
methodology) for finding eigenvalues and eigenvectors
of a small Hilbert matrix is presented in Appendix 2.

RESULTS AND DISCUSSION

The approach outlined above may be considered as a
preconditioning of matrices A and B. That still leaves a
problem of the same order of magnitude as the initial
linear system problem. However, the problem is now
posed in the frequency domain in which the significance
of system orthogonal components, the frequencies, is
obvious. Consequently, the system can now be easily
manipulated.

For an overdetermined system, that is, where the m

by n matrix A has m > n, the most appropriate approach
is to use Eq. (4) with a Fourier transform along the col-
umns only. In the transform domain, it is now straight-
forward, by observing the transform magnitudes, to de-
termine which frequencies are the most significant for
the reconstruction of vector y. Consequently, Eq. (4) can
be solved approximately using only the most significant
frequencies present in vector �y�, preferably the frequen-
cies with the largest magnitude. Alternative measures of
significance could be average magnitude or average
power computed from the system matrix. After sorting
the magnitudes in �y� and determining the threshold, the
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frequencies below the threshold are not involved in
computing the solution of the system. This amounts to
discarding the rows in matrix �A�c which do not contrib-
ute to significant frequencies in �y�. Note that the least
significant rows are not merely zeroed out, but deleted.
Thus the size of the matrix in the linear system to be
solved is smaller.

A similar procedure would work for an underdeter-
mined system, that is, where the m by n matrix A has
n > m. Here the most appropriate approach is to use Eq.
(6) with an inverse Fourier transform along the rows
only. Then the columns in matrix �A�r which do not
contribute to significant frequencies are discarded. For a
system which is too large in both dimensions, the most
appropriate approach is to use Eq. (9) with a Fourier
transform along the columns and an inverse Fourier
transform along the rows. Then both rows and columns
which do not contribute to significant frequencies may
be discarded.

In the case of overdetermined systems which are
typical for the least squares problems, the transform
along the columns and subsequent reduction in number
of rows of the transformed matrix may be all that is
needed to simplify the computations. In such a case, it is
obvious that the wavelet transform can also be used in a
similar way, because the scaling and linearity of the ap-
plied transform are the only prerequisites for validity of
Eq. (4).

The three equations, Eqs. (4), (6) and (9), are based
on the same idea and derived from Eq. (1) for corre-
sponding type of problems. The different approaches al-
low possible simplification or approximation, arising
from size reduction of the original problem. Eq. (4) is
most appropriate for overdetermined problems, Eq. (6)
for underdetermined problems, and Eq. (9) for problems
simply too large in both dimensions. Each frequency in
the Fourier domain represents the best approximation in
the least squares sense to the original sequence by that
particular frequency. Consequently, the approximate so-
lution constructed in the Fourier domain is the least
squares approximation of the true solution with the set
of chosen frequencies. This can be used to control the
accuracy of the approximation. The original form of the
problem (Eq. 1), cannot be treated in the same way with-
out perturbing it in an uncontrolled manner.

After transforming to the Fourier domain, the prob-
lem of solving the system is still of the same order of
complexity. If the linear system started with a real ma-
trix, the problem becomes more complicated because its
transform will generally be complex. This complication
can be addressed by using the Hartley transform.2 The
complication of dealing with a set of complex equations
can be eliminated by converting our equations into the
real Hartley transform domain.

The justification for the whole approach lies in con-
structing the approximate solution, based not on all, but
only on the most significant frequencies. This is similar
to filtering in digital signal processing, but applied to the
linear algebra problem. The limitation of this filter is in
the shape of the filter, which cannot be arbitrary, but has
to include whole rows and columns in the frequency do-
main. By working in the Fourier domain, the size of the
matrix will be reduced significantly, if it is feasible. The
reduction in size pays off quickly, since the computa-
tional problem has an order the size of the matrix dimen-
sion to the third power, O(n3).

The approach outlined above discards whole rows
and/or columns from transformed matrix, but it can also
be used for constructing the sparse matrix in the trans-
form space out of a dense matrix in the original domain
by thresholding according to transform magnitudes. This
would keep the size of the problem the same, but will
make it sparse as was done previously by Beylkin3 with
the wavelet transform. In particular, diagonally domi-
nant problems will not allow a simple reduction in size,
but may allow the approximation of a full sized dense
problem by a banded system in the Fourier domain.

It is clear that a unitary transform like the Fourier
transform will not change the nature of the problem. If
we start with a singular matrix, then its transform will be
singular also. However, in the transform domain it may
be easier to construct the model system which will have
the most significant properties of the original system,
but will not be singular. This may be a proper strategy to
deal with ill-conditioned problems, namely by construct-
ing an approximate, but stable, solution in the Fourier
domain. The inverse problems are typical in that regard
and are often solved by using pseudo-inverse or regulariza-
tion. In this context, discarding rows and/or columns in
the transformed matrix may be used to match the size
and rank of the matrix.

Our general knowledge of the Fourier transform al-
lows us to estimate feasibility of this approach by ob-
serving the overall distribution of values in a matrix. For
example, it would be expected that sparse matrices will
contain broad-band frequency information, meaning that
successful compression in frequency domain may not be
possible. In crystallography, the Fourier space is some-
times called reciprocal space, meaning that the broad
peak in real space will be narrow in the Fourier space.
There is a certain amount of flexibility concerning or-
dering of rows and columns in a matrix, as dictated by
linear algebra. By reordering the rows and columns or
doing any other allowed linear algebra manipulations
prior to taking the transform, the frequency distribution
in the Fourier transform of a matrix may be changed to
suit our needs (See Figures 1, 2 and 4). This is not possi-
ble in regular signal processing, where the signal is de-
fined as a time or space series.

APPROXIMATE SOLUTION OF DENSE LINEAR SYSTEMS 603

Croat. Chem. Acta 78 (4) 601¿615 (2005)



A particular advantage of the present method is that
computing solutions in transform space does not require
construction of new linear algebra routines, but can use
existing software for solving the problem in the trans-
form domain.

As a practical example of methodology, let us assume
that we want to use 20 absolutely largest eigenvalues and
their associated eigenvectors of the distance matrix for a
large molecule to construct a set of molecular descriptors.

Using various levels of approximation in the Fourier do-
main, we can find out how good the approximation for
true eigenvalues and eigenvectors are coming from trun-
cated Fourier transform. A thousand carbon atoms mole-
cule from the class of single wall carbon nanotubes of
the type armchair (5,5) will give a 1000 by 1000 distance
matrix with spectrum containing positive and negative
eigenvalues. The matrix is shown as image in Figure 1.
Although the matrix elements are changing smoothly,
there is a sharp jump in values at the end and beginning
of each column and row. Due to the periodicity of dis-
crete Fourier transfom, a large number of frequencies
would be required do describe these sharp transitions. A
better arrangement of the same matrix (which will con-
centrate power in fewer Fourier coefficients then the ori-
ginal arrangement) is presented in Figure 2 and its Fou-
rier transform magnitude in Figure 3. For the comparison
sake, the Fourier transform magnitudes for both matrices
are summed along the row and plotted as curves in Figure
4. The plots clearly show that rearranged matrix has three
groups of the most significant frequencies around frequen-
cies 0, 200, –200, 400 and –400 while the original ma-
trix has slow decaying, almost monotonically decreasing
frequency representation. Consequently, rearranged ma-
trix can be better represented with few significant frequen-
cies. The Fourier transform magnitude profiles like ones
in Figure 4 are used to determine which frequencies (i.e.

rows and columns) should be kept and which discarded
in constructing approximate system in the transform do-
main.

The Table I (in two parts, I.I and I.II) illustrates quality
of approximation for various sizes of the Fourier trans-
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Figure 1. 1000 by 1000 distance matrix shown as image. The
dark region along main diagonal represents small values and the
light ones the high values in the matrix, ranging from 0 to 104.

Figure 2. Image of rearranged distance matrix. Note the smooth
transitions between beginning and end of each column and row,
unlike the original matrix in Figure 1.

Figure 3. Magnitude of the Fourier spectrum for the distance ma-
trix in Figure 2. The shown values are spanning five orders of
magnitude and are presented on log scale in range from –4.5 to
1.5. Frequency 0,0 is in the middle of the image.
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TABLE I.I Eigenvalues for complete rearranged matrix and approximations of size 900 to 300 in the Fourier domain

1000 900 800 700 600 500 400 300

1 3.70282E+04 3.70282E+04 3.70282E+04 3.70282E+04 3.70282E+04 3.70282E+04 3.70282E+04 3.70281E+04

2 2.47751E+01 2.47714E+01 2.47662E+01 2.44511E+01 2.44334E+01 2.43973E+01 2.43274E+01 2.42409E+01

3 2.37712E+01 2.37615E+01 2.37501E+01 2.36617E+01 2.36285E+01 2.36085E+01 2.33822E+01 2.32543E+01

4 1.75095E+01 1.74027E+01 1.73555E+01 1.70272E+01 1.69821E+01 1.69550E+01 1.69234E+01 1.68761E+01

5 1.72810E+01 1.72407E+01 1.72212E+01 1.69352E+01 1.68193E+01 1.66126E+01 1.62503E+01 1.57187E+01

6 1.25156E+01 1.25061E+01 1.25027E+01 1.24178E+01 1.24096E+01 1.23592E+01 1.23025E+01 1.22356E+01

7 1.17072E+01 1.17009E+01 1.16909E+01 1.16634E+01 1.16252E+01 1.16068E+01 1.14897E+01 1.13613E+01

8 1.14935E+01 1.14902E+01 1.14837E+01 1.12739E+01 1.11824E+01 1.11732E+01 1.09012E+01 1.06971E+01

9 1.13056E+01 1.13043E+01 1.13012E+01 1.11012E+01 1.08433E+01 1.08213E+01 1.07744E+01 1.02020E+01

10 1.05273E+01 1.05133E+01 1.05061E+01 1.04596E+01 1.04255E+01 1.03928E+01 1.03203E+01 9.89204E+00

11 9.19964E+00 9.19454E+00 9.19292E+00 9.14461E+00 9.14060E+00 9.13057E+00 9.11023E+00 9.06739E+00

12 7.96360E+00 7.96124E+00 7.94212E+00 7.90435E+00 7.78950E+00 7.78149E+00 7.14889E+00 7.08117E+00

13 7.94322E+00 7.93905E+00 7.84307E+00 7.57835E+00 7.22179E+00 7.20387E+00 6.38412E+00 6.31461E+00

14 6.65955E+00 6.65330E+00 6.64450E+00 6.49183E+00 6.43328E+00 6.41282E+00 6.03640E+00 5.45342E+00

15 6.55446E+00 6.52785E+00 6.51064E+00 6.41969E+00 6.28693E+00 6.15359E+00 5.53245E+00 5.32766E+00

16 6.36710E+00 6.36411E+00 6.31016E+00 6.27449E+00 6.13040E+00 5.64697E+00 5.46354E+00 4.37865E+00

17 6.32633E+00 6.31851E+00 6.26425E+00 6.02551E+00 5.62339E+00 5.57014E+00 5.35336E+00 4.08509E+00

18 5.73254E+00 5.72788E+00 5.71894E+00 5.69375E+00 5.59043E+00 5.50575E+00 4.74728E+00 3.87499E+00

19 5.72464E+00 5.71988E+00 5.71471E+00 5.53712E+00 5.39848E+00 5.37343E+00 4.60252E+00 3.66105E+00

20 5.46887E+00 5.46623E+00 5.43058E+00 5.35938E+00 5.30021E+00 4.64878E+00 3.99553E+00 3.47833E+00

21 5.43741E+00 5.43509E+00 5.37649E+00 5.17066E+00 4.84131E+00 4.23359E+00 3.98962E+00 3.28563E+00

22 4.89337E+00 4.89012E+00 4.87331E+00 4.78575E+00 4.39626E+00 4.22824E+00 3.86139E+00 3.14035E+00

23 4.88368E+00 4.88113E+00 4.81607E+00 4.64397E+00 4.38451E+00 4.21291E+00 3.85834E+00 2.77797E+00

24 4.51275E+00 4.48537E+00 4.47660E+00 4.43073E+00 4.37285E+00 4.18053E+00 3.76453E+00 2.66338E+00

25 4.49157E+00 4.47199E+00 4.43593E+00 4.42213E+00 4.36422E+00 4.12073E+00 3.73890E+00 2.57363E+00

976 –4.17100E+01 –4.14700E+01 –4.13625E+01 –4.09743E+01 –4.06575E+01 –4.02119E+01 –4.01260E+01 –4.00157E+01

977 –4.43991E+01 –4.43932E+01 –4.42625E+01 –4.42225E+01 –4.31586E+01 –4.29515E+01 –4.29037E+01 –4.28897E+01

978 –5.06179E+01 –5.06096E+01 –5.05895E+01 –5.04735E+01 –5.04554E+01 –5.03964E+01 –5.02924E+01 –4.97055E+01

979 –5.76997E+01 –5.76951E+01 –5.76021E+01 –5.75558E+01 –5.68757E+01 –5.65809E+01 –5.64918E+01 –5.64414E+01

980 –6.66628E+01 –6.66562E+01 –6.66449E+01 –6.66354E+01 –6.65165E+01 –6.64942E+01 –6.63805E+01 –6.59120E+01

981 –7.10352E+01 –7.10160E+01 –7.10060E+01 –7.09836E+01 –7.09734E+01 –7.09585E+01 –7.08475E+01 –7.05539E+01

982 –7.70090E+01 –7.70057E+01 –7.69531E+01 –7.68976E+01 –7.64629E+01 –7.61234E+01 –7.60367E+01 –7.59884E+01

983 –9.04567E+01 –9.04517E+01 –9.04436E+01 –9.04360E+01 –9.03185E+01 –9.03057E+01 –9.02135E+01 –8.98516E+01

984 –1.06270E+02 –1.06269E+02 –1.06244E+02 –1.06183E+02 –1.05863E+02 –1.05597E+02 –1.05584E+02 –1.05466E+02

985 –1.18960E+02 –1.18746E+02 –1.18622E+02 –1.18381E+02 –1.18226E+02 –1.17371E+02 –1.16466E+02 –1.15221E+02

986 –1.27592E+02 –1.27592E+02 –1.27588E+02 –1.27577E+02 –1.27534E+02 –1.27454E+02 –1.27384E+02 –1.27120E+02

987 –1.32651E+02 –1.32637E+02 –1.32600E+02 –1.32547E+02 –1.32504E+02 –1.32431E+02 –1.32310E+02 –1.32103E+02

988 –1.53320E+02 –1.53320E+02 –1.53315E+02 –1.53255E+02 –1.53024E+02 –1.52833E+02 –1.52824E+02 –1.52752E+02

989 –1.89849E+02 –1.89849E+02 –1.89846E+02 –1.89839E+02 –1.89835E+02 –1.89723E+02 –1.89672E+02 –1.89491E+02

990 –2.35573E+02 –2.35573E+02 –2.35571E+02 –2.35530E+02 –2.35324E+02 –2.35246E+02 –2.35239E+02 –2.35237E+02

991 –3.05722E+02 –3.05722E+02 –3.05720E+02 –3.05716E+02 –3.05711E+02 –3.05672E+02 –3.05572E+02 –3.05457E+02

992 –3.98579E+02 –3.98579E+02 –3.98578E+02 –3.98552E+02 –3.98390E+02 –3.98380E+02 –3.98376E+02 –3.98374E+02

993 –5.60164E+02 –5.60164E+02 –5.60163E+02 –5.60160E+02 –5.60158E+02 –5.60157E+02 –5.60035E+02 –5.59970E+02

994 –7.95248E+02 –7.95248E+02 –7.95248E+02 –7.95233E+02 –7.95150E+02 –7.95147E+02 –7.95144E+02 –7.95142E+02

995 –9.38694E+02 –9.38640E+02 –9.38620E+02 –9.38575E+02 –9.38557E+02 –9.38039E+02 –9.36924E+02 –9.34940E+02

996 –1.02734E+03 –1.02733E+03 –1.02732E+03 –1.02730E+03 –1.02728E+03 –1.02725E+03 –1.02722E+03 –1.02714E+03

997 –1.31585E+03 –1.31585E+03 –1.31585E+03 –1.31585E+03 –1.31584E+03 –1.31584E+03 –1.31584E+03 –1.31575E+03

998 –2.23616E+03 –2.23616E+03 –2.23616E+03 –2.23614E+03 –2.23612E+03 –2.23612E+03 –2.23612E+03 –2.23612E+03

999 –6.29661E+03 –6.29661E+03 –6.29661E+03 –6.29661E+03 –6.29661E+03 –6.29661E+03 –6.29660E+03 –6.29659E+03

1000 –2.02487E+04 –2.02487E+04 –2.02487E+04 –2.02487E+04 –2.02487E+04 –2.02487E+04 –2.02487E+04 –2.02487E+04
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TABLE I.II Eigenvalues for approximations of size 200 to 10 in the Fourier domain

200 100 50 40 30 20 10

1 3.70281E+04 3.70278E+04 3.70265E+04 3.70255E+04 3.70244E+04 3.70181E+04 3.70017E+04

2 2.41417E+01 2.36699E+01 2.15222E+01 2.10826E+01 1.77043E+01 7.04157E+00 6.26652E–01

3 2.32154E+01 1.66133E+01 1.60653E+01 1.60069E+01 7.82304E+00 5.56897E+00 5.55235E–01

4 1.68183E+01 1.18651E+01 1.02632E+01 1.01331E+01 5.38541E+00 5.12894E+00 5.46453E–01

5 1.55705E+01 9.04483E+00 7.16825E+00 6.97420E+00 2.99293E+00 5.56919E–01

6 1.21543E+01 8.56324E+00 6.90014E+00 6.72333E+00 1.30582E+00 5.48038E–01

7 1.13508E+01 7.47349E+00 6.29514E+00 5.49082E+00 7.03886E–01 5.34061E–01

8 1.06115E+01 5.88978E+00 3.45221E+00 3.37665E+00 5.38009E–01

9 1.00968E+01 4.24559E+00 3.36384E+00 1.77652E+00 5.16608E–01

10 9.02120E+00 3.73228E+00 1.97560E+00 5.75412E–01 4.55400E–01

11 7.30267E+00 3.25072E+00 1.25857E+00 5.42733E–01

12 6.96669E+00 2.16351E+00 7.17728E–01 5.20016E–01

13 6.18083E+00 2.07981E+00 5.44643E–01 4.92258E–01

14 5.32047E+00 2.02921E+00 5.23020E–01 3.99025E–01

15 4.04932E+00 1.39745E+00 5.05126E–01

16 4.03045E+00 1.23375E+00 4.61758E–01

17 3.65518E+00 1.03683E+00 4.23700E–01

18 3.55457E+00 8.15976E–01 1.93108E–01

19 3.24642E+00 7.14701E–01

20 2.27873E+00 6.65298E–01

21 2.07385E+00 5.31378E–01

22 1.88006E+00 5.27496E–01

23 1.57411E+00 4.89916E–01

24 1.42516E+00 4.65900E–01

25 1.24151E+00 4.19601E–01

976 –3.98865E+01 –3.71418E+01 –6.97757E+00 –5.26621E–01

977 –4.28253E+01 –3.94767E+01 –1.23129E+01 –2.17558E+00

978 –4.87980E+01 –4.86792E+01 –1.48934E+01 –2.52923E+00

979 –5.63957E+01 –5.62994E+01 –1.82826E+01 –3.88113E+00

980 –6.51413E+01 –6.50903E+01 –2.27466E+01 –6.92543E+00

981 –7.02701E+01 –6.95482E+01 –2.30836E+01 –1.37447E+01 –1.22323E–01

982 –7.59561E+01 –7.58984E+01 –3.03383E+01 –1.81176E+01 –5.24515E–01

983 –8.92090E+01 –8.91773E+01 –3.10536E+01 –2.26545E+01 –3.47309E+00

984 –1.05441E+02 –1.05394E+02 –3.87326E+01 –3.00264E+01 –6.94048E+00

985 –1.13780E+02 –1.08670E+02 –6.82688E+01 –3.08536E+01 –1.71393E+01

986 –1.26589E+02 –1.26568E+02 –9.94385E+01 –3.86649E+01 –2.29790E+01

987 –1.31950E+02 –1.30590E+02 –1.26538E+02 –6.72435E+01 –2.93716E+01

988 –1.52697E+02 –1.52670E+02 –1.30225E+02 –9.91374E+01 –3.07006E+01 –3.21832E+00

989 –1.89059E+02 –1.89045E+02 –1.89014E+02 –1.13463E+02 –6.84239E+01 –1.75484E+01

990 –2.35122E+02 –2.35103E+02 –2.35061E+02 –1.89028E+02 –9.01241E+01 –2.51210E+01

991 –3.05328E+02 –3.05100E+02 –3.05088E+02 –3.05072E+02 –3.05052E+02 –3.05463E+01

992 –3.98369E+02 –3.98255E+02 –3.98242E+02 –3.98207E+02 –3.97985E+02 –6.73136E+01

993 –5.59876E+02 –5.59682E+02 –5.59669E+02 –5.59655E+02 –5.59631E+02 –5.59469E+02

994 –7.95138E+02 –7.95035E+02 –7.95013E+02 –7.94999E+02 –7.94843E+02 –7.87452E+02

995 –9.31683E+02 –9.22708E+02 –8.97121E+02 –8.83992E+02 –8.56822E+02 –7.98379E+02 –6.23353E+01

996 –1.02690E+03 –1.02580E+03 –1.02519E+03 –1.02442E+03 –1.02442E+03 –1.02442E+03 –1.15972E+02

997 –1.31568E+03 –1.31546E+03 –1.31542E+03 –1.31539E+03 –1.31534E+03 –1.31508E+03 –1.31407E+03

998 –2.23612E+03 –2.23612E+03 –2.23601E+03 –2.23601E+03 –2.23601E+03 –2.23596E+03 –2.23583E+03

999 –6.29658E+03 –6.29632E+03 –6.29598E+03 –6.29580E+03 –6.29560E+03 –6.29447E+03 –6.29128E+03

1000 –2.02487E+04 –2.02487E+04 –2.02487E+04 –2.02487E+04 –2.02486E+04 –2.02486E+04 –2.02485E+04



form of rearranged distance matrix of size 1000 by 1000
for the nanotube. The numbers on the top of each col-
umn give the number of frequencies and subsequent size
of the system in the Fourier domain for which eigen-
values were computed. For example, 300 means eigen-
values were found for 300 by 300 size matrix in the Fou-
rier domain.

For systems that are smaller then 50 by 50 (added in
for the sake of comparison) only the number of eigen-
values and eigenvectors up to the system size can be cal-
culated, resulting in shorter columns at the end of the table.
The results show that approximation is working remark-
ably well for large absolute value eigenvalues. Choosing
the most significant frequencies in the Fourier spectrum
will preserve them. Although there is no exactly one to
one correspondence between the most significant eigen-
values/eigenvectors and the most significant frequencies
for general matrix, they are related. Only in circulant
matrix4 eigenvectors are pure single frequencies of the
Fourier transform. In general, the most significant frequen-
cies contribute mostly to the significant eigenvalues/ei-
genvectors. This can be seen from the tables which show
remarkable consistency in significant eigenvalues despite
severe truncation of the Fourier transform (upper and
bottom rows in Table I).

Eigenvector approximation for eigenvector 20 (as-
sociated with twentieth absolutely largest eigenvalue =

–77.0090 numbered 982 in Table I) is shown in Figure 5.
The severity of approximation increases from left to right.
Curve 0 is a complete solution (no approximation), num-
bers 2–9 are approximations using 900 to 100 frequen-
cies decreasing in step of 100 frequencies. The approxi-
mate eigenvectors look remarkably well although some
details on curves are getting smoothed out as the size of
matrix decreases. However, the reduction of system size
from 1000 by 1000 to 100 by 100 is remarkable. This re-
duction in size would speed up the linear algebra part of
the computations by a factor of 103.

CONCLUSION

An approximate solution method for large, dense linear
systems, inspired by signal processing has been devel-
oped. The method opens some new possibilities for solv-
ing large linear problems in scientific computing. Detail-
ed understanding of discrete Fourier transform is needed
for a successful application of the methodology.
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Figure 5. Plot of eigenvector associated with twentieth absolutely
largest eigenvalue = –77.0090 (numbered 982 in Table I) for vari-
ous levels of approximation. Positive values are filled in with black,
negative are plotted as points. Leftmost curve is a true value com-
puted from 1000 by 1000 matrix. Rightmost curve is based on 100
by 100 Fourier domain approximation of the rearranged matrix.

Curve 0 1 2 3 4 5 6 7 8 9

Size 1000 900 800 700 600 500 400 300 200 100

Figure 4. Along the row summation for the Fourier transform mag-
nitude of matrices in Figure 1 and Figure 2. Upper curve coming
from matrix in Figure 1 has more frequencies populated because
of the sharp transitions between edges of the matrix. Lower curve
is for the matrix in Figure 2 and has more compact Fourier trans-
form representation (due to the absence of sharp transitions) with
most of the energy concentrated in frequencies around 0, 200,
–200, 400 and –400 (in this example magnitude is an even func-
tion, negative frequencies are not shown). The rearranged matrix
(Figure 2) is better approximated with fewer Fourier coefficients.
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APPENDIX 1

Detailed numerical procedure for solving a system of linear equations in the Fourier domain.

Pseudo code:
# �� denotes Fourier transform
# �� denotes Hartley transform

input matrix A

input known vector y

# Fourier transform of y

y � �y�

# Fourier transform of A along the columns
A � �A�c

if (real_system == TRUE) then
# Hartley transform of y from the Fourier transform of y

�y� � �y�

# Hartley transform of A along the columns
�A�c � �A�c

# Inverse Fourier transform of �A�c along the rows
�A�c � ��A�c�r

–1

# 2 Dimensional Hartley transform of A

��A�c�r
–1 � ���A�c�r

–1�r = �A�

else
# Inverse Fourier transform of �A�c along the rows
# yields 2 Dimensional Fourier transform of A

�A�c � ��A�c�r
–1 = �A�

endif
delete the least significant columns and rows in �A� or �A�

pack and solve smaller system
repack the solution vector of smaller system and invert the transform

Square Hilbert matrix of size N = 6 (with rearranged rows and columns) used as an example. Solution vector is
x = (1,1,1,1,1,1). Transpose symbols for x and y column vectors omitted for simplicity. Hilbert matrix

A(i,j) =
1

1i j� �
0 � i < N and 0 � j < N

is a well known theoretical example of ill-conditioned, but non-singular matrix.

input vector y for rearranged Hilbert matrix
2.450000e+00 1.217857e+00 8.456349e–01 7.365440e–01 9.956349e–01 1.592857e+00

input rearranged Hilbert matrix A

1.000000e+00 3.333333e–01 2.000000e–01 1.666667e–01 2.500000e–01 5.000000e–01
3.333333e–01 2.000000e–01 1.428571e–01 1.250000e–01 1.666667e–01 2.500000e–01
2.000000e–01 1.428571e–01 1.111111e–01 1.000000e–01 1.250000e–01 1.666667e–01
1.666667e–01 1.250000e–01 1.000000e–01 9.090909e–02 1.111111e–01 1.428571e–01
2.500000e–01 1.666667e–01 1.250000e–01 1.111111e–01 1.428571e–01 2.000000e–01
5.000000e–01 2.500000e–01 1.666667e–01 1.428571e–01 2.000000e–01 3.333333e–01

Fourier transform of y vector (real part, not normalized)
7.838528e+00 2.198178e+00 8.605520e–01 7.440116e–01 8.605520e–01 2.198179e+00

Fourier transform of y vector (imaginary part, not normalized)
0.000000e+00 4.546634e–01 1.948558e–01 –2.549245e–08 –1.948558e–01 –4.546634e–01
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Hartley transform of vector y

7.838528e+00 1.743515e+00 6.656961e–01 7.440116e–01 1.055408e+00 2.652842e+00

columnwise Fourier transform of input matrix (real part, not normalized)
2.450000e+00 1.217857e+00 8.456349e–01 7.365440e–01 9.956349e–01 1.592857e+00
1.025000e+00 2.785714e–01 1.367064e–01 1.041306e–01 1.882937e–01 4.654762e–01
5.250001e–01 7.857141e–02 2.718256e–02 1.809171e–02 4.384920e–02 1.678571e–01
4.500000e–01 6.785712e–02 2.658729e–02 1.901160e–02 4.007929e–02 1.404763e–01
5.250001e–01 7.857141e–02 2.718256e–02 1.809171e–02 4.384920e–02 1.678571e–01
1.025000e+00 2.785714e–01 1.367064e–01 1.041306e–01 1.882937e–01 4.654762e–01

columnwise Fourier transform of input matrix (imaginary part, not normalized)
0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
1.876389e–01 6.392099e–02 3.264786e–02 2.508720e–02 4.433220e–02 1.010363e–01
1.010363e–01 2.268155e–02 8.591566e–03 5.842202e–03 1.340275e–02 4.330128e–02

–8.586639e–09 –1.840184e–09 –1.130258e–09 –1.223206e–09 –1.885106e–09 –1.655032e–11
–1.010363e–01 –2.268155e–02 –8.591566e–03 –5.842202e–03 –1.340275e–02 –4.330128e–02
–1.876389e–01 –6.392098e–02 –3.264786e–02 –2.508720e–02 –4.433219e–02 –1.010363e–01

columnwise Hartley transform of input matrix
2.450000e+00 1.217857e+00 8.456349e–01 7.365440e–01 9.956349e–01 1.592857e+00
8.373611e–01 2.146504e–01 1.040585e–01 7.904341e–02 1.439615e–01 3.644400e–01
4.239638e–01 5.588986e–02 1.859100e–02 1.224951e–02 3.044645e–02 1.245558e–01
4.500000e–01 6.785712e–02 2.658729e–02 1.901160e–02 4.007930e–02 1.404763e–01
6.260364e–01 1.012530e–01 3.577413e–02 2.393391e–02 5.725195e–02 2.111584e–01
1.212639e+00 3.424924e–01 1.693542e–01 1.292178e–01 2.326259e–01 5.665125e–01

rowwise Fourier transform (real part)
7.838528e+00 2.198178e+00 8.605520e–01 7.440116e–01 8.605520e–01 2.198178e+00
1.743515e+00 9.238529e–01 5.028493e–01 4.272473e–01 5.028493e–01 9.238529e–01
6.656964e–01 4.774184e–01 3.214717e–01 2.803061e–01 3.214717e–01 4.774184e–01
7.440116e–01 5.018218e–01 3.315116e–01 2.893215e–01 3.315116e–01 5.018218e–01
1.055408e+00 7.117952e–01 4.472516e–01 3.827173e–01 4.472516e–01 7.117952e–01
2.652842e+00 1.336933e+00 6.863642e–01 5.763962e–01 6.863642e–01 1.336933e+00

rowwise Fourier transform (imaginary part)
0.000000e+00 –4.546633e–01 –1.948558e–01 2.149970e–08 1.948558e–01 4.546633e–01
0.000000e+00 –1.642786e–01 –9.516452e–02 9.361096e–09 9.516452e–02 1.642786e–01
0.000000e+00 –6.973357e–02 –4.919933e–02 3.975638e–09 4.919933e–02 6.973357e–02
0.000000e+00 –7.457446e–02 –5.120563e–02 5.055223e–10 5.120563e–02 7.457446e–02
0.000000e+00 –1.137812e–01 –7.658054e–02 1.157829e–09 7.658054e–02 1.137812e–01
0.000000e+00 –2.488019e–01 –1.392122e–01 –5.206385e–09 1.392122e–01 2.488019e–01

2 dimensional Hartley transform of input matrix
7.838528e+00 1.743515e+00 6.656961e–01 7.440116e–01 1.055408e+00 2.652842e+00
1.743515e+00 7.595744e–01 4.076847e–01 4.272473e–01 5.980138e–01 1.088131e+00
6.656964e–01 4.076848e–01 2.722724e–01 2.803061e–01 3.706710e–01 5.471520e–01
7.440116e–01 4.272473e–01 2.803060e–01 2.893215e–01 3.827173e–01 5.763962e–01
1.055408e+00 5.980139e–01 3.706710e–01 3.827173e–01 5.238321e–01 8.255764e–01
2.652842e+00 1.088131e+00 5.471520e–01 5.763962e–01 8.255764e–01 1.585735e+00

Hartley transform packed using
5 most significant frequencies (rowwise): 0 1 5 2 4
5 most significant frequencies (columnwise): 0 1 5 2 4
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7.838528e+00 1.743515e+00 2.652842e+00 6.656961e–01 1.055408e+00
1.743515e+00 7.595744e–01 1.088131e+00 4.076847e–01 5.980138e–01
2.652842e+00 1.088131e+00 1.585735e+00 5.471520e–01 8.255764e–01
6.656964e–01 4.076848e–01 5.471520e–01 2.722724e–01 3.706710e–01
1.055408e+00 5.980139e–01 8.255764e–01 3.706710e–01 5.238321e–01

y vector frequencies packed in the same way as columnwise frequencies
7.838528e+00 1.743515e+00 2.652842e+00 6.656961e–01 1.055408e+00

SVD of the above matrix gives the following singular values (U & V matrices not shown)
s�0� = 9.596282e+00
s�1� = 1.307621e+00
s�2� = 7.313725e–02
s�3� = 2.900383e–03
s�4� = 8.033032e–07

packed Hartley transform of solution vector computed using first four singular values
1.000001e+00 7.586220e–06 –1.792940e–05 –8.987379e–05 8.150839e–05

repacked Hartley transform of solution vector (zero inserted for deleted frequency 3)
1.000001e+00 7.586220e–06 –8.987379e–05 0.000000e+00 8.150839e–05 –1.792940e–05

solution vector (from 5 by 5 reduced system using first four singular values)

9.999825e–01 9.998739e–01 1.000181e+00 1.000003e+00 9.998400e–01 1.000126e+00

Another iteration, using 3 by 3 system
Hartley transform packed using
3 most significant frequencies (rowwise): 0 1 5
3 most significant frequencies (columnwise: 0 1 5

7.838528e+00 1.743515e+00 2.652842e+00
1.743515e+00 7.595744e–01 1.088131e+00
2.652842e+00 1.088131e+00 1.585735e+00

y vector frequencies packed in the same way as columnwise frequencies
7.838528e+00 1.743515e+00 2.652842e+00

SVD of the above matrix gives the following singular values (U & V matrices not shown)
s�0� = 9.288025e+00
s�1� = 8.885208e–01
s�2� = 7.292748e–03

packed HT of solution vector computed using all three singular values
9.999989e–01 –3.967757e–05 2.937355e–05

repacked HT of solution vector (zero substituted for deleted frequencies: 2, 3, 4)
9.999989e–01 –3.967757e–05 0.000000e+00 0.000000e+00 0.000000e+00 2.937355e–05

solution vector (from 3 by 3 reduced system using all three singular values)

9.999886e–01 9.999340e–01 9.999443e–01 1.000009e+00 1.000064e+00 1.000054e+00

Another iteration, using 1 by 1 system
Hartley transform packed (all frequencies except 0,0 are deleted resulting in 1 by 1 matrix)

7.838528e+00
y vector frequencies packed in the same way as columnwise frequencies

7.838528e+00
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SVD of the above matrix gives the following singular value (U & V matrices not shown)
s�0� = 7.838528e+00

packed Hartley transform of solution vector
1.000000e+00

repacked Hartley transform of solution vector
1.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00

solution vector (from 1 by 1 reduced system using 1 singular value)

1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00

Comments on the above solutions:

1. The above example is presented only to illustrate the details of numerical procedure in traceable, easily verifiable
steps. It does not pay off to apply the procedure on a matrix of such a small size which can be easily handled directly.
However, some issues of ill–conditioning may be more easily addressed in frequency domain.

2. Rearranging of Hilbert matrix was done to improve concentration of power in smaller number of Fourier transform
coefficients. Because of the periodicity of discrete Fourier transform, the sharp transition between the first and the last
element in each column and row of the matrix A introduces more power into high frequencies. Rearranging the rows
and columns in input matrix reduces this undesirable effect.

3. Reducing the size of a system in frequency domain by discarding the least significant frequencies improves the
condition number of the matrix. Value for ratio of highest/lowest singular values is decreasing.

4. Because the transform is not normalized, the singular values in the transfer domain are inflated by the factor N (size
of matrix A column), but that does not affect solution of the system because the transform of vector y on the other side
of equation is also not normalized. This saves N(N+1) divisions in the computation of the transforms.

5. If the solution vector is smooth (in the above case it contained only frequency 0), the reduction of the system can be
severe and still give good results.

APPENDIX 2

Detailed numerical procedure for solving an eigenvalue problem in the Fourier domain.
Pseudo code:
# �� denotes Fourier transform
# �� denotes Hartley transform

input matrix A

# Inverse Fourier transform of A along the rows
A � �A�r

–1

if (real_system == TRUE) then
# Hartley transform of A along the rows

�A�r
–1 � �A�r

# Fourier transform of �A�r along the columns
�A�r � ��A�r�c

# 2 Dimensional Hartley transform of A

��A�r�c � ���A�r�c�c = �A�

else
# Fourier transform of �A�r

–1 along the columns
# yields 2 Dimensional Fourier transform of A

�A�r
–1 � ��A�r

–1�c = �A�

endif
delete the least significant columns and rows in �A� or �A�

pack and solve smaller system
repack the transform of eigenvectors for smaller system and invert the transform

The same square Hilbert matrix of order 6 (with rearranged rows and columns) as in Appendix 1 is used as an example.
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input matrix
1.000000e+00 3.333333e–01 2.000000e–01 1.666667e–01 2.500000e–01 5.000000e–01
3.333333e–01 2.000000e–01 1.428571e–01 1.250000e–01 1.666667e–01 2.500000e–01
2.000000e–01 1.428571e–01 1.111111e–01 1.000000e–01 1.250000e–01 1.666667e–01
1.666667e–01 1.250000e–01 1.000000e–01 9.090909e–02 1.111111e–01 1.428571e–01
2.500000e–01 1.666667e–01 1.250000e–01 1.111111e–01 1.428571e–01 2.000000e–01
5.000000e–01 2.500000e–01 1.666667e–01 1.428571e–01 2.000000e–01 3.333333e–01

rowwise inverse Fourier transform (real part) of input matrix
2.450000e+00 1.025000e+00 5.250001e–01 4.500000e–01 5.250001e–01 1.025000e+00
1.217857e+00 2.785714e–01 7.857141e–02 6.785712e–02 7.857141e–02 2.785714e–01
8.456349e–01 1.367064e–01 2.718256e–02 2.658729e–02 2.718256e–02 1.367064e–01
7.365440e–01 1.041306e–01 1.809171e–02 1.901160e–02 1.809171e–02 1.041306e–01
9.956349e–01 1.882937e–01 4.384920e–02 4.007929e–02 4.384920e–02 1.882937e–01
1.592857e+00 4.654762e–01 1.678571e–01 1.404763e–01 1.678571e–01 4.654762e–01

rowwise inverse Fourier transform (imaginary part) of input matrix
0.000000e+00 –1.876389e–01 –1.010363e–01 8.586639e–09 1.010363e–01 1.876389e–01
0.000000e+00 –6.392099e–02 –2.268155e–02 1.840184e–09 2.268155e–02 6.392098e–02
0.000000e+00 –3.264786e–02 –8.591566e–03 1.130258e–09 8.591566e–03 3.264786e–02
0.000000e+00 –2.508720e–02 –5.842202e–03 1.223206e–09 5.842202e–03 2.508720e–02
0.000000e+00 –4.433220e–02 –1.340275e–02 1.885106e–09 1.340275e–02 4.433219e–02
0.000000e+00 –1.010363e–01 –4.330128e–02 1.655032e–11 4.330128e–02 1.010363e–01

rowwise Hartley transform of input matrix
2.450000e+00 8.373611e–01 4.239638e–01 4.500000e–01 6.260364e–01 1.212639e+00
1.217857e+00 2.146504e–01 5.588986e–02 6.785712e–02 1.012530e–01 3.424924e–01
8.456349e–01 1.040585e–01 1.859100e–02 2.658729e–02 3.577413e–02 1.693542e–01
7.365440e–01 7.904341e–02 1.224951e–02 1.901160e–02 2.393391e–02 1.292178e–01
9.956349e–01 1.439615e–01 3.044645e–02 4.007930e–02 5.725195e–02 2.326259e–01
1.592857e+00 3.644400e–01 1.245558e–01 1.404763e–01 2.111584e–01 5.665125e–01

columnwise Fourier transform (real part) of the above Hartley transform gives 2 dimensional Fourier transform of
the input matrix A

1.306421e+00 2.905858e–01 1.109494e–01 1.240019e–01 1.759013e–01 4.421403e–01
3.663630e–01 1.539755e–01 7.956973e–02 8.363696e–02 1.186325e–01 2.228222e–01
1.434253e–01 8.380821e–02 5.357862e–02 5.525194e–02 7.454193e–02 1.143940e–01
1.240019e–01 7.120789e–02 4.671768e–02 4.822026e–02 6.378622e–02 9.606604e–02
1.434253e–01 8.380821e–02 5.357862e–02 5.525194e–02 7.454193e–02 1.143940e–01
3.663630e–01 1.539755e–01 7.956973e–02 8.363696e–02 1.186325e–01 2.228222e–01

columnwise Fourier transform (imaginary part) of the above Hartley transform
0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
7.577723e–02 2.737976e–02 1.162226e–02 1.242908e–02 1.896354e–02 4.146699e–02
3.247597e–02 1.586075e–02 8.199888e–03 8.534271e–03 1.276342e–02 2.320203e–02

–3.583283e–09 –1.560183e–09 –6.626064e–10 –8.425372e–11 –1.929715e–10 8.677308e–10
–3.247597e–02 –1.586075e–02 –8.199888e–03 –8.534271e–03 –1.276342e–02 –2.320203e–02
–7.577723e–02 –2.737976e–02 –1.162226e–02 –1.242908e–02 –1.896354e–02 –4.146699e–02

2 dimensional Hartley transform of input matrix
1.306421e+00 2.905858e–01 1.109494e–01 1.240019e–01 1.759013e–01 4.421403e–01
2.905858e–01 1.265957e–01 6.794748e–02 7.120788e–02 9.966899e–02 1.813552e–01
1.109494e–01 6.794746e–02 4.537873e–02 4.671767e–02 6.177851e–02 9.119201e–02
1.240019e–01 7.120789e–02 4.671768e–02 4.822026e–02 6.378622e–02 9.606604e–02
1.759013e–01 9.966896e–02 6.177851e–02 6.378621e–02 8.730536e–02 1.375961e–01
4.421403e–01 1.813552e–01 9.119199e–02 9.606604e–02 1.375961e–01 2.642892e–01
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packed Hartley transform using all frequencies in order of significance: 0 1 5 4 2 3
1.306421e+00 2.905858e–01 4.421403e–01 1.759013e–01 1.109494e–01 1.240019e–01
2.905858e–01 1.265957e–01 1.813552e–01 9.966899e–02 6.794748e–02 7.120788e–02
4.421403e–01 1.813552e–01 2.642892e–01 1.375961e–01 9.119199e–02 9.606604e–02
1.759013e–01 9.966896e–02 1.375961e–01 8.730536e–02 6.177851e–02 6.378621e–02
1.109494e–01 6.794746e–02 9.119201e–02 6.177851e–02 4.537873e–02 4.671767e–02
1.240019e–01 7.120789e–02 9.606604e–02 6.378622e–02 4.671768e–02 4.822026e–02

eigenvalues for packed Hartley transform
wr�0� = 1.618900e+00
wr�1� = 2.423609e–01
wr�2� = 1.632154e–02
wr�3� = 6.157392e–04
wr�4� = 1.257138e–05
wr�5� = 6.424014e–08

eigenvectors for packed Hartley transform (eigenvectors written as rows)
–8.807625e–01 –2.343641e–01 –3.494819e–01 –1.565329e–01 –1.019159e–01 –1.109227e–01
–4.556150e–01 3.918261e–01 4.966863e–01 4.341718e–01 3.200961e–01 3.181559e–01
–1.264042e–01 1.518260e–01 6.440523e–01 –3.082627e–01 –4.754283e–01 –4.744571e–01
–2.605136e–02 3.784722e–01 –1.904360e–02 –8.069104e–01 2.470228e–01 3.789365e–01

3.932562e–03 3.606842e–01 –1.924776e–01 9.148835e–03 5.636602e–01 –7.176680e–01
3.694864e–04 –7.041647e–01 4.232936e–01 –2.019650e–01 5.306142e–01 –5.131362e–02

repacked Hartley transform eigenvectors as rows
–8.807625e–01 –2.343641e–01 –1.019159e–01 –1.109227e–01 –1.565329e–01 –3.494819e–01
–4.556150e–01 3.918261e–01 3.200961e–01 3.181559e–01 4.341719e–01 4.966863e–01
–1.264042e–01 1.518260e–01 –4.754283e–01 –4.744571e–01 –3.082627e–01 6.440523e–01
–2.605136e–02 3.784721e–01 2.470228e–01 3.789365e–01 –8.069104e–01 –1.904360e–02

3.932562e–03 3.606842e–01 5.636602e–01 –7.176679e–01 9.148835e–03 –1.924776e–01
3.694863e–04 –7.041647e–01 5.306143e–01 –5.131362e–02 –2.019650e–01 4.232936e–01

Fourier transform of eigenvectors as rows (real part)
–8.807625e–01 –2.919230e–01 –1.292244e–01 –1.109227e–01 –1.292244e–01 –2.919230e–01
–4.556150e–01 4.442562e–01 3.771340e–01 3.181559e–01 3.771340e–01 4.442562e–01
–1.264042e–01 3.979391e–01 –3.918455e–01 –4.744571e–01 –3.918455e–01 3.979391e–01
–2.605136e–02 1.797143e–01 –2.799438e–01 3.789365e–01 –2.799438e–01 1.797143e–01

3.932562e–03 8.410331e–02 2.864045e–01 –7.176679e–01 2.864045e–01 8.410331e–02
3.694863e–04 –1.404356e–01 1.643246e–01 –5.131362e–02 1.643246e–01 –1.404356e–01

Fourier transform of eigenvectors as rows (imaginary part)
0.000000e+00 –5.755892e–02 –2.730851e–02 0.000000e+00 2.730851e–02 5.755892e–02
0.000000e+00 5.243011e–02 5.703786e–02 0.000000e+00 –5.703786e–02 –5.243011e–02
0.000000e+00 2.461131e–01 8.358283e–02 0.000000e+00 –8.358283e–02 –2.461131e–01
0.000000e+00 –1.987579e–01 –5.269666e–01 0.000000e+00 5.269666e–01 1.987579e–01
0.000000e+00 –2.765809e–01 –2.772557e–01 0.000000e+00 2.772557e–01 2.765809e–01
0.000000e+00 5.637292e–01 –3.662896e–01 0.000000e+00 3.662896e–01 –5.637292e–01

eigenvectors as rows
–1.833980e+00 –7.855436e–01 –5.181426e–01 –4.444427e–01 –6.229331e–01 –1.079533e+00

1.505321e+00 –8.962528e–01 –9.508685e–01 –9.080154e–01 –9.668303e–01 –5.170446e–01
–5.886741e–01 5.667874e–01 –8.884656e–01 –1.231516e+00 –3.254442e–01 1.708888e+00

1.524261e–01 1.311662e+00 –1.153595e–01 –1.324304e+00 1.021589e+00 –1.202321e+00
2.728027e–02 1.478572e+00 –1.085412e+00 1.126203e+00 –1.083074e+00 –4.399739e–01

–3.166005e–03 –5.950524e–01 –1.685673e+00 6.612036e–01 1.536007e+00 8.889821e–02
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normalized eigenvectors as rows (length = 1)
–7.487192e–01 –3.206968e–01 –2.115308e–01 –1.814430e–01 –2.543114e–01 –4.407175e–01

6.145449e–01 –3.658936e–01 –3.881904e–01 –3.706957e–01 –3.947068e–01 –2.110826e–01
–2.403252e–01 2.313900e–01 –3.627146e–01 –5.027645e–01 –1.328620e–01 6.976505e–01

6.222768e–02 5.354837e–01 –4.709531e–02 –5.406449e–01 4.170618e–01 –4.908457e–01
1.113712e–02 6.036246e–01 –4.431176e–01 4.597704e–01 –4.421633e–01 –1.796186e–01

–1.292516e–03 –2.429291e–01 –6.881731e–01 2.699352e–01 6.270720e–01 3.629254e–02

The result is identical to the one obtained directly (without going into frequency domain) as it is expected because all
the frequencies were used.

packed Hartley transform using frequencies: 0 1 5 4 2
1.306421e+00 2.905858e–01 4.421403e–01 1.759013e–01 1.109494e–01
2.905858e–01 1.265957e–01 1.813552e–01 9.966899e–02 6.794748e–02
4.421403e–01 1.813552e–01 2.642892e–01 1.375961e–01 9.119199e–02
1.759013e–01 9.966896e–02 1.375961e–01 8.730536e–02 6.177851e–02
1.109494e–01 6.794746e–02 9.119201e–02 6.177851e–02 4.537873e–02

eigenvalues for packed Hartley transform
wr�0� = 1.599380e+00
wr�1� = 2.179368e–01
wr�2� = 1.218954e–02
wr�3� = 4.833942e–04
wr�4� = 1.287049e–07

eigenvectors for packed Hartley transform (eigenvectors written as rows)
8.887588e–01 2.333973e–01 3.488169e–01 1.546133e–01 1.002747e–01
4.438171e–01 –4.245215e–01 –5.463285e–01 –4.603176e–01 –3.353218e–01

–1.128242e–01 8.278545e–02 6.165784e–01 –4.660886e–01 –6.188778e–01
–2.012190e–02 4.785723e–01 –9.882530e–02 –7.112558e–01 5.048886e–01

7.389028e–05 –7.276109e–01 4.357949e–01 –2.026841e–01 4.894735e–01

repacked Hartley transform of approx eigenvectors as rows (zeros inserted in place of deleted frequency 3)
8.887588e–01 2.333973e–01 1.002747e–01 0.000000e+00 1.546133e–01 3.488169e–01
4.438171e–01 –4.245215e–01 –3.353218e–01 0.000000e+00 –4.603176e–01 –5.463285e–01

–1.128242e–01 8.278545e–02 –6.188778e–01 0.000000e+00 –4.660886e–01 6.165784e–01
–2.012190e–02 4.785723e–01 5.048886e–01 0.000000e+00 –7.112558e–01 –9.882530e–02

7.389027e–05 –7.276109e–01 4.894735e–01 0.000000e+00 –2.026841e–01 4.357949e–01

Fourier transform of approx eigenvectors as rows (real part)
8.887588e–01 2.911071e–01 1.274440e–01 0.000000e+00 1.274440e–01 2.911071e–01
4.438171e–01 –4.854251e–01 –3.978197e–01 0.000000e+00 –3.978197e–01 –4.854251e–01

–1.128242e–01 3.496819e–01 –5.424832e–01 0.000000e+00 –5.424832e–01 3.496819e–01
–2.012190e–02 1.898735e–01 –1.031836e–01 0.000000e+00 –1.031836e–01 1.898735e–01

7.389027e–05 –1.459080e–01 1.433947e–01 0.000000e+00 1.433947e–01 –1.459080e–01
Fourier transform of approx eigenvectors as rows (imaginary part)

0.000000e+00 5.770977e–02 2.716931e–02 0.000000e+00 –2.716931e–02 –5.770977e–02
0.000000e+00 –6.090350e–02 –6.249791e–02 0.000000e+00 6.249791e–02 6.090350e–02
0.000000e+00 2.668965e–01 7.639460e–02 0.000000e+00 –7.639460e–02 –2.668965e–01
0.000000e+00 –2.886988e–01 –6.080722e–01 0.000000e+00 6.080722e–01 2.886988e–01
0.000000e+00 5.817029e–01 –3.460788e–01 0.000000e+00 3.460788e–01 –5.817029e–01
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SA@ETAK

Aproksimativno rje{enje punih linearnih sustava

@eljko Jeri~evi}

Razvijena je nova numeri~ka metoda za pribli`no rje{enje velikih linearnih sustava s punim matricama.
Metoda se bazira na Fourierovoj transformaciji, ali mo`e rabiti i druge ortogonalne i unitarne transformacije
koje koncentriraju energiju u mali broj koeficijenata. Ideja je inspirirana digitalnim procesiranjem signala, gdje
je filtriranje i uklanjanje nebitnih i/ili selektivnih komponenti iz spektra Fourierovih frekvencija uobi~ajena
praksa. Procedura se sastoji u transformaciji linearnoga sustava u domenu frekvencija, gdje je mogu}e ukloniti
najmanje zna~ajne komponente kao ~itave retke i/ili stupce {to rezultira u smanjenome sustavu. Rje{enje za
smanjeni sustav se prona|e u domeni frekvencija, daju}i transformat pribli`nog rje{enja. Inverzija transformata
pribli`noga rje{enja daje pribli`no rje{enje originalnoga sustava. Prikazani su numeri~ki eksperimenti koji
ilustriraju uporabu metode i kvalitetu pribli`noga rje{enja za ra~unanje vlastitih vrijednosti i vlastitih vektora
na matrici 1000 puta 1000 iz kemijske teorije grafova.
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approximate eigenvectors (eigenvectors as rows)

1.725861e+00 9.054070e–01 4.173100e–01 5.614325e–01 5.231053e–01 1.199437e+00

–1.322672e+00 5.699493e–01 1.324300e+00 6.190278e–01 1.329823e+00 1.424742e–01

–4.984268e–01 1.847433e–01 –2.499819e–01 –1.897154e+00 4.099360e–01 1.373939e+00

1.532579e–01 1.826188e+00 –6.599827e–01 –6.062362e–01 4.463591e–01 –1.280318e+00

–4.952719e–03 –6.973417e–01 –1.604378e+00 5.786792e–01 1.609552e+00 1.188842e–01

normalized approximate eigenvectors as rows (length = 1).

7.045798e–01 3.696309e–01 1.703661e–01 2.292039e–01 2.135568e–01 4.896680e–01

–5.399787e–01 2.326808e–01 5.406433e–01 2.527170e–01 5.428981e–01 5.816484e–02

–2.034819e–01 7.542112e–02 –1.020547e–01 –7.745101e–01 1.673557e–01 5.609081e–01

6.256726e–02 7.455382e–01 –2.694368e–01 –2.474949e–01 1.822253e–01 –5.226875e–01

–2.021939e–03 –2.846886e–01 –6.549845e–01 2.362448e–01 6.570970e–01 4.853428e–02

Comment:

Again, the above example is presented only to illustrate the details of numerical procedure in traceable, easy verifiable
steps. It does not pay off to apply the procedure on a matrix of such a small size which can be easily handled directly.
In particular, the concentration of power in small number of frequencies does not work well for such a small system.
This can be seen from the eigenvectors coefficients in the above example. Even deletion of single frequency perturbed
the coefficients of remaining five eigenvectors considerably. On the other hand, the rearranged distance matrix (of
size 1000 by 1000) presented in the paper gives much better results due to strong concentration of power in three
groups of frequencies (See Figure 4 for grouping of frequencies and Figure 5 for illustrations of changes in eigen-
vector 20).


