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Possible stable structures and energetics of palladium clusters, Pdn (n = 2–40), have been in-

vestigated by performing molecular-dynamics simulations based on a Lennard-Jones type pair-

potential. To determine a preferable growth mechanism, the growing pattern of Pdn clusters

was analyzed via rearrangement collisions and the simple quenching technique. Main observed

results are that palladium clusters prefer three-dimensional structures and spherical clusters of

medium size appear to have five-fold symmetry. The results are compared with those from pre-

vious theoretical studies.
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INTRODUCTION

In the area of nano-science, considerable research has

been widely carried out on atomic and molecular cluste-

rs.1–6 Understanding of the physical and chemical prop-

erties of bulk matter through finite nano-scale aggrega-

tes is one of the motivations for these researches.5 The-

refore various properties of clusters have been studied

such as their interactions with molecules,6,7 melting, iso-

merisation8,9 and chaotic behaviors.10 Although the me-

dium-size clusters look simple and show some bulk fea-

tures, their geometrical and electronic structures are not

well-determined.11–15 Particularly, investigations on small

clusters have revealed their strong size dependent prop-

erties, which can be attributed to changes in geometrical

structures as the number of atoms increases.

Transition-metal (TM) nano-systems have been ex-

tensively studied from the cluster point of view for a rel-

atively long time because of their scientific and techno-

logical interests.16–22 Experimental results of TM cluste-

rs have indicated the distinction of complexity in both

geometrical structure and magnetism.8–10,23–26 The expe-

rimental detection of the exact geometric structure of

clusters is still a hard task. Structures and cohesive ener-

gies of clusters can not be obtained directly from gas

phase or molecular beam experiments. Hence, theoreti-

cal investigations play an important role in cluster stud-

ies. It is possible to make effective theoretical predictions

using density functional theory (DFT)27 for some un-

known structures based on experimental measurements.25

Despite of numerous simulations on atomic clusters the-

re are still needs to study metallic clusters and there are
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many currently under investigation.28–30 The geometries,
especially for the energetically most favorable isomers
of each size, are often crucial for comparisons which is a
good knowledge of the potential energy surface (PES), a
demanding task for computational analysis. In addition,
the determination of magic numbers of clusters is requi-
red because the intensity of relatively stable clusters
grows at the expense of their less stable ones.

In the present work, stable structures and magic num-
bers for Pd2–Pd40 clusters are reported. There are various
interesting theoretical and experimental studies in the lite-
rature on palladium clusters. For example, high resolu-
tion electron microscopy study shows that small Pd par-
ticles are icosahedral.31 Josè-Yacamen et al.,32 reported
cuboctahedral, twinned decahedral and amorphous struc-
tures for nano-scale particles. In general, the tendency
for fcc structures is expected to be high for larger Pd
clusters. A tendency for pentagonal symmetry structures
and twin formation for dispersed Pd deposits on differ-
ent supports have been reported.33 Theoretical calcula-
tions using molecular orbital and DFT methods have been
reported for small Pd clusters.34–36 Some computations
have been performed on Pd clusters using empirical po-
tentials.23,24,37,38 Structures, energetics and isomers of
Pd2–Pd20

23 and Pd21–Pd55
24 have been studied using

Molecular Dynamics (MD) method and the Embedded
Atom Model (EAM). Recently, H. Arslan28 carried out a
Monte Carlo (MC) simulation for Pd5–Pd80 clusters using
Sutton-Chen (SC) many-body potential. He has reported
a detailed analysis of structures and energetics via the ba-
sin-hopping approach. Icosahedral, decahedral and fcc clo-
sed packed geometries were observed for Pd clusters.28

Here we have applied a simple quenching technique
(to minimize the kinetic energy) on the rearranged systems
after atom-cluster collisions in fusion regime,39 for find-
ing the low-energy structures of Pd clusters. The growth
pattern of these clusters has been simulated using MD
via a Lennard-Jones (LJ) type pair potential. Mohri et

al.40 modeled and parameterized this empirical potential
for describing pair interaction energy of Fe-Fe, Pd-Pd
and Fe-Pd nearest neighbor pairs in crystal systems. In a
recent work,41 we studied iron clusters with this potential
function. In this particular calculation, we tested the po-
tential for describing palladium clusters by a qualitative
analysis and this potential can be used to describe struc-
tural growing sequences. The aim, among the structure
and energetic analysis, was also to investigate the grow-
ing mechanism through the available empirical potential
energy function for describing palladium system.

The paper is organized as follows. In section Theo-

retical Background and Computational Methodology, the
classical MD method, used potential and the computational
procedure are presented. In section Results and Discus-

sions, the analysis of the findings are provided. Finally,
the remarkable conclusions are given in section Concluding

Remarks.

THEORETICAL BACKGROUND AND
COMPUTATIONAL METHODOLOGY

A classical MD method was applied for studying the
Pd+Pdn–1 collision system for formation of Pd2–Pd40

clusters. The Hamiltonian to solve the classical Hamil-
ton’s equations generating the motions of the system is
as follows:
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where the first term corresponds to the kinetic energy of
the cluster, P and m are the moment and the mass of the
atoms. The second term is the total potential energy of
the whole n-particle system, a sum of all two-body inter-
actions over the total pair interactions. The interactions
between all particles in the system are described via a
LJ-type pairwise potential.40 The present analysis does
not depend on the detailed form of the potential. This
LJ type potential (hereafter LJ potential) is written ac-
cording to
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for a pair of atoms (i and j) separated with distance rij. The
used parameters are s = 2.744 Å and e = 15.0 kcal mol–1,
respectively for atom-atom interaction.40 These parameters
were determined by fitting the experimental data of co-
hesive energies42,43 and lattice constants of Pd.44 The
proposed values for m and n are 7.0 and 3.5, respective-
ly.40 Derivation of the potential for Pd-Pd nearest neighbor
pairs is presented in Ref. 40 (for detail see Ref. 40 and
related references therein).

Some of the main points of the computational proce-
dure performed in this work will be described briefly.
The initial potential energy of the system corresponds to
the energy of the target Pdn–1 cluster. Formation of the
new cluster is related to the translation (collision/kinetic)
energy of the new projectile atom. The potential has the
new energy value depending on the final configuration
of the new structure. The translation energy should be
small enough to keep all particles of the system within
the potential well; otherwise, the new n-atom cluster for-
mation may not be possible. Occurrence of any fusion
regime through an atom-cluster collision is very sensi-
tive to collision energy39,41,45 and the orientation of the
clusters to produce the stable structures of resulting Pdn

clusters. When the colliding atom hits the target cluster
on any open site, a new structure is especially easily
constructed. Hamilton’s equations of motion have been
solved by using the 5th and 6th order Runge-Kutta algo-
rithm in the numerical integration. Cartesian coordinates
are used in the trajectory space for time dependent posi-
tions and moments of the particles. The accuracies of the
phase space coordinates and the conservation of energy
(within the order of 10–10) are considered in step size

290 M. BÖYÜKATA AND J. C. BELCHIOR

Croat. Chem. Acta 81 (2) 289¿297 (2008)



control of the micro canonical simulations. The collision
energy of the projectile atom is distributed amongst the
kinetic energies of all particles and the interaction occurs
around the center of mass of the system during the simu-
lation time, 3.0 � 106 step. This run time interval is re-
peated for 5 different orientations of initial configuration.
The Pdn cluster is constructed through the atom-cluster
collision in the fusion regime. All collisions are realized
with low collision energies to avoid fragmentation and
scattering. The orientation of the target clusters is random-
ly represented for reducing the site effects. Upon relaxa-
tion, the cluster rearranges substantially and the most stable
one is determined through following each trajectory set
by checking the potential energy of the system at 200
steps. The newly generated five configurations from each
trajectory set are minimized by removing kinetic energy
after 5 � 104 relaxation steps and the corresponding
structures are determined. The most stable one is deter-
mined through following each trajectory set by checking
the potential energy of the system. Finally, the total
energy (E) becomes equal to the whole potential energy
of the system,

E V rij
i
j i

n

=
=
>

∑ ( ).
1

(3)

After determining the new Pdn cluster, it is used for
new collisions and these procedures are repeated to find
new larger Pdn+1 clusters.

RESULTS AND DISCUSSIONS

In this section the optimized structures of Pdn (n = 2–40)
clusters, their growing path and magic behaviors are dis-
cussed. Figure 1 illustrates the obtained stable geomet-
ries of palladium microclusters up to 22-atoms. The Pd2,
Pd3 and Pd4 clusters are small enough to allow possible
minima to be directly constructed. The most stable geo-
metry of Pd4 is a regular tetrahedron with Td symmetry.
The calculated values of bond length and binding energy
for Pd4 are 2.74 Å and 0.98 eV/atom, respectively. In
this approach a trigonal, an octahedron and a pentagonal
bipyramids are predicted as ground state structures for
Pd5, Pd6 and Pd7 clusters with 1.21, 1.47 and 1.65
eV/atom binding energies, respectively. The well-known
ground-state structure of 7-atom cluster, Pd7 is also a
pentagonal bipyramid of D5h symmetry. In this work, the
minimum displacements of pairs of atoms in these mic-
rostructures are 2.71, 2.70 and 2.68 Å. This value for the
eight-atom palladium cluster is 2.67 Å. The determined
stable structure of Pd8 is bidisphenoid with 1.81
eV/atom binding energy. In this building-up procedure
for 9- to 12-atom clusters, the ground state geometries
are in a growing pattern based on icosahedrons packing
through filling of triangular open sites of the pentagonal
bipyramid structures of Pd7. The second pentagonal ring

is firstly observed in Pd12. A Five-fold ring is a common
backbone leading to a nearly perfect icosahedral form of
Pd13. In the particular case of Pd13, the icosahedral con-
figuration, a well-known magic structure, is predicted.
The results up to 14 atoms are in good agreement with
previously reported geometries of LJ clusters.46 The bin-
ding energies for up to 13-atom Pd micro clusters are
compared with previous studies23,28,47 in Table I. The
lowest energy value for Pd13 has been obtained with
MC-SC.28 The highest one has been calculated with an
empirical PEF, Erkoç Potential (EP).47 The binding ener-
gies (Eb), the average interaction energy per atom in the
cluster, were calculated using the computed total energy
values (E) as follow:

E
E

n
b = . (4)

We obtained a nonicosahedral symmetry (D6h) for
Pd15 (Figure 1). It has a similar structural behavior like
Pd13 cluster. Both of these are in closed cage structures
each with an atom at the center. The ground state struc-
tures for Pd16, Pd17, Pd18 and Pd19 clusters were grown
from the Pd13 geometry. The double icosahedral structu-
re (D5h) is also found for Pd19, another well-known ma-
gic size, in agreement with other studies.41,45 From Pd20,
clusters atoms prefer to fill favorable hollow sites on the
equatorial region of the double icosahedral form of Pd19.
There are 5 hollow sites on the equatorial ring of the
Pd19 structure. A similar behavior was also observed for
iron41 and gold clusters in Refs. 41, 48 and 49. An atom
collision with Pd20 produces a new Pd21 geometry by fil-
ling another hollow site. After this collision Pd21, clusters
reaches new more reactive sites, as common neighbors
of these equatorial atoms. Due to their low coordination
Pd22 prefers to grow from that site of Pd21.

As the cluster size increases further, it becomes in-
creasingly difficult to visualize the growth pattern. Even
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TABLE I. The binding energies for Pdn (n � 13) micro clusters

n MD-EAM23 MC-SC28 MD-EP47 This work

2 –0.35 –0.33

3 –0.79 –0.68 –0.65

4 –1.20 –0.95 –0.98

5 –1.46 –2.57 –1.10 –1.21

6 –1.71 –2.69 –1.22 –1.47

7 –1.86 –2.77 –1.32 –1.65

8 –1.97 –2.80 –1.33 –1.81

9 –2.06 –2.86 –1.32 –1.96

10 –2.15 –2.90 –1.43 –2.12

11 –2.22 –2.93 –1.49 –2.26

12 –2.32 –2.97 –1.55 –2.45

13 –2.45 –3.03 –1.63 –2.65



though the structural evolution of clusters is more com-

plicated, it is possible to analyze the cluster formation

mechanism. These structures are often based on the dou-

ble icosahedral geometry with the additional atoms at-

tached to various positions in the Pd19 cluster. For mic-

rostructures consisting of a few atoms, it is easier to get

a new structure by binding over a favorable open site.

However, the new geometry for larger clusters may oc-

cur as local isomers of the new configuration due to

their dislocated structures and high symmetries. In addi-

tion, from rearrangement structures it takes long compu-

tational time to obtain the stable geometry of the clusters

unless the colliding atom hits the target at a suitable site.

Therefore, the target position was randomly changed.

As shown in Figure 2, following this growing pattern,

Pd23 and Pd24 are produced after adding atoms on the

empty site on the equatorial ring. At the same time, two

new and more reactive sites are produced on the surface.

By filling these sites Pd26 is constructed. Pd26 has an in-

teresting view of crossed shape of 19-atom geometry. As

the consequence of this pattern, filling the empty and

more reactive sites, all low coordination points on the

equatorial region of Pd19 are covered, one by one, on ad-

dition of atoms and finally a closed shell structure of

Pd34 is formed with 3 new five-atom rings. The structu-

ral evolutions up to 40-atom clusters in this formation

pattern are in the form of placing atoms on more reacti-

ve hollow sites of the Pd34 geometry. As a result, the

new larger size will continue to develop by filling the

surface of the Pd34 cluster. Increasing the number of ato-

ms on the surface of the cluster leads to some structural

distortions of the basic building elements. In most cases,

the new optimized structure grew from hollow site of the

previous smaller cluster. All configurations led to the

migration of the colliding atom from the on-top or brid-

ge site to an empty site because it is the most favorable

adsorption site. The adsorbating atoms were generally

introduced onto low coordinate Pd atoms due to reactivi-

ty of these atoms.

After finding the geometries up to Pd40, the magic

behavior of these clusters was investigated. The binding

energies versus the cluster size are plotted for the putati-

ve stable structures in Figure 3a. As the cluster size in-

creases the average binding energy per atom decreases.

This exponential-like decay is known as a common be-

havior almost for all metal clusters.45,50 A central issue

in cluster physics is to identify particularly stable sizes.

A detailed structural picture and the nonmonotonic vari-

ation in the properties of clusters can be obtained by lo-
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Figure 2. Optimized geometries for Pd23–Pd40 clusters.
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Figure 1. Optimized geometries for Pd2–Pd22 clusters.



cating the global minimum as a function of size. This can

then give information about abundances of particularly

stable clusters.51 The average binding energy per atom

in the cluster may be, therefore, expressed as a function

of the cluster size,52–54

E E E n E n E nv s c efit = + + +– / – / – /1 3 2 3 3 3 (5)

where the coefficients Ev, Es, and Ec correspond to the

volume, surface, and curvature energies of the particles

forming the cluster, respectively, and Ee defines the en-

ergy origin.55 The fitted values of the coefficients are

–13.919, 46.346, –56.968 and 25.428 eV/atom, respecti-

vely. The differences (Eb–Efit) between the binding ener-

gies of Equations (4) and (5) are plotted in Figure 3b. Fi-

gure 3c illustrates the first energy difference of the total

energy of the obtained clusters which is

D1 1E E En n= + – . (6)

The second finite differences (the stability function)

of the total energy of the determined clusters are calcula-

ted using the following equation:

D2 1 1 2E E E En n n= ++ – – . (7)

The values in Figure 4 are normalized with the va-

lue of Pd13. Through the peaks of these values, several

exceptional stable structures are identified. These ener-

getically most stable sizes are so-called magic clusters.

Pd13 is the first and the most stable magic cluster. Anot-

her well-known magic cluster like 13 atom size is Pd19.

In this region, an interesting structure for palladium,

Pd15 also has a spherical geometry. However, it is not

energetically more stable in spite of its close shell struc-

ture. Additionally, it was determined that 23, 26, 29, 32,

34 and 37 atom clusters also have magic behavior. Our

calculation predicts that 34-atom palladium geometry

has a close shell structure similar to the geometries of

Pd13, Pd15 and Pd19.

In order to understand more clearly the behavior of

growing pattern and to be sure about the magic structu-

re, we made displacement analysis of the atomic correla-

tions. The atomic distances from the center of mass of

the cluster and the pair displacements between atoms

can demonstrate the close packing in the growing proce-

ss. Figure 5 illustrates the displacements of atoms in the

optimized structures for Pd2–Pd40 clusters as a function

of number of atoms (n) in the clusters. The radial distri-

bution is the distance of each atom with respect to the

center of mass of a Pdn cluster and it is given by

r R R R
n

Ri i i

i

n

= =
=
∑– ,0 0

1

1
, (8)
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in which Ri is the position of the ith atom. The radial dis-
tributions of atoms from the center of mass of the clusters
are shown in Figure 5a. A maximum distance from the
center provides information about the radius of cluster.
The minimum distance of an atom from the center of
mass of the cluster is the shifted position of the central
atom, that is, the position of the closest atom to the cen-
ter of mass. As expected the mean displacements from
the center of mass of the clusters increase slightly due to
the close packing phenomena. The maxima in the distan-
ces correspond to the more reactive sizes. Pd14, for ex-
ample, has more reactive sites due to the low coordina-
tion. Especially the trends of the radii (maximum distances
in the graph) have lower values identifying obviously for
determined magic sizes. The microclusters up to 13-atoms
grow via pushing an atom to the center. Pd4 and Pd6 have
similar behavior because they have regular tetrahedral
and octahedral structures, respectively. That is, all atoms
have the same distance from the center. The first largest
empty space is in the 6-atom microcluster and the second
is verified in Pd8. Pd13 and Pd15 have an atom at their
centers and the other atoms are surrounding this atom.
Adding an atom to the spherical Pd13 cluster causes to
move the central atom away from the center in Pd14. After
Pd15, the deviation of the central atom increases up to Pd26.
Pd26 is a turning point for the central atom because the
growing structure at this point has half filled equatorial
sites in the Pd19 cluster. There are visible maxima for these
predicted magic sizes (Pd19, Pd23, Pd26, Pd29, Pd32 and
Pd34) in the minimum distance values.

For the 4-atom cluster, due to its regular pyramidal
geometry, the maximum, minimum and mean pair dis-
tances of atoms (Figure 5b) are the same, 2.74 Å. The
minimum pair distances decrease slightly while the
mean pair distances increase with the increasing number
of atoms. This is an expected behavior because the in-
crease in the number of atoms leads to close packing of
the clusters. When the number of atoms reaches 40, the
minimum and mean values become 2.32 and 4.93 Å, re-
spectively. However, the maximum pair distances have
different trends in different size ranges. Structurally, dif-
ferent reorientations cause sudden increases and fluctua-
tions in the maximum pair distances. For instance, from
Pd4 to Pd9 all structures are in different orientations.
From Pd9 to Pd13 the growing pattern based on pentago-
nal bipyramid structure results in a decrease of maxi-
mum pair distances. An addition of an atom to the trian-
gular open sites of Pd13 again leads to a new increase in
the maximum pair distance for Pd14. The transformation
from Pd14 to the spherical form of Pd15 produces a fluc-
tuation in the distance. After 15 atoms, it turns back to
expected growing pattern based on 13-atom geometry.
The distance between two polar atoms of Pd19 is the
source of the rapid increase in the maximum pair distan-
ce from Pd18 to Pd19. From Pd19 to Pd26 a slight decrease
is observed in the maximum pair distances. For the par-

ticular case of Pd26 there is an interesting symmetry-like
structure, crossing shape of the two 19-atom clusters.
After passing the Pd26 structure, there is a rapid increase
in the maximum pair distance due to a new nonsymmet-
rical form of Pd27. There are also slight decreases in re-
gions 27 to 30 and 31 to 34. Generally, any typical chan-
ges are determined around the magic sizes.

The second finite difference of the displacements of
optimized structures for Pd2–Pd40 are presented in Fig-
ure 5c for average values of distances of atomic pairs
and from center of mass of the clusters as a function of
cluster size. Structural reorientations of Pd4, Pd6, Pd8

and Pd11 lead to peaks in the values of the second finite
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differences. Pd13 and Pd15 have peaks due to the effects

of their spherical structures. In all cases, these two clus-

ters have the same characteristics of the stability func-

tions for both maximum and minimum displacements.

As shown in the graph there are peaks visualizing all

magic-like sizes, with only an exception observed for

Pd19. These peaks for 23-, 26-, 29-, 34- and 37-atom clus-

ters are related to their structures and their close packing

seqences. They describe the reactive sites filled structures.

To investigate the growth mechanism in more detail,

the density coefficients for number of atoms per volume

of the clusters were also calculated. For each cluster, one

can write

s( )n
n

rn
=

3
(9)

that defines the proportionality relation for the cluster

density,45 where n is the number of atoms and rn is the

radius of the cluster corresponding to the largest value of

the radial distributions in Figure 5a. The stability func-

tion of the determined coefficients is

D s s s s2 1 1 2= + +( ) ( – ) – ( )n n n . (10)

Figures 6a and 6b illustrate the density coefficients

and their stability functions. As can be observed, there

are large fluctuations in microcluster region with espe-

cial attention near the region of the first magic number,

n = 13. It means that they are reoriented through the

changing of the atomic positions. This fluctuation is

smaller for medium size clusters mainly because for lar-

ger clusters the orientation of the new clusters after rear-

rangement collision occurs on the surface atoms of the

clusters. Moreover, adding new atoms for larger systems

produces small fluctuations in the energy of the whole

system as can be observed in Figure 3. The relaxation

process is therefore less expensive and allows small re-

arrangement of the new cluster formation. Inner structu-

res of these clusters generally keep their previous geom-

etries unless the new atom added produces instability to

the primitive cluster. The minima in the stability functions

(Figure 6b) indicate that the relatively more symmetrical

close packing size structures are 4, 6, 13, 15, 23, 26, 29,

34 and 37.

As discussed in Ref. 51, the analysis of the eighen-

values of the matrices that contain the moment of inertia

(MoI) can provide insights to the geometry of the cluster.

Therefore, MoI for these particular palladium clusters is

analyzed in a similar way as that in Ref. 51 and the re-

sults are presented in Figure 7. The values (Ix, Iy and Iz)

of MoI with respect to the three components of the Car-

tesian coordinates are plotted as functions of the cluster

size in Figure 7a. The equation to calculated MoI is as

follow
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i

n
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=
∑ 2

1

, , , . (11)

They have been calculated via assuming the mass of
the particles as normalized to unit mass 1. The equal val-
ues of three MoI show that the cluster has a spherical
structure. As observed from Figure 7 the sizes n = 4, 6,
13 and 26 are obviously spherical geometries. The total
MoI values and its second finite differences are

I m r r x y zr i i i i i
i

n

= = + +
=
∑ 2 2 2 2 2

1

, (12)

D2 1 1 2I I I Ir r n r n r n= ++( ) ( – ) ( )– . (13)

It is given in the stability graphs in Figure 7b. The
maxima in this figure demonstrate that the relatively
more spherical palladium structures have atoms sizes of
13, 15, 23, 26, 29, 34 and 47. Finally, the mean values
(I ) of the component dependent differences of MoI have
been calculated by using absolute values of Ix–Iy, Iy–Iz

and Iz–Ix differences, which is

I
I I I I I Ix y x z y z

=
+ +– – –

3
. (14)

As presented in Figure 8 Pd4, Pd6, Pd13 and Pd26 are
exactly in spherical symmetric geometries.

CONCLUDING REMARKS

The primary dynamics of the Pd+Pdn–1�Pdn colli-
sion process described by a LJ type potential have been
investigated in details by means of classical MD analy-
sis. Palladium clusters were taken as a prototype and it
was possible to show that the small clusters can realisti-

cally be used as a model for understanding the growing
mechanisms for larger systems even though using a very
qualitative potential energy function parameterized for
crystal analysis. These studies produced a comprehen-
sive analysis of dominant effects on cluster growing
phenomena although the potential energy model used is
not realistic. In addition, there was no possible investi-
gations of the cluster energetics for this empirical poten-
tial since the results are not even qualitative. Therefore,
this work suggests that new fitting potentials need to be
evaluated for better understanding the real global mini-
mum with emphasis to palladium clusters.

Finally, it is demonstrated that any palladium cluster
can be obtained through the rearrangement collision as a
tool in generating the possible candidates for the ground
state and higher energy structures of palladium clusters.
Moreover, the correspondence of the determined structu-
res to magic numbers is in fair agreement with several
recent reported studies41,45 and shows that trends in the
physical properties can be studied through the structural
analysis of palladium clusters in the medium size range
via these LJ-type geometries. The PEF used here may al-
so be developed by adding any many-body terms for fu-
ture studies of atomic clusters.
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SA�ETAK

Studija grozdova paladija molekulskom dinamikom: Analiza strukturnih stabilnosti
i energija Pdn (n � 40) u ovisnosti o veli~ini korištenjem potencijala Lennard-Jonesovog tipa

Mustafa Böyükata i Jadson C. Belchior

Mogu}e stabilne strukture i energije grozdova paladija Pdn (n = 2–40) su istra�ene provo|enjem simulacija
molekulske dinamike zasnovanima na Lennard-Jonesovom potencijalu. Kako bi se odredilo preferirani mehani-
zam rasta, obrazac rasta Pdn grozdova je analiziran pomo}u sudarnih pregradnji i tehnika gašenja. Na|eno je da
grozdovi paladija preferiraju trodimenzionalne strukture te da kuglasti grozdovi srednjih veli~ina ~ini se da
posjeduju os petog reda. Nalazi su uspore|eni s ranijim teorijskim studijama.
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