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The edge Szeged index of a molecular graph G is defined as the sum of products mu(e|G)mv(e|G)

over all edges e = uv of G, where mu(e|G) is the number of edges whose distance to vertex u is

smaller than the distance to vertex v, and where mv(e|G) is defined analogously. The aim of this

paper is to compute the edge Szeged index of the Cartesian product of graphs. As a conse-

quence of our result, the edge Szeged index of Hamming graphs and C4-nanotubes are com-

puted.
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INTRODUCTION

A graph G is defined as a pair G = (V,E), where V =

V(G) is a non-empty set of vertices and E = E(G) is a set

of edges. Throughout this paper the term »graph« means

finite graph in which the set of vertices V is finite.

Chemical graphs are just graph-based descriptions of

molecules, with vertices representing the atoms and

edges representing the bonds. A numerical invariant as-

sociated with a chemical graph, especially if it is of

chemical significance and/or applicability, is called top-

ological index.

The Wiener index W is the first topological index in-

troduced by the chemist Harold Wiener for investigating

boiling points of alkanes.1 After Wiener, many topologi-

cal indices were proposed by chemist and also by mathe-

maticians. The Szeged index is a topological index re-

lated to W, introduced by one of the present authors,2 de-

noted here by Szv. To define the Szeged index of a graph

G, we assume that e = uv is an edge connecting the verti-

ces u and v. Suppose that nu(e|G) is the number of verti-

ces of G lying closer to u than to v, and that nv(e|G) is the

number of vertices of G lying closer to v than to u. Ver-

tices equidistant to u and v are not taken into account.

Then the Szeged index of the graph G is defined as

Szv(G) = Se=uv∈E(G)nu(e|G)nv(e|G). For more information

about the Szeged index and its mathematical properties

one should consult the articles.3–7

Suppose that u and v are vertices of G. The distance

d(u,v) is defined as the length of a minimal path be-

tween u and v. If e = xy is an edge of G then d(u,e) =

Min{d(u,x),d(u,y)}.

In the Ref. 8, an edge version of the Szeged index

was introduced, named »edge Szeged index«. This new

index is defined as Sze(G) = Semu(e|G)mv(e|G) where

mu(e|G) is the number of edges whose distance to vertex

u is smaller than the distance to vertex v, and where

mv(e|G) is defined analogously.
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Throughout this paper our notation is standard and

taken mainly from the books.9–11 Following Imrich and

Klav`ar,11 the Cartesian product G ´ H of two graphs G

and H is defined on the Cartesian product V(G) ´ V(H)

of the vertex sets of the factors. The edge set E(G ´ H)

is the set of all pairs [(u,v),(x,y)] of vertices for which ei-

ther u = x and [v,y] ∈ E(H) or [u,x] ∈ E(G) and v = y.

Thus V(G ´ H) = V(G) ´ V(H) and

E(G ´ H) = {[(u,v),(x,y)] | u = x, [v,y] ∈ E(H), or,

[u,x] ∈ E(G), v = y}. Moreover, Kn denotes a complete

graph with n vertices and a hypercube of dimension n,

Qn, is the Cartesian product of n copies of K2.

MAIN RESULTS AND DISCUSSION

For investigating the mathematical properties of a given

topological index c, it is important to compute c(G ´ H),

for every graphs G and H. One should recall that numer-

ous molecular graphs are of the form G ´ H. In the

papers12–14 this problem was solved for the Wiener, ver-

tex Szeged, and PI index. In this section we continue

along the same lines, and compute the edge Szeged in-

dex of product graphs.

We first introduce a further »edge-vertex Szeged in-

dex« denoted here by Szev. It is defined as Szev(G) =

1/2Suv=e∈E(G) [nu(e|G)mv(e|G) + nv(e|G)mu(e|G)], where

nu(e|G), nv(e|G), mu(e|G) and mv(e|G) are defined in Sec-

tion 1.

Lemma 1. – Suppose G is an acyclic graph with exactly

n vertices. Then Szev(G) = W(G) – n(n – 1)/2.

Proof: By a result of Dobrynin and Gutman,15 Sz(G) =

W(G) for acyclic graphs G. So,

Szev(G) =

1/2Suv=e∈E(G)[nu(e|G)mv(e|G) + nv(e|G)mu(e|G)] =

1/2Suv=e∈E(G)[nu(e|G)(nv(e|G)–1) + nv(e|G)(nu(e|G)–1)] =

1/2Suv=e∈E(G)[2 nu(e|G)nv(e|G) – (nu(e|G)+nv(e|G))] =

Szv(G) – n(n – 1)/2 = W(G) – n(n – 1)/2. �

In order to prove our main result, we assume that

V(G) = {u1,u2,…,ur}, V(H) = {v1,v2,…,vs}, Am =

{[(um,vi),(um,vj)] | vivj ∈ E(H)}, 1 ≤ m ≤ r, and Bn =

{[(ui,vn),(uj,vn)] | uiuj ∈ E(G)}, 1 ≤ n ≤ s. It is easy to see

that the Am’s and Bn’s are partitions of the edge set of

G ´ H. We also assume that Cm = {(um,vi) | vi ∈ V(H)},

1 ≤m ≤ r, and Dn = {(ui,vn) | ui ∈V(G)}, 1 ≤ n ≤ s. Clearly,

the Cm’s and also Dn’s are two partitions of V(G ´ H).

The following Lemma is crucial for our main result.

Lemma 2. – With the above-specified notation we have:

(i) For every [(up,vk),(up,vl)] ∈ Ap,

dG×H((up,vk),[(ut,vi),(ut,vj)]) <

dG´H((up,vl),[(ut,vi),(ut,vj)])

if and only if dH(vk,[vi,vj]) < dH(vl,[vi,vj]).

(ii) dG´H((up,vk), (ui,vt)) < dG´H((up,vl), (ui,vt))

if and only if dH(vk,vt) < dH(vl, vt).

Proof: (i) and (ii) are immediate consequences of Corol-

lary 1.35 in the book.11 �

Lemma 3. – For every [(up,vk),(up,vl)] ∈ Ap,

(i) m(up,vk)([(up,vk),(up,vl)]|G ´ H) =

|V(G)|mvk
([vk,vl]|H) + |E(G)|nvk

([vk,vl]|H),

(ii) n(up,vk)([(up,vk),(up,vl)]|G ´ H = |V(G)|nvk
([vk,vl]|H).

Proof: Directly from the definition, we have

mvk
([vk,vl]|H = |{[vi,vj] ∈E(H)|dH(vk,[vi,vj]) < dH(vl,[vi,vj])}|

whereas by Lemma 2(i),

|{[(ut,vi),(ut,vj)] ∈ At|dG ´ H((up,vk),[(ut,vi),(ut,vj)]) <

dG ´ H((up,vl),[(ut,vi),(ut,vj)])}| = mvk
([vk,vl]|G). Since the Ai’s

are disjoint, |{e ∈∪Am|dG ´ H((up,vk),e) < dG ´ H((up,vl),e)}|

= |V(G)|mvk
([vk,vl]|G). On the other hand, nvk

([vk,vl]|H) =

|{vt ∈V(H)|dH(vk,vt) < dH(vl,vt)}|. Therefore By Lemma

2(ii), |{[(ui,vt),(uj,vt)] ∈ Bt|dG ´ H((up,vk),[(ui,vt),(uj,vt)]) <

dG ´ H((up,vl), [(ui,vt),(uj,vt)])}| = degG(ui)nvk
([vk,vl]|H).

Since the Bi’s are disjoint, |{e ∈∪Bn | dG ´ H((um,vk),e) <

dG ´ H((um,vl),e)}| = (1/2Sl≤ i≤ r degG(ui))nvk
([vk,vl]|H). But

(∪Am) ∩ (∪Bn) = ∅, so m(up,vk)([(up,vk),(up,vl)]|G ´ H) =

|{e ∈ (∪Am) ∪ (∪Bn)|d((up,vk),e) < d((up,vl),e)}| =

|V(G)| mvk
([vk,vl]|H) + |E(G)|nvk

([vk,vl]|H).

This completes the proof of (i). The proof of (ii) is

similar and so it is omitted. �

Theorem 1. – Sze(G ´ H) =

|V(G)|3Sze(H) + 2|E(G)||V(G)|2Szev(H) +

|V(G)||E(G)|2Szv(H) + |V(H)|3Sze(G) +

2|E(H)||V(H)|2Szev(G) + |V(H)||E(H)|2Szv(G).

Proof: Since (ÈAm) Ç (ÈBn) = Æ,

Sze(G ´ H) = Se∈∪Am
mu(e|G ´ H) mv(e|G ´ H) +

Se∈∪Bn
mu(e|G ´ H)mv(e|G ´ H). On the other hand, By

Lemma 3

Se∈Am
mu(e|G ´ H)mv(e|G ´ H) =

S[vi,vj]∈E(H)(|V(G)|2mvi
([vi,vj]|H)mvj

([vi,vj]|H) +

|E(G)|2nvi
([vi,vj]|H)nvj

([vi,vj]|H) +

|E(G)||V(G)|(mvj
([vi,vj]|H)nvi

([vi,vj]|H) +

mvi
([vi,vj]|H)nvj

([vi,vj]|H)).

Then we have Se∈∪Am
mu(e|G ´ H)mv(e|G ´ H) =

|V(G)|3Sze(H) + |E(G)|2|V(G)|Szv(H) +

2|V(G)|2|E(G)|Szev(H). Since H ´ G @ G ´ H, for comput-

ing Se∈∪Bn
mu (e|G ×H)mv(e|G ×H), it suffices to replace

G and H in Eq. (1), which completes our proof. �

Theorem 2. – Szev(G ´ H) = |V(G)|3Szev(H) +

|E(G)||V(G)|2Szv(H) + |V(H)|3Szev(G) +

|E(H)||V(H)|2Szv(G).

Proof: By definition, we have:

278 M. H. KHALIFEH et al.

Croat. Chem. Acta 81 (2) 277¿281 (2008)



Szev(G ×H) =

1/2Se∈∪Am
[mu(e|G ×H)nv(e|G ×H) +

mv(e|G ×H)nu(e|G ×H] +

1/2Se∈∪Bn
[mu(e|G ×H)nv(e|G ´ H) +

mv(e|G ×H)nu(e|G ´ H)] (2)

On the other hand, By Lemma 3,

Se∈∪Am
[mu(e|G ´ H)nv(e|G ´ H) +

mv(e|G ´ H)nu(e|G ´ H)] =

Sw∈V(G)Se=uv∈E(H)[2|V(G)||E(G)|nu(e|H)nv(e|H) +

|V(G)|2(mu(e|H)nv(e|H) + mv(e|H)nu(e|H)] =

|V(G)|3Szev(H) + |E(G)||V(G)|2Szv(H).

Similarly, one can compute the second summation

of Eq. (2). �

Suppose ⊗ =i
n

i1 G denotes the Cartesian product of

G1, G2, …, Gn. If G1 = G2 = … = Gn = G then we write

Gn as ⊗ =i
n

i1 G . Also, E n i
c

, = E(⊗ = ≠k k i
n

k1, G ) and Vn i
c
, =

V(⊗ = ≠k k i
n

1, Gk). Suppose Ei = E(Gi) and Vi = V(Gi), 1 ≤ i ≤

n. Then obviously |Vn i
c
, | =

j j i

n

= ≠∏ 1,
|Vj | and by Corollary

1.35 of the book of Imrich and Klav`ar,11

|E(G ´ H)| =
1

2
S(a,b)∈V(G´H) degG´H((a,b)) =

1

2
Sa∈V(G) Sb∈V(H) [degG(a) + degH(b)] =

|E(G)||V(H)| + |E(H)||V(G)|.

An inductive argument shows that

|E n i
c

, | = S j j i
n
= ≠1,

| | | |

| |

E V

V

j n,j
c

i

⋅
(3).

Klav`ar, Rajapakse, and Gutman12 proved that Szv(G ´ H) =

|V(G)|3Szv(H) + |V(H)|3Szv(G). Again, by means of

mathematical induction one can see that Szv(⊗ =i
n

i1 G ) =

S i
n

n i
c

V=1
3| |, Szv(Gi). Therefore, we arrive at the following

generalizations of Theorems 1 and 2:

Theorem 3. –

(i) Szev(⊗ =i
n

i1 G ) =

S i
n
=1[|V n

c
,1 |3Szev(Gi) + |E n i

c
, ||V n i

c
, |2Szv(Gi)],

(ii) Sze(⊗ =i
n

iG1 ) =

S i
n
=1[|V n i

c
, |3Sze(Gi) + 2|E n i

c
, ||V n i

c
, |2 Szev(Gi)] +

|E n i
c

, |2 |V n i
c

, |Szv(Gi).

Proof: (I) In Theorem 2, we proved the case of n = 2.

Suppose the result is valid for n.

Szev(⊗ =
+

i
n

i1
1 G ) = Szev(Gn+1 ´ ⊗ =i

n
i1 G ) =

|Vn+1|
3Szev(⊗ =i

n
i1 G ) + |En+1||Vn+1|

2Szv(⊗ =i
n

i1 G ) +

|V n n
c
+ +1 1, |3 Szev(Gn+1) + |E n n

c
+ +1 1, ||V n n

c
+ +1 1, |2 Szv(Gn+1) =

S i
n
=1 |V n i

c
+1, |3 Szev(Gi) + |V n n

c
+ +1 1, |3 Szev(Gn+1) +

S i
n
=1 |E n i

c
, ||Vn+1||V n i

c
+1, |2 Szv(Gi) +

S i
n
=1

| | | |

| |

E V

V

n n i
c

n+

+ +⋅1 1

1

,
Szv(Gi) +

|E n n
c
+ +1 1, ||V n n

c
+ +1 1, |2 Szv(Gn+1) =

S i
n
=
+
1
1 |V n i

c
+1, |3 Szev(Gi) +

S i
n
=1 |V n i

c
+1, |2 Szv(Gi) | | | |

| | | |

| |
V E

E V

V

+1,

+1
n n i

c n n i
c

n
+

++
⋅









1

1

, +

|E n n
c
+ +1 1, ||V n n

c
+ +1 1, |2 Szv(Gn+1) . (4)

Apply Eq. (3) and our formula for |V n i
c

, |, we have:

|Vn+1||E n i
c

, | +
| | | |

| |

E V +1,n n i
c

nV

+

+

⋅1

1

=

|Vn+1| S j j i
n
= ≠1,

| | | |

| |

E V

V

j n,j
c⋅

i

+
| | | |

| |

E V

V

n n ,i
c

+ +⋅1 1

1n+

=

S j j i
n
= ≠1,

| | | | | |

| |

E V V

V

+1j n,j
c

i

⋅ ⋅n
+

| | | |

| |

E V

V

n n ,i
c

n

+ +

+

⋅1 1

1

=

S j j i
n
= ≠1,

| | | |

| |

E V

V

j n+ ,j
c

i

⋅ 1
+

| | | |

| |

E V

V

n n+ ,i
c

n

+

+

⋅1 1

1

=

S j j i
n
= ≠
+

1
1

,

| | | |

| |

E V

V

j n+ ,j
c

i

⋅ 1
.

By this equation and Eq. (4), one can see that

Szev(⊗ =
+

i
n

i1
1 G ) =

S i
n
=
+
1
1 [|V n i

c
+1, |3 Szev(Gi) + |E n i

c
+1, ||V n i

c
+1, |2 Szv(Gi)].

(II) In Theorem 1, we proved the case of n = 2 and

so we can assume that the result is valid for n > 2. Then

Sze(Gn+1 ×⊗ i
n
=1Gi) = |Vn+1|

3Sze(⊗ i
n
=1Gi) +

2|En+1||Vn+1|
2Szev(⊗ i

n
=1Gi) +

|En+1|
2 |Vn+1|Szv(⊗ i

n
=1Gi) + |V n n

c
+ +1 1, |3Sze(Gn+1) +

2|E n n
c
+ +1 1, ||V n n

c
+ +1 1, |2 Szev(Gn+1) +

|E n n
c
+ +1 1, |2 |V n n

c
+ +1 1, | Szv(Gn+1) =

S i
n
=1 |V n i

c
+1, |3 Sze(Gi) + |V n n

c
+ +1 1, |3 Sze(Gn+1) +

2S i
n
=1 |E n i

c
, ||Vn+1||V n i

c
+1, |2 Szev(Gi) +

2S i
n
=1

| | | |

| |

E V

V

n n+ ,i
c

n+

+ ⋅1 1
3

1

Szev(Gi) +

2 |E n n
c
+ +1 1, ||V n n

c
+ +1 1, |2 Szev(Gn+1) +
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S i
n
=1 |E n i

c
, |2 |Vn+1|

2 |V n i
c
+1, |Szv(Gi) +

S i
n
=1

| | | |

| |

E Vn n+ ,i
c

n
v i

V
Sz G

+

+

⋅1
2

1
3

1
2

( ) +

2S i
n
=1 |E n i

c
, ||En+1||V n i

c
+1, |2 Szv(Gi) +

|E n n
c
+ +1 1, |2 |V n n

c
+ +1 1, |Szv(Gn+1) =

S i
n
=
+
1
1 |V n i

c
+1, |3 Sze(Gi) +

2S i
n
=1 |V n i

c
+1, |2 Szev(Gi) | | | |

| | | |

| |
V E

E V

V
n n,i

c n n i
c

n

++
+ +

+

⋅









1

1 1

1

,
+

2|E n n
c
+ +1 1, ||V n n

c
+ +1 1, |2 Szev(Gn+1) +

S i
n
=1 |V n i

c
+1, |Szv(Gi) | | | |

| | | |

| |
V E

E V

V
n+ n,i

c n n+ ,i
c

n+

1
1 1

1

+
⋅











+
+

|E n n
c
+ +1 1, |2|V n n

c
+ +1 1, | Szv(Gn+1) =

S i
n
=
+
1
1[|V n i

c
+1, |3 Sze(Gi) + 2|E n i

c
+1, ||V n i

c
+1, |2 Szev(Gi)] +

2 |E n i
c
+1, |2|V n i

c
+1, | Szv(Gi).

This proves the result. �

As an immediate consequence of previous theorem,

we have:

Corollary. –

(i) Szev(G
n) = n|V|3n–4(|V|Sev(G) + (n–1) |E|Szv(G)),

(ii) Sze(G
n) = n|V|3n–5(|V|2Se(G) + 2(n–1)|V||E|Szev(G) +

(n–1)2|E|2Szv(G).

We now apply our result to compute the edge Szeged

index of some well-known graphs. Following Imrich and

Klav`ar,11 consider the graph G whose vertices are the

r-tuples b1b2…br with bi ∈ {0, 1, …, ni–1}, ni ³ 2, and

let two vertices be adjacent if the corresponding tuples

differ in precisely one place. Such a graph is called a

Hamming graph. It is well-known fact that a graph G is

a Hamming graph if and only if it can be written in the

form G = ⊗ =i
N

ni1 K . In the following example, the edge

and edge-vertex Szeged indices of a Hamming graph are

computed.

Example 1. – Consider the complete graph Kn. Then

Szv(Kn) = n(n–1)/2, Sze(Kn) = n(n–1)(n–2)2/2 and Szev(Kn) =

n(n–1)(n–2)/2.

Example 2. – Consider the hypercube Qn. It is easy to

see that Szv(Qn) = n23n–3. Also, by Corollary of Theorem

3, Sze(Qn) = n(n–1)223n–5 and Szev(Qn) = n(n–1)23n–4.

Example 3. – In this example the edge Szeged index of a

C4 nanotube R is computed. By definition of Cartesian

product of graphs R = Pn ´ Cm, where Pn is a path on n

vertices and Cm denotes the cycle on n vertices and m, n

are positive integers. To compute the edge Szeged index

of R, we first compute the verted, edge and edge-vertex

Szeged indices of Pn and Cm. On can see that, Szv(Pn) =

n+

 




1

3
, Sze(Pn) =

n+

 




1

3
– (n – 1)2,

Szev(Pn) =
n+

 




1

3
–

n+

 




1

2
,

Szv(Cn) =

n
n

n n
n

3

2
4

1

4

is even

is odd
( )−









Sze(Cn) =

( )( )

( )

n n
n

n n
n

− −

−









4 1

4
2

4

2

2

is even

is odd

and

Szev(Cn) =

n n
n

n n
n

2

2

2

4
1

4

( )

( )

−

−









is even

is odd

Therefore by Theorem 3,

Sze(R) =
1

12
×

16 26 27 12

24 23 12 16

3 3 3 2 3 3

2 3 3 3 2

n m n m n m n

n m nm m nm
n

− + − −
+ − − is even

23 12 12 3 12

26 21 16

3 2 3 2 2

3 2 3 3

nm n m m nm n m

n m n m n

− − + + −
+ + m n m nm

n
3 2 3 224 22− −








 is odd

Example 4. – Suppose Hn1,n2,...nr
denotes the Hamming

graph with parameters n1, n2, …, nr . By Theorem 3, one

can compute a formula for computing edge Szeged in-

dex of Hn1,n2,...nr
For the edge-vertex Szeged index of this

graph, we have Eq. (5)
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Szev(Hn1,n2,...nr
) = n

r r

n

r

n

n

n

n

n
ii

r

i i

i

j

i

j
i j

r

i

3

1 2 214

4

4

1 3

4

1 1

4

1

4= =∏ ∑−
+

+
+

+ −
,,j

r

i

r

i

r

=== ∑∑∑










111

. (5)
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Bridni Segedinski indeks produkta grafova

Mohammad Hosein Khalifeh, Hasan Yousefi-Azari, Ali Reza Ashrafi i Ivan Gutman

Bridni Segedinski indeks molekuskog grafa G je definiran kao zbroj produkata mu(e|G)mv(e|G) preko svih

bridova e = uv grafa G, gdje je mu(e|G) broj bridova ~ija je udaljenost od vrha u manja nego udaljenost od vrha

v, i gdje je mv(e|G) definiran analogno. U ovom radu odre|en je bridni Segedinski indeks za Kartezijev produkt

grafova. Pomo}u ovog rezultata izra~unati su bridni Segedinski indeksi Hammingovih grafova te C4-nanocijevi.
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