# The Structure of Body Measurements for the Determination of Garment System for Young Croatian Men

## L. Szirovicza<sup>1</sup>, D. Ujević<sup>2</sup> and M. Drenovac<sup>3</sup>

<sup>1</sup> Institute for Anthropological Research, Zagreb, Croatia

- <sup>2</sup> Faculty of Textile Technology, University of Zagreb, Zagreb, Croatia
- <sup>3</sup> Institute for Defense Studies, Research and Development, Zagreb, Croatia

## ABSTRACT

The determination and promotion of garment size systems require a knowledge of the proportions of the human body i.e. of anthropometric measures of a certain population. In order to create and promote a garment size system it is necessary to establish a correct relationship between the body parts or body measures. Possible interregional body differences are often neglected in the process, although they can be considerable even in cases of sex- and age- limited populations. This has been confirmed by an investigation of body measures for determining garment sizes carried out on a randomly selected sample of 4,268 healthy and normally developed men aged 18–22. The investigation was performed in 1993 on five locations each one representing a definite region of the Republic of Croatia: Jastrebarsko (central), Koprivnica (northwest), Pula (southwest), Sinj (south) and Požega (northeast). The survey instruments were 50 body measures chosen according to ISO standards for garment sizes. Interregional differences were considerable in all body measures. The role of those measures and their contribution to the differences was confirmed by discriminative analysis with regions as a priori defined samples. Besides the differences in body size, significant differences in body build were established, mostly in the northeast region of Croatia and partly also in the northwest region. It is the difference in body build (besides the high number of necessary measurements) that makes the determination of garment size systems so complex. In order to establish an appropriate and purposeful garment size standard it is necessary to collect more information and also introduce the entity of target-population into previously determined categories in terms of chest circumference and body height.

Received for publication April 20, 2002

#### Introduction

In order to determine and promote the garment size system it is necessary to take into consideration the proportions of the human body, its anthropometric measures, various garment size systems as well as systems of designating those sizes. The size systems of garment items are of utmost importance for the manufacture of men's, women's and children' garments. If we wish to satisfy the largest population of buyers, it is necessary to develop and promote up-to-date systems which will make possible an optimal choice of garment sizes.

Considering the present-day situation in Europe and in the world, different garment size systems and different systems of designating those sizes pose a certain difficulty to the manufacturers, sellers and consumers of clothes, especially in international business transactions. However, in accordance with some new initiatives, the adoption of complete and unique garment size systems and systems of designating sizes could be expected in Europe and in the world<sup>1</sup>.

Anthropometry is an anthropological method concerned with measuring the human body and determining the size relations between its parts. Proportions and relations can help us to establish a correct relationship between different body parts i.e. different measures. Based on these proportions the aberrations from normal body build (i.e. its deformations) can be noticed. By means of systematic anthropological measuring and statistical results processing of those measurements it is possible to determine groups of data essential for clothes manufacturing, such as:

- a system of designating clothes;
- standard and proportion measurements;
- the share of characteristic proportions of the human body as well as individual garment sizes.

The systems of designating clothes and standard body measures are an integral parts of every standard.

Anthropometric measurements, on which corrections and adaptations of the existing standards are based, are carried out in the world approximately every ten years on the average. This is necessary because of the conditions and lifestyles which directly affect the human body measures<sup>2,3</sup>. The results of anthropometric measurement point to the incidence of particular garment sizes in the tested population or in the population as a whole. This is crucial information for garment manufacturers so that they can know in what proportion a particular garment size is represented in the overall product. Since they work for a large population of buyers, that particular piece of information is a condition for the placement of their product on the market.

Considering that the latest anthropological measurements in this part of the world<sup>4</sup> were carried out in the early sixties of the last century and that the results are still used, the authors have – in accordance with ISO standards<sup>5–8</sup> and based on human body proportions – established a suitable basis and articulated recommendations for defining the new standard.

#### **Materials and Methods**

Investigation was carried out in 1993 at five locations each of which represented a region of Republic of Croatia: Jastrebarsko (C), Koprivnica (NW), Pula (SW), Sinj (S) and Požega (NE). 4,268 healthy and normally developed males aged 18 - 22 were randomly selected. Jastrebarsko was represented by 620 examinees on average 19.88 years old (SD 0.957); Koprivnica by 1,200 examinees 19.74 years old (SD 0.727); Pula by 1,221 examinees 19.77 years old (SD 0.988); Sinj by 618 examinees 19.91 years

| Code | Variables                                                 | Sum of square | df | Mean<br>square | F     | р       |
|------|-----------------------------------------------------------|---------------|----|----------------|-------|---------|
| V01  | Head girth                                                | 104.8         | 4  | 26.2           | 10.5  | < 0.001 |
| V02  | Vertical head circumference                               | 3244.3        | 4  | 811.1          | 169.4 | < 0.001 |
| V03  | Neck girth                                                | 1146.8        | 4  | 286.7          | 88.1  | < 0.001 |
| V04  | Neck-base girth                                           | 5930.2        | 4  | 1482.5         | 297.1 | < 0.001 |
| V05  | Chest girth                                               | 2606.1        | 4  | 651.5          | 16.8  | < 0.001 |
| V06  | Waist girth                                               | 1269.8        | 4  | 317.4          | 8.0   | < 0.001 |
| V07  | Hip girth                                                 | 4095.5        | 4  | 1023.9         | 32.8  | < 0.001 |
| V08  | Shoulder length                                           | 1607.6        | 4  | 401.9          | 357.8 | < 0.001 |
| V09  | Shoulder width                                            | 11003.1       | 4  | 2750.8         | 371.2 | < 0.001 |
| V10  | Back width                                                | 7294.6        | 4  | 1823.6         | 229.4 | < 0.001 |
| V11  | Upper-arm girth                                           | 1640.0        | 4  | 410.0          | 57.9  | < 0.001 |
| V12  | Elbow girth                                               | 910.0         | 4  | 227.5          | 74.4  | < 0.001 |
| V13  | Wrist girth                                               | 41.5          | 4  | 10.4           | 14.2  | < 0.001 |
| V14  | Hand girth                                                | 59.3          | 4  | 14.8           | 13.4  | < 0.001 |
| V15  | Thigh girth                                               | 3238.0        | 4  | 809.5          | 43.3  | < 0.001 |
| V16  | Mid-thigh girth                                           | 6103.3        | 4  | 1525.8         | 90.8  | < 0.001 |
| V17  | Knee girth                                                | 571.3         | 4  | 142.8          | 32.5  | < 0.001 |
| V18  | Lower knee girth                                          | 265.4         | 4  | 66.4           | 14.7  | < 0.001 |
| V19  | Calf girth                                                | 458.6         | 4  | 114.6          | 17.9  | < 0.001 |
| V20  | Minimum leg girth                                         | 457.9         | 4  | 114.5          | 56.5  | < 0.001 |
| V21  | Ankle girth                                               | 2850.2        | 4  | 712.5          | 344.1 | < 0.001 |
| V22  | Height                                                    | 8860.1        | 4  | 2215.0         | 51.3  | < 0.001 |
| V23  | Trunk length                                              | 13159.0       | 4  | 3289.7         | 348.5 | < 0.001 |
| V24  | Waist height                                              | 3597.9        | 4  | 899.5          | 34.0  | < 0.001 |
| V25  | Hip height                                                | 2525.2        | 4  | 631.3          | 30.1  | < 0.001 |
| V26  | Body rise                                                 | 3843.9        | 4  | 961.0          | 194.8 | < 0.001 |
| V27  | Knee height                                               | 1606.2        | 4  | 401.5          | 60.9  | < 0.001 |
| V28  | Ankle height                                              | 180.4         | 4  | 45.1           | 129.7 | < 0.001 |
| V29  | Cervical height (sitting)                                 | 3356.7        | 4  | 839.2          | 99.2  | < 0.001 |
| V30  | Scye depth                                                | 11058.1       | 4  | 2764.5         | 678.5 | < 0.001 |
| V31  | Back waist length (cervical to waist)                     | 7293.4        | 4  | 1823.4         | 346.0 | < 0.001 |
| V32  | Cervical to knee hollow                                   | 11296.8       | 4  | 2824.2         | 154.7 | < 0.001 |
| V33  | Cervical height                                           | 19625.4       | 4  | 4906.3         | 120.3 | < 0.001 |
| V34  | Frontal waist to length<br>(neck shoulder point to waist) | 3174.9        | 4  | 793.7          | 138.8 | < 0.001 |
| V35  | Cervical to waist (anterior)                              | 807.3         | 4  | 201.8          | 43.4  | < 0.001 |
| V36  | Waist to hips                                             | 3632.9        | 4  | 908.2          | 268.8 | < 0.001 |

 TABLE 1

 LIST OF BODY MEASURES AND VARIANCE ANALYSIS RESULTS

| Code | Variables                                 | Sum of square | df | Mean<br>square | F     | р       |
|------|-------------------------------------------|---------------|----|----------------|-------|---------|
| V37  | Trunk circumference                       | 10836.9       | 4  | 2709.2         | 50.5  | < 0.001 |
| V38  | Total crotch length; lower trunk length   | 13425.4       | 4  | 3356.3         | 114.8 | < 0.001 |
| V39  | Armscye girth                             | 8994.3        | 4  | 2248.6         | 264.6 | < 0.001 |
| V40  | Upper arm length (shoulder to elbow)      | 7904.6        | 4  | 1976.2         | 583.9 | < 0.001 |
| V41  | Arm length (shoulder to wrist)            | 11066.7       | 4  | 2766.7         | 330.8 | < 0.001 |
| V42  | 7 <sup>th</sup> -cervical-to-wrist length | 4759.3        | 4  | 1189.8         | 90.7  | < 0.001 |
| V43  | Under-arm-length                          | 306.5         | 4  | 76.6           | 11.4  | < 0.001 |
| V44  | Hand length                               | 515.7         | 4  | 128.9          | 172.4 | < 0.001 |
| V45  | Outside leg length                        | 2335.7        | 4  | 583.9          | 21.8  | < 0.001 |
| V46  | Thigh length                              | 14388.0       | 4  | 3597.0         | 460.8 | < 0.001 |
| V47  | Inside leg length; crotch height          | 4248.1        | 4  | 1062.0         | 55.1  | < 0.001 |
| V48  | Foot length                               | 197.0         | 4  | 49.3           | 31.5  | < 0.001 |
| V49  | Shoulder tilt                             | 12997.2       | 4  | 3249.3         | 135.6 | < 0.001 |
| V50  | Body mass                                 | 6416.9        | 4  | 1604.2         | 17.3  | < 0.001 |

TABLE 1 (cont.)

old (SD 1.248) and Požega by 609 examinees 19.46 years old (SD 0.992). Most examinees were between 20 and 21 (respectively 1,684 and 1,707) years of age and according to 1991 census they represent about 5% of Republic of Croatia's male population of the same age.

Considering that the investigation is part of a more widely defined project, the anthropometric variables were chosen and their measurements performed in accordance with the methodology contained International Biological Program in (IBP)<sup>9</sup>, International standards for garment (ISO)<sup>10</sup>, the manual for applied anthropometry of the World Health Organization<sup>11</sup>, the extended ergonomic list for projecting working places<sup>12</sup> and the proposal of a »uniform ergonomic anthropometric list«<sup>13</sup>. Thus the anthropometric list encompassed 130 measurements taken on each examinee. They can be divided into four functional groups: the group of measurements for assessing the morphological status, the group of measurements for clothes, the group of measurements for footwear and the group of measurements for ergonomy. Measurers were trained and taught to follow the measuring protocol. The object of this work is a group of measures for garments i.e. of anthropometric measures used for determining the dimensions of clothes and the size system of clothes encompassing 50 sizes (variables) given in Table 1 (descriptively and in code). All variables, except V2, V49 and V50, are measured according to ISO 8559<sup>10</sup>.

In accordance with the subject of this work (the structure of body measures for determining garment sizes), statistical data processing and analysis were carried out covering 50 chosen anthropometric variables (Table 1) by means of univariate and multivariate methods. Since the emphasis is on structural distinctions, the variables are described by standardized values. Assumed regional differences *a priori* defined by investigated locations (Jastrebarsko, Koprivnica, Pula, Sinj and Požega), were tested by multivariate analysis of variance, whereas the position of each region within the variables was evaluated by discriminant analysis. It is important to emphasize that the observed variables are multivariate normally distributed which lends legitimacy to the applied methods. All statistical analyses were carried out by means of program package data analysis SPSS 9.0.

## **Results and Discussion**

The differences between variables according to place of investigation i.e. according to regions of the Republic of Cro-



Fig. 1. Mean of standardized values of body measures V1 to V10 in terms of survey locations.



Fig. 2. Mean of standardized values of body measures V21 to V30 in terms of survey locations.



L. Szirovicza et al.: Structure of Body Measurements, Coll. Antropol. 26 (2002) 1: 187-197

Fig. 3 Mean of standardized values of body measures V21 to V30 in terms of survey locations.



Fig. 4. Mean of standardized values of body measures V31 to V40 in terms of survey locations.

atia are represented on figures 1 to 5 by mean standardized values in such a way that differences can be read from the scale with units expressed by standard deviation. Thus for example the mean arm length (shoulder to wrist, V41) in Sinj differs from that in Požega for more than 1.5 standard deviation (Figure 5). The assumption of equality of centroids in Croatia can be rejected with high certainty (p<0.001) on the ground of results obtained by multivariant variance analysis in the area constituted by 50 variables for determining garment sizes. Thus it is possible to verify the corresponding hypotheses by univariate anal-



Fig 5. Mean of standardized values of body measures V41 to V50 in terms of survey locations.

| TABLE 2     |  |
|-------------|--|
| EIGENVALUES |  |

| Function | Eigenvalue | % of Variance | Cumulative % | Canonical correl. |
|----------|------------|---------------|--------------|-------------------|
| 1        | 4.263      | 39.3          | 39.3         | 0.900             |
| 2        | 3.186      | 29.3          | 68.6         | 0.872             |
| 3        | 2.233      | 20.6          | 89.2         | 0.831             |
| 4        | 1.177      | 10.8          | 100.0        | 0.735             |

ysis of variance, variable by variable. As it is evident from Table 1, Croatian regions differ in all dimensions (variables) for determining garment sizes.

The role and contribution of individual variable to the confirmed differences between regions can be explained on the basis of performed discriminative analysis with regions as *a priori* defined samples. Five groups i.e. five regions can be represented in four-dimensional discriminative space all of which being significant for discriminating the groups. The first discriminant function explains 39.3%, the second 29.3%, the third 20.6%, and the fourth the remaining 10.8% of total variance (Tables 2 and 3).

The contents of individual discriminant functions can be recognized on the grounds on their correlation with starting variables i.e. with original body measures for determining garment sizes. Table 4 presents those correlations arranged according to their absolute value. As it is evident, the first discriminant function is defined by the thigh length (V46), the shoulder width (V09), the shoulder length (V08), the back waist length (cervical to waist, V31), the armscye girth (V39), the back width (V10) and the waist to hips (V36). The second discriminant function is defined primarily by the ankle girth (V21), the hand length (V44), the cervical to knee hollow (V32), cervical

L. Szirovicza et al.: Structure of Body Measurements, Coll. Antropol. 26 (2002) 1: 187-197

| WILKS' LAMBDA (Λ) |          |          |     |         |  |  |  |
|-------------------|----------|----------|-----|---------|--|--|--|
| Test of functions | Wilks' A | $\chi^2$ | df  | р       |  |  |  |
| 1 through 4       | 0.006    | 21382    | 200 | < 0.001 |  |  |  |
| 2 through 4       | 0.034    | 14342    | 147 | < 0.001 |  |  |  |
| 3 through 4       | 0.142    | 8272     | 96  | < 0.001 |  |  |  |
| 4                 | 0.459    | 3297     | 47  | < 0.001 |  |  |  |

TARLE 3

TABLE 4

POOLED WITHIN-GROUPS CORRELATIONS BETWEEN DISCRIMINATING VARIABLES AND STANDARDIZED CANONICAL DISCRIMINANT FUNCTIONS (STRUCTURE MATRIX)

| Code <sup>a</sup> |        | Function <sup>b</sup> |        |        | Code <sup>a</sup> | Function <sup>b</sup> |           |                          |            |
|-------------------|--------|-----------------------|--------|--------|-------------------|-----------------------|-----------|--------------------------|------------|
|                   | 1      | 2                     | 3      | 4      |                   | 1                     | 2         | 3                        | 4          |
| V46 <sup>a</sup>  | 0.304  | 0.006                 | -0.126 | -0.047 | V23               | 0.159                 | 0.150     | 0.032                    | 0.351      |
| V09               | 0.280  | -0.021                | 0.065  | 0.045  | V26               | 0.017                 | -0.012    | 0.142                    | 0.340      |
| V08               | 0.253  | 0.135                 | 0.043  | 0.034  | V02               | 0.043                 | -0.040    | 0.079                    | 0.335      |
| V31               | 0.222  | 0.160                 | 0.017  | 0.164  | V30               | 0.204                 | 0.273     | 0.224                    | 0.306      |
| V39               | -0.203 | 0.147                 | -0.026 | 0.044  | V04               | -0.077                | -0.207    | 0.114                    | 0.275      |
| V10               | 0.203  | -0.066                | 0.107  | 0.022  | V38               | -0.004                | -0.095    | 0.058                    | 0.246      |
| V36               | 0.200  | -0.135                | 0.048  | 0.124  | V16               | -0.031                | -0.026    | 0.126                    | 0.192      |
| V42               | 0.127  | -0.058                | -0.020 | 0.067  | V12               | -0.098                | 0.049     | 0.012                    | 0.134      |
| V18               | 0.051  | 0.001                 | 0.001  | 0.048  | V11               | -0.076                | -0.048    | 0.032                    | 0.130      |
| V50               | 0.049  | -0.031                | 0.023  | 0.040  | V29               | 0.107                 | 0.085     | 0.032                    | 0.127      |
| V13               | 0.047  | -0.020                | -0.008 | 0.046  | V15               | -0.016                | -0.069    | 0.068                    | 0.109      |
| V21               | 0.022  | 0.279                 | 0.179  | 0.025  | V27               | 0.066                 | 0.090     | 0.001                    | 0.104      |
| V44               | 0.068  | 0.208                 | 0.000  | -0.060 | V24               | 0.045                 | 0.028     | 0.067                    | 0.095      |
| V32               | 0.114  | 0.148                 | -0.018 | 0.127  | V22               | 0.082                 | 0.027     | 0.054                    | 0.094      |
| V33               | 0.105  | 0.129                 | 0.021  | 0.102  | V05               | -0.001                | -0.047    | 0.007                    | 0.085      |
| V03               | 0.082  | -0.120                | -0.013 | 0.083  | V48               | 0.049                 | 0.030     | 0.061                    | 0.082      |
| V35               | 0.001  | 0.110                 | 0.030  | -0.010 | V07               | 0.050                 | -0.060    | 0.016                    | 0.082      |
| V20               | 0.077  | 0.091                 | 0.014  | 0.029  | V19               | 0.037                 | 0.028     | -0.015                   | 0.081      |
| V37               | 0.073  | 0.077                 | 0.016  | 0.069  | V17               | 0.058                 | 0.050     | -0.016                   | 0.081      |
| V25               | 0.053  | 0.060                 | 0.011  | 0.060  | V45               | 0.036                 | 0.041     | 0.035                    | 0.076      |
| V43               | -0.011 | 0.050                 | 0.011  | -0.040 | V01               | 0.010                 | 0.025     | 0.043                    | 0.053      |
| V06               | 0.010  | -0.038                | -0.022 | 0.035  | V14               | -0.028                | 0.023     | -0.044                   | 0.052      |
| V40               | 0.282  | 0.067                 | 0.292  | -0.060 | a Vorie           | blog orde             | rod by ab | soluto sizo              | of corrolo |
| V41               | 0.211  | 0.076                 | 0.212  | -0.027 | tion w            | ithin fun             | tion      | 501010 5120              | or correra |
| V28               | 0.121  | 0.009                 | 0.157  | -0.060 | b Bold            | font style            | donoto la | roost abaa               | luto corro |
| V49               | -0.041 | 0.131                 | 0.157  | 0.095  | lation            | between               | ach varia | ngest abso<br>ble and an | v discrimi |
| V34               | 0.068  | 0.136                 | 0.152  | -0.021 | nant function     |                       |           |                          |            |

height (V33) and the neck girth (V03). The third discriminant function that is

0.011

0.143

-0.053

worth analyzing is determined by the length of the upper arm length (shoulder

V47

-0.024

| Original     |        | Predicted Group Membership |            |      |      |          |       |  |
|--------------|--------|----------------------------|------------|------|------|----------|-------|--|
|              |        | Jastrebarsko               | Koprivnica | Pula | Sinj | Požega   | Total |  |
| Jastrebarsko | ~      | 581                        | 35         | 3    | 0    | 1        | 620   |  |
| Koprivnica   | C      | 48                         | 1111       | 37   | 2    | <b>2</b> | 1200  |  |
| Pula         | ů      | 6                          | 37         | 1175 | 2    | 1        | 1221  |  |
| Sinj         | n<br>t | 0                          | 4          | 29   | 585  | 0        | 618   |  |
| Požega       | U      | 2                          | 1          | 3    | 0    | 603      | 609   |  |
| Jastrebarsko |        | 93.7                       | 5.6        | 0.5  | 0.0  | 0.2      | 100.0 |  |
| Koprivnica   |        | 4.0                        | 92.6       | 3.1  | 0.2  | 0.2      | 100.0 |  |
| Pula         | %      | 0.5                        | 3.0        | 96.2 | 0.2  | 0.1      | 100.0 |  |
| Sinj         |        | 0.0                        | 0.6        | 4.7  | 94.7 | 0.0      | 100.0 |  |
| Požega       |        | 0.3                        | 0.2        | 0.5  | 0.0  | 99.0     | 100.0 |  |

TABLE 5CLASSIFICATION RESULTS<sup>a</sup>

<sup>a</sup> 95.0% of original grouped cases correctly classified

to elbow, V40), the arm length (shoulder to wrist, V41), and to a lesser degree by the ankle height (V28) and by the shoulder tilt (V49).

The centroid position of individual regions at the level of the first two discriminant functions (Figure 6) corresponds to the size of the body expressed particularly by the length of the upper leg and the measures in shoulder and back area, except the circumference of the armpit which acts in the opposite way from the rest of the measures defining the first discriminant function (the mean value is the highest in Požega and the lowest in Sinj). The order of regions in terms of body size – northeastern, central, northwestern, southwestern and southern - is disarranged only by the northeast region (Požega) showing the relatively highest mean values in measures defining the second discriminant function. The remaining regions follow the growth of the body size on the level of the second discriminant function in the same order as in the first discriminant function. There is a certain difference in the fact that the northwestern and the southwestern regions have switched places. A possible ex-



Fig. 6. Positions of regions at the level of the first and second discriminative function.

planation of this can be found in the robustness of the southeast region examinees' body build expressed primarily by the circumference of the ankle and the size of the hand; this region stretches to the west overlapping the northwestern region.

The results of the classification of examinees by means of discriminative analysis confirm the significance of interregional body differences: namely, 95% of all examinees were correctly categorized. The lowest percentage of correctly categorized examinees was in northwest Croatia (Koprivnica, 92.6%), while the northeast region (Požega) which is the most remote (Figure 6) from other regions, contains 99% correctly categorized examinees (Table 5).

The above considerations lead to the conclusion that the determination of the system of garment sizes is rather complex, not only due to a large number of necessary measurements but also due to interregional body differences even in cases of sex- and age-limited population segments, in this case men aged 19 to 20. Namely, garment manufacturers can obtain (and demand) much more informa-

REFERENCES

KNEZ, B., Tekstil, 43 (1994) 19. — 2. UJEVIĆ,
 D., D. ROGALE, M. HRASTINSKI: Tehnike konstruiranja i modeliranja odijeće. (Tekstilno-tehnološki fakultet Sveučilišta u Zagrebu, Zagreb, 2000). — 3.
 UJEVIĆ, D., D. ROGALE, M. HRASTINSKI: Konstrukcija i modeliranje odijeće. (Tehnički fakultet Univerziteta u Bihaću, Bihać, 1999). — 4. KNEZ, B.: Tehnološke operacije proizvodnje odjeće. (Tekstilno-tehnološki fakultet Sveučilišta u Zagrebu, Zagrebu, Jagrebu, 1993). — 5. ISO 3635: Size designation of clothes: Definitions and body measurement procedure. (ISO, 1981). — 6. ISO 3636: Size designation of clothes: Men's and boys' outerwear garments. (ISO, 1977). — 7. ISO 3637: Size designation of clothes: Women's and girls' outerwear garments. (ISO, 1977). — 8. ISO

tion than is indispensable for establishing a system of garment sizes for a definite target population e.g. classifying it in terms of chest circumference or of body height.

#### Acknowledgements

This research has been conducted within project 01960103 supported by the Ministry of Science and Technology and Ministry of Defense of the Republic of Croatia.

3638: Size designation of clothes: Infants' garments. (ISO, 1977). — 9. WEINER, J. S., J. A. LOURIE: Human biology: A guide to field methods. (Blackwell, Oxford, 1969). — 10. ISO 8559: Garment construction and anthropometric surveys: Body dimensions. (ISO, 1989). — 11. WHO (NUTR) 70.129: Nutritional status of population: A manual on anthropometric appraisal of trends, 1. (app.: Anthropometry for Occupational Health). (WHO, Geneve, 1970). — 12. GRIECO, A., M. MASALI, La Med. d. Lavoro, 62 (1972) 505. — 13. RUDAN, P., H. MAVER: Antropometrija u ergonomskom pristupu valorizacije radnih mjesta: Prijedlog za ujednačavanje ergonomskog antropometrijskog lista: In: Knjiga referata. (4. Kongres medicine rada, Sarajevo, 1975).

### L. Szirovicza

Institute for Anthropological Research, Amruševa 8, 10000 Zagreb, Croatia

## STRUKTURA TJELESNIH MJERA ZA ODREĐIVANJE ODJEVNIH VELIČINA MLADIH MUŠKARACA HRVATSKE

# SAŽETAK

Određivanje i unapređivanje sustava odjevnih veličina odjeće zahtijeva upoznavanje proporcije čovječjeg tijela odnosno antropometrijskih mjera određene populacije. Za stvaranje ili unapređenje sustava odjevnih veličina potrebno je ustanoviti pravilan međusobni odnos pojedinih dijelova tijela odnosno pojedinih tjelesnih mjera. Pri tome se često zanemaruju moguće međuregionalne (interpopulacijske) tjelesne različitosti koje mogu biti znatne i u slučajevima spolno i dobno ograničenih populacija. Pokazuje to i provedeno istraživanje tjelesnih mjera za određivanje odjevnih veličina na slučajno odabranom uzorku 4268 zdravih i normalno razvijenih muškaraca u dobi od 18 do 22 godine. Istraživanje je realizirano na pet lokacija 1993. godine od kojih svaka predstavlja određenu regiju Republike Hrvatske: Jastrebarsko središnju, Koprivnica sjeverozapadnu, Pula jugozapadnu, Sinj južnu i Požega sjeveroistočnu. Kao mjerni instrument odabrano je 50 tjelesnih mjera prema važećim ISO standardima za odjevne veličine. Međuregionalne razlike su značajne u svim tjelesnim mjerama. Uloga i doprinos pojedinih mjera tim razlikama utvrđena je diskriminacijskom analizom s regijama kao a priori definiranim uzorcima. Pored razlika u veličini tijela ustanovljene su značajne razlike u građi tijela ponajprije sjeveroistočne regije Hrvatske i djelomično sjeverozapadne. Osim velikog broja potrebnih mjerenja upravo razlike u građi tijela čine određivanje sustava odjevnih veličina veoma kompleksnim. Za uspostavu prikladnog i svrhovitog standarda za odjevne veličine nužno je osigurati više informacija umjesto uvrštavanja entiteta ciljane populacije u unaprijed određene razrede po opsegu grudi i visini tijela.

L. Szirovicza et al.: Structure of Body Measurements, Coll. Antropol. 26 (2002) 1: 187–197



Fig. 1. Mentally retarded and control children groups according to the number of minor anomalies per child after Waldrop. MR = mentally retarded children (N = 109), K = control group (N = 246).

4

Number of minor anomalies per child

5

6

7

8

3

2

1



Fig. 2. Waldrop weighted scores for mentally retarded children and their controls. MR = mentally retarded children (N = 109), K = control group (N = 246).

children. In well children, however, lower weighted scores (from 0 to 2) predominated. High weighting scores (5 or hig-

0

her) were found in 36.7% of MR children. Not a single child in the well-child group had a weighting score 5 or higher. Among L. Szirovicza et al.: Structure of Body Measurements, Coll. Antropol. 26 (2002) 1: 187–197

MR children, the average frequency of ffff fffff ccccc k k kkkkkk k kkk kk kkkkk kkkkk kkkk kkkk kkkk kkkk kkkkk