Comparison of Visual Evoked Potentials, Automated Perimetry and Frequency-Doubling Perimetry in Early Detection of Glaucomatous Visual Field Loss

Dean Šarić1, Zdravko Mandić1, Renata Iveković1, Mia Zorić Geber1, Goran Benčić1, Željka Tomić2 and Dražen Gregić1

1 University Department of Ophthalmology, Clinical Hospital «Systers of Mercy», Zagreb, Croatia
2 University Department for Ophthalmology, Clinical Hospital Mostar, Bosnia and Herzegovina

ABSTRACT

The present study compares frequency-doubling perimetry (FDP), automated perimetry (AP) and visual evoked potentials (VEP) for their ability to diagnose early glaucoma. In present study 224 patients of Clinic for Eye Diseases, Clinical Hospital «Sestre Milosrdnice» that had diagnosis of open angle glaucoma and glaucomatous visual field loss proven by automated static perimetry on only one eye were performing all three tests. Visual evoked potentials, automated perimetry and frequency-doubling perimetry were performed four times in each patient with six months period in between testing. Significant difference was proven between frequency-doubling perimetry and automated perimetry in favor for FDP in early detection of glaucomatous field loss. There was no significant difference between FDP and VEP neither between VEP and AP measurements. The results of this study indicate that frequency-doubling perimetry is significantly better method for early detection of glaucomatous visual field loss than automated static perimetry.

Key words: frequency-doubling perimetry, glaucoma

Introduction

Glaucoma is one of the leading causes of blindness in the world.1 It is thought that the detection and treatment of glaucoma at an early stage helps to prevent subsequent progression of vision loss. The present study compares visual evoked potentials (VEP), automated perimetry (AP) and frequency-doubling perimetry (FDP) for their ability to diagnose early glaucoma. Frequency-doubling illusion has been shown to have value in diagnosing glaucoma.2–10 Several lines of evidence suggest that we access a different pathway by using frequency-doubling stimuli.2,11–16 In this study we compared this method with Octopus standard static perimetry as gold standard and visual evoked potentials as an objective method.

Subjects and Methods

Visual fields measurements

Visual fields were measured with automated static perimetry (Octopus perimeter 101 Interzeag AG, Schlieren, Switzerland) and with frequency-doubling perimetry (Frequency doubling perimeter Welch-Allyn, Skaneateles, NY; Zeiss-Humphrey, San Leandro, CA). Two perimetry tests were performed:

- Octopus perimetry ST-test, with Goldman III stimuli, time of exposition of 100 milliseconds, and background illuminance of 4 apostilbs.
- Frequency doubling perimetry Full Treshold Test (N-30)

Tests taken by both methods will be taken into consideration only if reliability factor remains under 10%. On each exam both tests were performed with minimum of half hour in between two tests. Visual evoked potentials will be tested with pattern stimulation.

Subjects

In present study 224 patients of Clinic for Eye Diseases, Clinical Hospital «Sestre Milosrdnice» that had diagnosis of open angle glaucoma and glaucomatous visual field loss proven by automated static perimetry on
only one eye were performing all three tests. Visual evoked potentials, automated perimeter and frequency-doubling perimeter were performed four times in each patient with six months period in between testing.

Patients that had any other eye disease or neurological disorder that could influence visual field measurement were excluded from study. Informed written consent was obtained from the subjects after the nature and possible consequences of the study were explained to them. The research was approved by the Ethical Committee of Clinical Hospital «Sestre Milosrdnice».

Statistical data analysis

All three methods: visual evoked potentials, automated perimeter and frequency-doubling perimeter were compared with each other using Chi-square test. All statistically significant differences will be taken on level of p<0.05.

Results

Frequency-doubling perimetry found significantly higher number of eyes with early glaucomatous visual field loss than automated static perimetry (Table 1). At the same time the difference between frequency-doubling perimeter and visual evoked potentials and between automated perimeter and visual evoked potentials was not statistically different (Table 1). Frequency-doubling perimetry found higher number of eyes with visual field loss on each measurement (Figure 1). There are two possibilities: either frequency-doubling perimeter is really more sensitive method than automated static perimeter either it is showing higher number of false-positive results. Since each visual field loss that was found with automated static perimetry on later tests, was proven by frequency-doubling perimetry on one of previous tests, we concluded that frequency-doubling perimeter is more sensitive method.

Discussion

Since Kelly introduced frequency-doubling perimetry, there have been a lot of papers that showed that it is comparable to automated static perimetry. Our result showed that there is significant difference in results between those two methods. The fact that we learned following patients in tame frames of six months during 2 years follow up is that automated static perimeter will show the same defect in visual field like frequency-doubling perimeter that wasn’t there before on one of later measurements. Due to that fact it was easy to conclude that frequency-doubling perimeter is showing pathological finding earlier than automated static perimeter. That can improve our knowledge on glaucomatous visual field loss and give us more powerful weapon in early diagnostic of that disease.

The results of this study are encouraging for frequency-doubling perimetry. We proved that early glaucomatous visual field loss can be found earlier than with standard static automated perimeter. That leads to earlier diagnosis and according to that to earlier therapeutic procedures which could lead to improvement in vision and overall quality of life of glaucoma patients.

REFERENCES

D. Šarić

University Department of Ophthalmology, Clinical Hospital «Systers of Mercy», Vinogradska 29, 10000 Zagreb, Croatia
e-mail: bbb.dean@usa.net

USPOREDBA VIZUALNIH EVOCIRANIH POTENCIJALA (VEP), AUTOMATIZIRANE PERIMETRIJE (AP) I «FREQUENCY-DOUBLING» PERIMETRIJE (FDP) U DIJAGNOSTICI RANOG GLAUKOMSKOG OŠTEĆENJA VIDNOGA POLJA

S A Ž E T A K

Cilj istraživanja je usporedba »frequency-doubling« perimetrije (FDP), automatizirane perimetrije (AP) i vizualnih evociranih potencijala (VEP) u dijagnostici ranog glaukomskog oštećenja vidnoga polja. U istraživanje je uključeno 224 pacijenta Klinike za očne bolesti Kliničke bolnice »Sestre milosrdnice« kod kojih je dijagnosticiran glaukom otvorenom kuta, te glaukomsko oštećenje vidnoga polja dokazano automatiziranim statičkom perimetrijom na jednome oku. Svi su bolesnici uradili tri navedena testa tijekom svakog od četiri kontrolna pregleda u razmacima od po šest mjeseci. Statistički značajno više pacijenata sa ranim glaukomskim oštećenjem vidnoga polja dokazano je »frequency-doubling« perimetrijom u odnosu na automatiziranu perimetriju. Nije bilo statistički značajne razlike između FDP i VEP metoda odnosno AP i VEP metode. Rezultati ovoga istraživanja pokazuju da je »frequency-doubling« perimetrija značajno bolja u ranoj dijagnostici glaukomskog oštećenja vidnoga polja od statičke perimetrije.