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Topological ring-currents are defined as being �-electron ring-current intensities in condensed,

benzenoid hydrocarbons that (i) are calculated by the simplest Hückel-London-Pople-

McWeeny method, (ii) are based on a molecular geometry of regular hexagons of carbon at-

oms, and (iii) are expressed as a ratio to the corresponding ring-current intensity calculated, by

the same method, for benzene. Once a particular benzenoid hydrocarbon has been specified,

such topological ring-currents are predetermined and do not further depend on any subjective

(or other) parameters; they are, therefore, purely graph-theoretical indices, reliant solely on

knowledge of a vertex-adjacency matrix for the graph representing the connectivity of the car-

bon atoms in the benzenoid molecule under study. For convenient reference, tables of all

known topological ring-current intensities – some published, and others so-far unpublished –

are presented for future evaluation and possible comparison with other graph-theoretical indi-

ces that characterise the individual rings of a condensed, benzenoid hydrocarbon.
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HISTORICAL BACKGROUND

In the mid-1930s, two eminent scientists1,2 simultane-

ously put forward the idea that the pronounced aniso-

tropy that had long been experimentally observed in the

diamagnetic susceptibilities of the condensed, benzenoid

hydrocarbons may be attributed to the circulation of

their �-electrons around the carbon-atom �-bond frame-

works of such molecules, to form what were termed1,2

"inter-atomic currents", when these hydrocarbons are in

the presence of an external magnetic-field. In practice,

of course, the �-electrons do not move along the �-bon-

ds themselves, that is, in the molecular plane; rather,

they should be considered to be above and below the

plane. This model nevertheless purported to explain why

the diamagnetic susceptibility in a direction at right an-

gles to the molecular plane of a condensed, benzenoid

hydrocarbon was invariably found experimentally to be

markedly greater than that along two perpendicular axes

lying in the plane of the molecule itself. The theories of

Linus Pauling1 and Dame Kathleen Lonsdale2 were un-

ashamedly non-quantum-mechanical, making appeal, as

they did, to the classical treatment of induced currents

due to Larmor precession which were then considered to

obey Kirchhoff’s First and Second Laws of electricity.

In this way, these authors regarded the �-bond frame-

work of a conjugated hydrocarbon as effectively being a

microscopic analogue of an ordinary macroscopic elec-

trical network to which Kirchhoff’s Laws could natu-

rally be applied.3 Almost immediately, these ideas were

* Respectfully dedicated to Professor Roy McWeeny on the fiftieth anniversary of his seminal paper: Ring Currents and Proton

Magnetic Resonance in Aromatic Molecules, Molecular Physics 1 (1958) 311–321.



put on a quantum-mechanical footing when London4–7

made the seminal contribution of casting this model of

inter-atomic currents in terms of Hückel’s then recently

proposed LCAO-MO method,8–13 itself based on the

Bloch molecular-orbital theory of metals, as applied by

Peierls, four years earlier.14 This was, in a sense, doubly

appropriate, because – as Lonsdale herself had obser-

ved2 – in addition to having proposed the MO method

now known by his name,8–13 Hückel was also one of se-

veral people who had earlier suggested14 qualitatively that

diamagnetic anisotropy in conjugated molecules might

be due to the postulated mobility of their �-electrons.

The Second World War then intervened and little

further was done concerning these matters until the late

1940s when the French school,15,16 in particular, and

others,14 applied London’s method to calculate the mag-

netic susceptibilities of a large number of conjugated

molecules; (for reviews and further details, see Refs. 3,

14–18). With the advent of 1H-NMR spectroscopy in the

early 1950s there arose the observation of a so-called

"downfield shift" in the 1H-NMR signals of the periph-

eral attached protons in benzene and related molecules.19

In order to explain this phenomenon, Pople20 revived the

idea of inter-atomic currents that had been introduced by

Pauling1 and Lonsdale2 – and set in a quantum-mechani-

cal context by London4–7 – to account for diamagnetic

anisotropies, and he used this same model to rationalise

the observed 1H-NMR downfield-shifts19 by suggesting

that they were due to secondary magnetic-fields – at the

peripheral, attached protons in benzene – caused by the

inter-atomic current. Despite the fact that London’s

quantum-mechanical method4–7 had by then been on re-

cord for almost twenty years, Pople’s initial treatment20

of the effect of inter-atomic currents on 1H-NMR chemi-

cal-shifts in benzene was avowedly classical in nature.

Nor, contrary to popular belief, did Pople actually coin

the term "ring current" in that celebrated 1956 paper:20

Pople did, however, use this appellation in a second paper

– applying his classical model of 1H-NMR downfield-

shifts to polycyclic conjugated molecules – that he co-

authored later that same year.21 Almost immediately,

however, Pople22 himself came forward with an exten-

sion of the London method4–7 – likewise based on a

Hückel molecular orbital8–13 – to present a quantum-me-

chanical formulation that enabled calculation of individ-

ual ring-current intensities associated with each ring of a

polycyclic molecule, rather than just its overall diamag-

netic-susceptibility, which was all that could be obtained

by an application of the Hückel-London formalism. The

effects of such quantum-mechanically calculated ring-

currents on 1H-NMR chemical-shifts in conjugated hy-

drocarbons were, however, still to be estimated classi-

cally.21 Just 136 pages after Pople’s paper22 in Volume 1
of Molecular Physics, McWeeny23 offered an alternative

extension of the Hückel-London approach.4–7 By means

of his novel device of introducing what is termed a "test

dipole", McWeeny23 provided an entirely quantum-me-

chanical method of calculating the ring-current contribu-

tion to the 1H-NMR secondary magnetic-field at a

peripheral attached proton in a conjugated molecule.

RING CURRENT INTENSITIES VIA THE
McWEENY FORMALISM

What, however, McWeeny23 did not ostensibly do

(which, as already mentioned, Pople, in his own paper22

in Molecular Physics, had in fact done) was to give an

explicit expression for the ring-current intensity associ-

ated with each of the individual rings in a polycyclic,

conjugated, molecule – though such was in fact implied

in McWeeny’s treatment,23 as will be seen. As the pres-

ent author has shown,24,25 however, it is not difficult to

re-cast the second version of McWeeny’s equations – the

ones that he obtained by effecting a clever unitary trans-

formation23,26,27 of the basis orbitals when the system is

in the presence of an external magnetic-field – in a way

that provides an explicit expression for individual ring-

current intensities in each of the several rings of a conju-

gated molecule.24,25 When the ring current in the ith

ring, Ji, is expressed as a ratio to Jbenzene – the ring-cur-

rent intensity calculated, by the same method, to be as-

sociated with the unique ring in benzene – this expres-

sion is as follows:18,24

(Ji / Jbenzene) = 9�
� ��
� �P(�)	(�) + 
�(�)(�)(	(�))

2� S(�) C i
( )� +

��
( )� �



�(�)(
)	(�)	(
)�S(�)C
i
( )
 + C i

( )� S(
)�� ���

The symbols in Eq. (1) are explained with reference

to Figure 1, which is the starting point for a calculation,

by McWeeny’s method, of the topological ring-currents

in the notorious carcinogen 3,4-benzopyrene. The fol-

lowing procedure is adopted:

(a) First, the carbon-carbon �-bond connectivity-net-

work of the molecule is schematically depicted in

the form of a molecular graph, as in Figure 1(a).
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Figure 1. The construction of an open-chain spanning-tree which
could be used for an application of the McWeeny method23 to
perform a topological ring-current calculation on the benzenoid
hydrocarbon 3,4-benzopyrene; (a) the carbon-atom connectivity/
molecular graph of 3,4-benzopyrene; (b) a continuous open-
chain (a non-branched spanning-tree)25 for 3,4-benzopyrene; (c)
a suitable set of ''circuit-completing bonds'' ("chords"28 of the span-
ning tree) associated with the open chain in (b).



(b) Second, a spanning tree25 is selected (Figure 1(b)),

in which certain carbon-carbon bonds of the mole-

cule’s �-bond network (that is, edges of the molecu-

lar graph) have been deleted in such a way as to

leave a continuous, open chain (without circuits,

rings or branches) – a chain that does, however, still

connect all the carbon atoms that were in the origi-

nal conjugation-network of the molecule under

study (here, 3,4-benzopyrene).

(c) Third, since an anti-clockwise circuit is convention-

ally taken to be positive, the next stage is to number

the skeletal chain sequentially in an anti-clockwise

manner. In practice, however, such a labelling sche-

me is merely a convenience, and the labelling could

in fact have been capriciously effected quite arbitrarily.

(d) Finally, what McWeeny23 called the "circuit-com-

pleting bonds'' are re-inserted – these are schemati-

cally depicted as dotted lines Figure 1 (c); these are

those carbon-carbon �-bonds that have to be added

to the open-chain spanning-tree of Figure 1(b) in or-

der to reconstitute the carbon-carbon �-bond-net-

work of the original (in this case, 3,4-benzopyrene)

molecule depicted in Figure 1(a). Graph-theoreti-

cally, they are the chords of the chosen spanning

tree.28 The direction of these circuit-completing

bonds is (arbitrarily) defined, and is denoted by

means of arrows, as in Figure 1(c): the convention

has been followed that the "circuit-completing"

bonds are defined from the carbon atom whose label

in Figure 1(b) is higher, to the carbon atom whose

label is lower. However, the opposite (or no) con-

vention could equally well have been adopted. The

choice of a spanning tree that constitutes a continu-

ous, open, chain, without branches, was presupposed

by McWeeny and, indeed, the unitary transformation

of the molecule’s basis-orbitals (when it is in the

presence of an external magnetic field) that

McWeeny proposed requires the choice of such a

non-branched spanning-tree. By definition, a non-

branched spanning-tree does always exist if the

graph representing the carbon-atom framework of

the molecule is semi-Hamiltonian.25,29 All the ben-

zenoid molecules considered in this paper are asso-

ciated with semi-Hamiltonian molecular-graphs, but

some molecular graphs – such as, for example, that

of the ten-ring conjugated molecule decacyclene

(not a condensed, benzenoid hydrocarbon: see Fig-

ure 3 of Ref. 25, and Figure 3 of Ref. 18) – are not

semi-Hamiltonian. For such molecules it is therefore

not possible to select a "continuous open-chain" on

which McWeeny’s23 unitary transformation must ne-

cessarily be based. Accordingly, in such cases, a

more-general unitary-transformation of the basis

orbitals must be applied, and such was eventually

provided by Gayoso and Boucekkine.30 Even if the

underlying molecular-graph itself is actually semi-

Hamiltonian (as that of 3,4-benzopyrene is), it is

still possible, if desired, to base the calculation on a

spanning tree with branches (such as, for example,

the one depicted in Figure 2) – but then the unitary

transformation proposed by Gayoso and Bouceekine,30

rather than the original one effected by McWeeny,23

must be invoked (after which Eq. (1) then still ap-

plies).

In Eq. (1) – which represents the most-general form

arising out of the McWeeny method,23 incorporating

Veillard’s adaptation31 of it to accommodate, if necess-

ary, different resonance integrals for different bonds –

all the Greek subscripts refer to circuit-completing

bonds, as described, as well as to the circuits that they

complete; specifically, in that equation:

(i) 
	(�) is the resonance integral for the �th circuit-

completing bond. 
 is the standard Hückel resonan-

ce-integral and the 	(�)-terms are dimensionless

numbers (that arise in Veillard’s generalisation31 of

McWeeny’s original formalism23), all of which, in

the case of the topological ring-currents being de-

fined and discussed here, will invariably be assigned

the standard value of unity. This assumption is tan-

tamount to insisting that all carbon-carbon reso-

nance-integrals are set equal to the value appropriate

for a carbon-carbon bond in benzene.

(ii) S(�) is the signed (algebraical) area of the �th circuit

(i.e., the enclosed area formed when the �th cir-

cuit-completing bond, only, is inserted). These areas

are to be counted positive if the arrow on the �th cir-

cuit-completing bond points in the anticlockwise

sense around the circuit that it completes (the �th

circuit), and are to be counted negative if that arrow

points in the clockwise sense around the circuit that

the �th circuit-completing bond completes. Thus, in

Figure 1(c), S(1) = 4 (measured in benzene ring-area

units), S(2) = 3, S(3) = 2, S(4) = 1 and S(5) = –1.

(iii)C i
( )� = 0, + 1, or –1 according to the following rules:

C i
( )� = 1 if (a) the �th circuit-completing bond con-

tains the ring i and

if (b) the �th circuit-completing bond is
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Figure 2. A branched spanning-tree of the 3,4-benzopyrene mo-
lecular-graph – depicted in Figure 1(a) – on which a topological
ring-current calculation by the McWeeny method23 could be ba-
sed, after an application of the Gayoso-Boucekkine30 unitary-
transformation.



defined in the positive (anticlockwise)

sense around the circuit that it completes

(the �th circuit);

C i
( )� = –1if (a), above, applies and

if (b) the �th circuit-completing bond is

defined in the negative (clockwise) sense

around the circuit that it completes (the

�th circuit);

C i
( )� = 0 if the �th circuit does not contain the ring i.

Also in Eq. (1), P(ì) is the standard Coulson bond-

order11 of the ìth circuit-completing bond; �(ì)(ì) is the

imaginary self-polarisability23 of that bond and �(�)(
) (�

� 
) is the imaginary mutual bond-bond polarisability of

two distinct circuit-completing bonds.23 Coulson and

Longuet-Higgins32 had previously defined the real mu-

tual bond-bond polarisability of two bonds, � and 
, as

�(�)(
) =
∂
∂
P( )

( )

m

nb
(2)

Here, P(�) is (as above) the ordinary Coulson bond-

order11 of bond �, and 
(
) is the resonance integral for

bond 
. By analogy with this, the imaginary mutual

bond-bond polarisability, �(�)(
) – required for the com-

plex perturbations that arise when the molecule is in the

presence of an external magnetic-field – is23 the imagi-

nary part of the change in the bond order P(�) per unit

change in the imaginary part of the resonance integral


(
). Once given a ground-state electronic-configuration

for the molecule, deduced from the Aufbau Principle11 –

which itself may be considered to be a purely graph-the-

oretical algorithm33,34 – P(ì), �(ì)(ì) and �(�)(
) may all be

evaluated solely from the eigenvalues and eigenvectors

of the ordinary, standard Hückel Hamiltonian-matrix23,25

that is appropriate when the molecule is in the absence

of an external magnetic-field. Such a Hückel Hamiltonian

also depends only on molecular topology11,35–37 – that is,

the carbon-carbon �-bond connectivity of the conjugat-

ed system in question. It has been pointed out18,25 that

the expression for �(�)(
) given originally by McWeeny23

as being applicable to the alternant hydrocarbons con-

tains a misprint; all the relevant equations for defining

�(�)(
), applicable to both alternant and non-alternant sys-

tems, are, however, conveniently combined into the Ap-

pendix of Ref. 25.

In order to obtain the summation over rings18,23–25 –

and hence to bring out the fundamentals of the "ring-

-current" idea – McWeeny,23 making what the author

considers to be one of the most exquisite applications of

Hückel Theory, performed an ingenious unitary-trans-

formation on the original basis-orbitals in such a way

that all the perturbation brought about by the external

magnetic-field was concentrated into just one bond in

each ring of the conjugated system under study – the

very bonds that we have here called the "circuit-com-

pleting bonds". As has previously been pointed out,18,23

this latter observation alone emphasises the fact that, in

the Hückel8–13-London4–7-Pople22-McWeeny23 model –

hereafter given the acronym HLPM – the applied, exter-

nal magnetic-field manifests itself through ring fluxes

and that without the rings and other "closed circuits"

(see, for example, Figure 1(c)) – which, by virtue of the

S(�)-terms in Eq. (1), give rise to these magnetic fluxes

when the external magnetic-field is perpendicular to the

molecular plane of the conjugated system in question –

such a field can have no effect whatsoever in exciting

"ring currents".18

Despite being superficially very different, the meth-

ods of Pople22 and of McWeeny23 are entirely equiva-

lent, numerically, when calculations of ring-current in-

tensities that are effected by use of these methods are

based on the same Hückel molecular-orbitals and identi-

cal assumptions are made about the molecular geometry

of the conjugated molecules under study. It may also be

observed that yet another extension of the London for-

malism for calculating magnetic susceptibilities – this

one due to Coulson38,39 – is also entirely equivalent, nu-

merically, to those of Pople22 and of McWeeny,23 even

though the somewhat arcane expressions embodied in it

are couched in terms of the Coulson contour-integral

formalism,40 and thus do not immediately appear to be

related in any obvious way to those arising in the other

two22,23 approaches.

THE CONCEPT OF TOPOLOGICAL
RING-CURRENTS

Most calculations performed by use of the HLPM model

in the fifty years since the final part of it was formulated

have made the simplest assumptions about Hückel the-

ory and molecular geometry: standard Coulomb and res-

onance integrals have been adopted for all carbon atoms

and carbon-carbon bonds (respectively) and all hexa-

gons of carbon atoms are taken to have the area of a

standard benzene-ring, and to have sides equal in length

to the unique carbon-carbon bond-length in benzene.

Now, the present author argued25 many years ago that al-

though much Graph Theory – for example, the idea of a

spanning tree, referred to earlier – is inherent in the

ring-current concept, the ring-current index itself, de-

pending, as it does (by virtue of the S(�)-terms in Eq.

(1)), on molecular geometry, is manifestly not a com-

pletely topological quantity – even when a purely topo-

logical wave-function (that is, the simple Hückel

one8–13,25,41) has been used to calculate it. Nevertheless,

notwithstanding this observation, the present author

(alone,25 and with Coulson,41 and with Gomes18) has

previously drawn attention to the fact that

(a) when the HLPM method is used, and

(b) when only benzenoid hydrocarbons42 are consider-

ed, and
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TABLE I. Topological Ring-Currents in Benzenoid Hydrocarbons comprising 1–4 Rings

Molecule
Topological Ring-Current Intensity in Rings

Reference Source
A B C D

One Ring

1.000 – – – By Definition

Two Rings

1.093 – – – Refs. 5, 15, 23 & 70

Three Rings

1.085 1.280 – – Refs. 70 & 62

1.133 0.975 – – Ref. 70

Four Rings

1.068 1.305 – – Refs. 62 & 71

1.152 1.067 – – Refs. 72* & 62

1.111 0.747 – – Ref. 70

1.327 0.964 – –

Refs. 70, 62 & 63

Note that Ref. 70 reports

1.329 (not 1.327)

for Ring A

1.119 1.271 0.891 1.122 Ref. 73

1.150 1.073 – –

Refs. 62 & 64

Non-Planar

Molecule†

(H�4 Protons)69



(c) when all Hückel Coulomb integrals are assigned the

value (�) appropriate for a carbon atom in benzene,

and all resonance integrals are likewise set equal to

the standard value (
) for a carbon-carbon bond in

benzene, and

(d) when a molecular geometry comprising regular hexa-

gons of benzene dimensions is assumed, and, finally,

(e) when the resulting calculated ring-current intensities

are expressed as a ratio to the ring-current intensity

evaluated, by the same method, for benzene,

then, once the carbon-carbon connectivity of a benze-

noid molecule has been specified, the (topological) ring-

current intensities so-calculated are predetermined and

do not further depend on any subjective (or other) pa-
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TABLE II. Topological Ring-Currents in Five-Ring Benzenoid Hydrocarbons (continued in Tables III & IV)

Molecule Topological Ring-Current Intensity in Rings Reference Source

A B C D

Five Rings

1.06* 1.30* 1.35* – Ref. 65*

1.138 0.943 1.289 – Refs. 73 & 65*

1.14* 0.944 1.29* – Ref. 65*

1.11* 1.23* 0.784 – Ref. 65*

1.16* 1.06* 1.15* – Ref. 65*

0.970 0.239 – –

Disagreement between

Ref. 70 and Ref. 65 is

adjudicated in Refs. 62

& 63. This favoured

the values quoted in

Ref. 65, which are the

ones given here

1.10* 0.719 1.29* 0.987 Ref. 65*

(Five-Ring Benzenoid Hydrocarbons are continued in Table III.)



rameters. In that sense, the ring-current intensity that

characterises each of the diverse rings in benzenoid mol-

ecules is a purely graph-theoretical index that depends

solely on the knowledge of a vertex-adjacency matrix43

for the graph representing the connectivity of the carbon

atoms in the particular benzenoid molecule under study.

Because of this, Gomes and the present author have ven-

tured to speculate18 that "... despite technically being

semi-empirical, such calculations may be regarded as

possibly having an unexpected degree of respectability."

Ring-current intensities calculated and presented in this

way will be referred to as topological ring-currents. All

the ring-current intensities that are reported in this paper

come into this category.

TABLES OF TOPOLOGICAL RING-CURENTS

The author has recently compiled, initially for private

use, an extensive table of such topological ring-currents.

Even though they are from a wide variety of sources, all

have been consistently calculated by the HLPM method,

based on the assumptions about Coulomb and resonance

integrals and molecular geometry stated earlier, and are

each expressed as a ratio to the corresponding ring-cur-

rent intensity calculated, by the same method, for ben-

zene – just as has been described. This wide-ranging nu-

merical tabulation was devised with the intention of being

able to compare44 topological ring-current intensities, so

calculated, with the "�-electron-partition" index for each

symmetrically non-equivalent ring of a polycyclic con-
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TABLE III. Topological Ring-Currents in Five-Ring Benzenoid Hydrocarbons (continued from Table II and further continued in Table IV)

Molecule Topological Ring-Current Intensity in Rings
Reference Source

A B C D E

Five Rings (Continued)

1.205 1.290 0.848 1.302 1.077

Refs. 73, 65* & 74

There are slight dis-

crepancies in the third

decimal-place be-

tween Refs. 73 & 74

Values from Ref. 74

are given here

1.12* 1.30* 0.993 1.08* 1.15* Ref. 65*

1.09* 1.32* 1.35* 0.847 1.11* Ref. 65*

1.12* 1.21* 0.648 1.08* – Ref. 65*

1.153 1.055 1.160 – –

R. B. Mallion,

unpublished

& Ref. 65*

Non-planar†

Molecule (H�5

Protons)69

1.15* 1.06* 1.16* 1.05* 1.15*

Ref. 65*

Non-planar†

Molecule (H�4

Protons)69

(Five-Ring Benzenoid Hydrocarbons are continued in Table IV.)



234 R. B. MALLION

Croat. Chem. Acta 81 (2) 227¿246 (2008)

TABLE IV. Topological Ring-Currents in Five-Ring Benzenoid Hydrocarbons (continued from Tables II & III) and Six-Ring Benzenoid Hydro-
carbons (continued in Tables V–VII)

Molecule Topological Ring-Current Intensity in Rings
Reference Source

A B C D E

Five Rings (Continued)

1.13* 0.853 1.14* 1.09* 1.10*

Ref. 65*

Non-planar

Molecule†

(H�4 Protons)69

1.14* 1.08* 1.00* 1.30* 1.12*

Ref. 65*

Non-planar

Molecule†

(H�4 Protons)69

Six Rings

1.048 1.291 1.352 – – Refs. 75, 62 & 71

1.094 1.311 1.194 0.603 1.061 Ref. 75

1.121 0.877 1.299 – – Ref. 75

1.119 0.876 1.298 – – Ref. 75

1.337 0.854 1.297 – – Ref. 75

1.197 1.310 0.979 – – Ref. 75

(Six-Ring Benzenoid Hydrocarbons are continued in Table V.)
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TABLE V. Topological Ring-Currents in Six-Ring Benzenoid Hydrocarbons (continued from Table IV and further continued in Tables
VI & VII)

Molecule Topological Ring-Current Intensity in Rings Reference

SourceA B C D E F

Six Rings (Continued)

1.121 1.305 1.011 – – – Ref. 75

1.292 1.075 0.684 1.380 – – Ref. 75

1.191 1.214 0.725 1.181 – – Ref. 75

1.104 1.170 0.548 1.044 – – Ref. 75

1.109 0.745 1.270 – – – Ref. 75

1.111 1.194 0.614 1.260 0.989 – Ref. 75

1.196 1.226 0.606 1.058 1.264 1.089 Ref. 75

1.143 1.372 1.205 0.790 1.268 1.089 Ref. 75

(Six-Ring Benzenoid Hydrocarbons are continued in Table VI.)
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TABLE VI. Topological Ring-Currents in Six-Ring Benzenoid Hydrocarbons (continued from Tables IV & V and further continued in
Table VII)

Molecule Topological Ring-Current Intensity in Rings Reference

SourceA B C D E F

Six Rings (Continued)

1.072 1.321 1.356 1.244 0.825 1.101 Ref. 75

1.091 1.311 1.216 0.732 1.209 1.108 Ref. 75

1.138 0.936 1.312 1.046 1.080 1.153 Ref. 75

1.140 0.962 1.247 0.698 1.094 1.096 Ref. 75

1.125 1.299 0.973 1.154 1.044 1.153 Ref. 75

1.121 1.257 0.839 1.262 0.951 1.138 Ref. 75

1.077 0.875 1.041 0.236 0.974 0.973 Ref. 75

(Six-Ring Benzenoid Hydrocarbons are continued in Table VII.)
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TABLE VII. Topological Ring-Currents in Six-Ring Benzenoid Hydrocarbons (continued from Tables IV–VI) and in Seven-Ring Benzenoid Hy-
drocarbons (continued in Tables VIII & IX)

Molecule Topological Ring-Current Intensity in Rings
Reference Source

A B C D E F

Six Rings (Continued)

1.155 1.068 1.150 – – –

R. B. Mallion,

unpublished

Non-Planar Molecule†

(H�6 Protons)69

0.365 0.865 0.922 – – –
(Partly) Ref. 75 &

Ref. 25

1.195 1.326 0.888 1.297 0.843 1.127

R. B. Mallion,

unpublished

Non-Planar Molecule†

(H�4 Protons)69

Seven Rings

1.045 1.285 1.348 1.361 – – Refs. 62 & 71

(Seven-Ring Benzenoid Hydrocarbons are continued in Table VIII.)

TABLE VIII. Topological Ring-Currents in Seven-Ring Benzenoid Hydrocarbons (continued from Table VII and further continued in Table IX)

Seven Rings (Continued)

Topological Ring-Current Intensity in Rings
Reference Source

A B C D E F G

1.139 0.932 1.366 1.263 0.824 1.288 1.092 Refs. 76 & 74

Topological Ring-Current Intensity in Rings
Reference Source

A B C D E F G

1.141 1.355 1.136 0.559 1.038 1.234 1.096 Ref. 76

Topological Ring-Current Intensity in Rings
Reference Source

A B C D E F G

1.122 0.886 1.294 1.232 0.628 1.071 1.070 Ref. 76

(Seven-Ring Benzenoid Hydrocarbons are continued in Table IX.)



jugated system, just proposed by Balaban et al.,45–51 and

with the "ef-values" recently defined by Gutman52 –

though it has to be said that sample preliminary confron-

tations between topological ring-current intensities and

these quantities have not been encouraging.44,53 These

data would, however, also be available for comparison

with any other (possibly future) theoretical �-electron in-

dices that are attributable to the individual rings of a con-

densed, benzenoid hydrocarbon.42 This compilation,

which is presented in Tables I–XIII, comprises 330 indi-

vidual topological ring-current intensities, for each of the

many symmetrically non-equivalent rings in 79 different

condensed, benzenoid hydrocarbons. Nearly 100 of these

topological ring-currents, in more than 20 different mol-

ecules, are new and unpublished, and are taken from the

author's personal files.54 The rest are from literature sour-

ces (all of which are stated). The list includes certain

molecules that are so severely overcrowded that they are

non-planar.55–61 Strictly, the unmodified HLPM method

should not be applied to these molecules;62–64 such has,

however, occasionally been done, in the past,65–67 and –

because the ring current is here effectively being regard-

ed as a purely mathematical, topological index, and not

as an assumed "physical" quantity per se – this will again

be done (though with reservations) in the ring-current lists

presented in Tables I–XIII. The following points should

be noted, concerning this compilation:

1. Because topological ring-currents – such as those

featuring in Tables I–XIII – are, by definition, calcu-

lated ring-currents whose intensities are expressed

as a ratio to the ring-current intensity evaluated, by

the same (HLPM) method, for benzene, the topolog-

ical ring-current intensities themselves (being,

thereby, pure numbers) are dimensionless.

2. All the topological ring-currents listed here are

quoted to three decimal places, apart from those

from Refs. 65 and 68 – which, exceptionally, present

their calculations to three significant figures (Ref.

65) or to two decimal places (Ref. 68). Accordingly,

all topological ring-current intensities from Ref. 68

and those in Ref. 65 that are greater than the ben-

zene value – both denoted by the symbol "*" at-

tached to the figures reporting them and to the corre-

sponding reference numbers, in Tables I–XIII – are

available only to two decimal places. Where there are

alternative sources that give topological ring-currents

to three places of decimals, these latter have been

used in preference, when selecting data to be com-

piled into this list.

3. Molecules in the list that, in the right-hand column

of the Tables, are signalled by means of the super-

script symbol "†" and the label "Non-Planar Mole-
cule" are benzenoid hydrocarbons that suffer more

severe steric overcrowding amongst the peripheral,

attached hydrogen-atoms than is provided by what

Martin69 calls "H�3" protons, and so these benze-

noid hydrocarbons are non-planar.57 As already no-

ted, it is not legitimate to perform HLPM ring-cur-

rent calculations on such conjugated systems and to

attribute to the results any physical significance,62–64

because "ring-current" in the HLPM model is pre-

cisely defined as an exact quantity only for planar

molecules; (please see Refs. 62–64 for detailed dis-

cussion on this aspect). The topological ring-cur-

rents reported in Tables I–XIII for such molecules

are thus, in effect, those for a hypothetical molecule

having the same carbon–carbon connectivity as the

actual molecule under consideration, but envisaged

as if it were planar. The numerical values of such to-

pological ring-currents are printed in italics when

they are documented in Tables I–XIII.

4. The right-hand column of Tables I–XIII cites the pu-

blication(s) from which the quoted topological ring-

current data are taken. Previously unpublished cal-

culations – comprising approximately 100 ring-cur-

rent intensities in some 20 different molecules – are

from the author’s personal files.54

The transcriptions of original data into these Tables

have all been diligently checked and cross-checked di-

rectly with the primary sources – including (in the case of

previously unpublished topological ring-currents com-

puted by the present author) the earliest relevant manu-

script that was available in the author’s own archives. The

compilation just described is presented at various points,

dispersed throughout the paper.

INITIAL DISCUSSION AND INTENDED FUTURE
USE OF THE TABLES

As stated, the main purpose of this paper is to col-

late in one place all the known topological ring-currents

for the condensed, benzenoid hydrocarbons, and thereby

to facilitate their comparison with other indices –

extant44–53 or in the future – that characterise the indi-

vidual, symmetrically non-equivalent rings in such mol-

ecules.44–53 Only very general, qualitative trends in the

topological ring-currents themselves are, accordingly,

given here. Such trends (albeit based on more-limited

data) have, in any case, already been given very detailed

consideration in Refs. 78 and 18, and elsewhere.

It may first be mentioned that nine of the molecules

considered in the Tables were included by Berthier,

Pullman and Pullman15 in their early list of overall dia-

magnetic susceptibilities calculated by the London

method,4–6 published in Chapter IX of Pullman and Pull-

man’s seminal book Les Théories Electroniques de la

Chimie Organique.15 For the condensed benzenoid hy-

drocarbons in Tables I–XIII, these London susceptibili-

ties – expressed as a ratio to the diamagnetic susceptibil-

ity, likewise calculated by the London method,4–6 for
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benzene – may be obtained by simply summing the top-

ological ring-current intensities reported in the Tables

over all rings within a given molecule; (this process is

valid because all ring-areas in these molecules are taken

to be the same as the area of a standard benzene-hexa-

gon). The ring-current intensities in the Tables are con-

sistent (to three significant figures) with the London

values15 of overall susceptibilities in the case of seven

molecules, and they disagree in the case of two mole-

cules. Those consistent are: naphthalene (the 2nd struc-

ture of Table I), anthracene (3rd structure, Table I),

phenanthrene (4th structure, Table I), triphenylene (7th

structure, Table I), pyrene (8th structure, Table I),

pentacene (1st structure, Table II), and perylene (6th

structure, Table II); those inconsistent are: chrysene (6th

structure, Table I) and coronene (6th structure, Table IX).

It was qualitatively noted very early on65,72,73,75,76

that the more condensed a given ring is in a condensed,

benzenoid hydrocarbon, the smaller the ring current it

appears to bear. Motivated by this observation, the pres-

ent author and Haigh77,78 have rationalised why mole-

cules related to perylene (the 6th structure of Table II)

manifest a very small topological ring-current in their

central ring (labelled ring B in the structure of perylene

depicted in the penultimate row of Table II) of only

about one quarter of the benzene value. This low

ring-current was shown77,78 to arise because such rings

display what has been called "bond-fixation"79,80 when

that central ring (B) is considered formally to be created

by joining two entities (in this case, both are naphtha-

lene units) each of which is possessed of at least one

Kekulé structure; as a result, the unshared bonds in that

central ring (B) never appear other than as single bonds

in any Kekulé structure that can be written for the

perylene molecule as a whole. Similar considerations

apply to the following benzenoid hydrocarbons, all re-

lated to perylene: the 7th structure (ring D) in Table VI,

the 4th and 5th structures (rings D) of Table IX, the 2nd

structure (ring B) of Table X, the 6th structure (ring E) of

Table XI, the 1st structure (ring E), the 2nd structure (ring

C) and the 5th structure (rings B and D) of Table XII;

ring G of the 1st structure of Table XIII is also a ring of

this type but it bears a considerably higher ring-current

(0.706). By contrast, the central ring (C) in peropyrene

(the 2nd structure in Table IX) – which, formally, is simi-

larly condensed with four surrounding rings and is thus

ostensibly analogous to the corresponding ring (B) in

perylene – has associated with it a topological ring-cur-

rent of intensity about 50 % greater than the benzene

value (that is, about six times76 the value in the corre-

sponding central ring (B) of perylene (the 6th structure of

Table II)). Haigh and the present author77,78 have ration-

alised this observation by noting that this central ring

(C) in peropyrene may formally be considered to be cre-

ated by joining two entities neither of which is possessed

of a Kekulé structure. Each of the unshared bonds in that

central ring (C) of peropyrene is single in some Kekulé

structures that can be written for the peropyrene mole-

cule as a whole, and is double in others. As a result of

this, the central ring of peropyrene (C) may be consid-

ered to participate fully77,78 in the conjugation between

the upper and lower halves of the molecule, and this, it

was claimed,77,78 rationalises the observation of a large

topological ring-current in that ring. Similarly large top-

ological ring-currents also arise in the corresponding

rings (rings E) in the 4th and 5th structures in Table XI,

both closely related to peropyrene. Haigh and the pres-

ent author25,75,77,78 have also drawn attention to what

Clar79,80 refers to as "bond fixation" in the central rings

(A) of zethrene (the 2nd structure in Table VII), which

bears a small topological ring-current of only about

one-third of the benzene value. Similar situations arise

in rings A of the following structures related to zethrene:

the 3rd structure of Table IX, the 4th and 5th structures of

Table X, the 1st and 2nd structures of Table XI, the 3rd

structure of Table XII, and in rings C and D of the 1st

structure of Table XIII. It is worth noting that, with one

minimal exception – ring E of the 2nd structure in Table

XI, whose ring current is a mere 0.2 % more than the

benzene value – all the rings in the listed molecules re-

lated to zethrene have topological ring-current intensities

smaller than the benzene value. It is, for example, remark-

able that each and every one of the rings in the thirteen-

ring benzenoid hydrocarbon illustrated as the 1st struc-

ture in Table XIII has associated with it a topological

ring-current smaller than that in benzene. This all con-

trasts strongly with the patterns observed68 in molecules

(the 2nd and 3rd structures in Table XIII) derived from co-

ronene (the 6th structure in Table IX): the central ring (D)

in the nineteen-ring benzenoid hydrocarbon dodecaben-

zocoronene (the final structure in Table XIII) is still18

the ring in this series of molecules that is associated with

the largest topological ring-current so far reported.

Finally, it may be noted in conclusion that the

semi-quantitative trends described above are in complete

accord with the general qualitative claims made in Clar’s

classic little book,80 all based on his "aromatic-sextet"

arguments; (see also Ref. 42, Chapter 7, pp. 93–116).

The following quotations from that source make this

point. Concerning perylene (the 6th structure in Table II),

Clar writes (page 59 of Ref. 80): "Perylene can be con-

sidered to be built up from two naphthalene complexes

connected by two single bonds ... and the �1H-NMR�

spectra do not support the assumption of a ring current

in the central ring." About the central ring (C) of

peropyrene (the 2nd structure of Table IX), Clar observes

(page 89 of Ref. 80) that 1H-NMR data indicate a "...

large ring current �which is� a direct proof for the inher-

ent sextet in the centre". Calling again on 1H-NMR evi-

dence regarding zethrene (the 2nd structure of Table
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TABLE IX. Topological Ring-Currents in Seven-Ring Benzenoid Hydrocarbons (continued from Tables VII & VIII)

Molecule Topological Ring-Current Intensity in Rings
Reference Source

A B C D E

Seven Rings (Continued)

1.022 0.508 1.183 1.161 1.184 Ref. 76

1.332 1.031 1.446 – – Refs. 76, 77 & 78

0.577 0.410 0.820 0.905 –

(Partly) Refs. 77 & 78,

and the

rest:

R. B. Mallion,

unpublished

1.078 0.877 1.041 0.232 –
R. B. Mallion,

unpublished

1.077 0.876 1.043 0.233 –
R. B. Mallion,

unpublished

1.460 1.038 – – – Refs. 68* & 70
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TABLE X. Topological Ring-Currents in Eight-Ring Benzenoid Hydrocarbons

Molecule Topological Ring-Current Intensity in Rings
Reference Source

A B C D

Eight Rings

1.040 1.279 1.342 1.358 Refs. 62 & 71

0.947 0.321 0.908 –

(Partly) Refs. 77

& 78, and the rest:

R. B. Mallion,

unpublished

0.967 1.000 0.442 –

(Partly) Ref. 77, and

the rest:

R. B. Mallion,

unpublished

0.662 0.424 0.796 0.895
R. B. Mallion,

unpublished

0.363 0.784 1.018 1.013

(Partly) Refs. 77

& 78, and the

rest:

R. B. Mallion,

unpublished

1.355 0.885 1.313 1.094

(Partly) Refs. 77

& 78, and the rest:

R. B. Mallion,

unpublished
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TABLE XI. Topological Ring-Currents in Nine-Ring Benzenoid Hydrocarbons (continued in Table XII)

Molecule Topological Ring-Current Intensity in Rings
Reference Source

A B C D E

Nine Rings

0.776 0.704 0.434 0.785 0.890

(Partly) Refs. 77 &

78, and the rest:

R. B. Mallion,

unpublished

0.574 0.405 0.739 0.985 1.002

(Partly) Refs. 77 &

78, and the rest:

R. B. Mallion,

unpublished

1.447 1.252 0.813 1.279 1.100

(Partly) Refs. 77 &

78, and the rest:

R. B. Mallion,

unpublished

1.195 1.270 0.926 1.131 1.377

(Partly) Refs. 77 &

78, and the rest:

R. B. Mallion,

unpublished

1.193 1.244 0.867 1.173 1.345

(Partly) Refs. 77 &

78, and the rest:

R. B. Mallion,

unpublished

1.194 0.948 1.207 0.874 0.311

(Partly) Refs. 77 &

78, and the rest:

R. B. Mallion,

unpublished

(Nine-Ring Benzenoid Hydrocarbons are continued in Table XII.)
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TABLE XII. Topological Ring-Currents in Nine-Ring Benzenoid Hydrocarbons (continued from Table XI) and in Ten-Ring and Eleven-Ring
Benzenoid Hydrocarbons

Molecule Topological Ring-Current Intensity in Rings
Reference Source

A B C D E

Nine Rings (Continued)

1.194 0.944 1.197 0.880 0.311

(Partly) Refs. 77

& 78,

and the rest:

R. B. Mallion,

unpublished

1.101 0.996 0.214 – –

R. B. Mallion,

unpublished

Non-Planar†

Molecule

(Ha4 Protons)69

Ten Rings

0.832 0.726 0.438 0.779 0.888
R. B. Mallion,

unpublished

1.339 1.786 1.307 1.665 –
R. B. Mallion,

unpublished

Eleven Rings

0.938 0.354 0.905 0.447 –

(Partly) Refs. 77

& 78,

and the rest:

R. B. Mallion,

unpublished



VII), Clar writes (on page 104 of Ref. 80): "The fixed

double bonds in the zethrene series can be proved by the
1H-NMR evidence..." and "...the fixed double bonds...

belong to empty rings." The author was privileged to

have had direct correspondence on some of these mat-

ters with the late Professor Clar in the early 1970s, im-

mediately before and after his retirement. When the top-

ological ring-current intensities for the 5th and 6th struc-

tures of Table X were reported to him in a letter from the

author, Professor Clar wrote back:81 "I was interested to

learn that your calculation leads to the same results as

the strict application of the aromatic sextet".

The data in Tables I–XIII are thus presented for fur-

ther evaluation.
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TABLE XIII. Topological Ring-Currents in Thirteen-Ring and Nineteen-Ring Benzenoid Hydrocarbons

Thirteen Rings

Topological Ring-Current Intensity in Rings
Reference Source

A B C D E F G

0.895 0.824 0.462 0.640 0.846 0.968 0.706 Ref. 77

Topological Ring-Current Intensity in Rings
Reference Source

A B C

1.34* 0.85* 1.81* Ref. 68*

Nineteen Rings

Topological Ring-Current Intensity in Rings

A B C D Reference Source

2.15* 1.49* 1.80* 2.44* Ref. 68*
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SA�ETAK

Topološke struje prstenova u kondenziranim benzenoidnim ugljikovodicima

R. B. Mallion

Topološka struja prstena definirana je kao relativni intenzitet �-elektronske struje u prstenu kondenziranog

benzenoidnog ugljikovodika, izra~unat (i) najjednostavnijom Hückel-London-Pople-McWeeny metodom, (ii) iz

molekulske geometrije s pravilnim heksagonima ugljikovih atoma, i (iii) izra�en omjerom prema intenzitetu

struje, izra~unatom istom metodom, za molekulu benzena. Za zadani benzenoidni ugljikovodik tako definirana

topološka struja neovisna je o subjektivnim (i drugim) parametrima i predstavlja ~isti graf-teorijski indeks,

potpuno odre|en samo matricom susjedstva grafa koji prikazuje povezanost ugljikovih atoma u benzenoidnoj

molekuli. U radu su tabelirane sve poznate vrijednosti topoloških struja – dosad objavljene i neke nove – u

svrhu budu}e ocjene i usporedbe s drugim graf-teorijskim indeksima koji pojedina~no karakteriziraju prstenove

kondenziranog benzenoidnog ugljikovodika.
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