
An Algorithm to Enumerate a Special Class of Digraphs:
Application to Water Clusters*

Damir Vuki~evi}a,** and Ante Graovacb,c

a
Faculty of Science, Department of Mathematics, University of Split, Nikole Tesle 12, HR-21000 Split, Croatia

b
Faculty of Science, Department of Chemistry, University of Split, Nikole Tesle 12, HR-21000 Split, Croatia

c
The Ru|er Bo{kovi} Institute, P. O. Box 180, HR-10002 Zagreb, Croatia

RECEIVED NOVEMBER 8, 2007; REVISED FEBRUARY 14, 2008; ACCEPTED FEBRUARY 18, 2008

Recently Miyake and Aida have developed a directed graph model and related algorithm which

generates all possible topologically distinct hydrogen-bonded clusters of water molecules.

Here we present a new algorithm based on recursive functions. Numerical results show that our

algorithm is much faster than that of Miyake and Aida.

Keywords

digraphs

recursive algorithms

enumeration

optimization of algorithms

water clusters

hydrogen bonding

CROATICA CHEMICA ACTA

CCACAA 81 (2) 347¿350 (2008)

ISSN-0011-1643

CCA-3251

Conference Paper

INTRODUCTION

The study of water clusters is continuously in the focus

of scientific attention. Computational tasks to analyze

stability and dynamics of such clusters are demand-

ing.1–4 However, prior to any computation one has to

enumerate all possible topologically distinct clusters.

Here, the discrete mathematics plays an important role.

One possible discrete model is to represent water clus-

ters by a special class of directed graphs, i.e. digraphs,5

where vertices correspond to water molecules and arcs

(directed bonds) to hydrogen bonds from proton-donor

of one molecule to proton-acceptor of another water

molecule. The procedure, which we further call the MA

algorithm, to obtain all possible topologically distinct

clusters has been developed by Miyake and Aida1,2

which have been able to enumerate all possible clusters

with up to eight water molecules. As the number of top-

ologically distinct clusters grows enormously with the

number of water molecules in the cluster, it is of interest

to develop an efficient graph algorithm6 to enumerate

distinct clusters. Here, we present an algorithm which is

much faster than the MA one as it is based on the recur-

sive enumeration.

The underlying connected graph G representing a

cluster of n water molecules is a graph on n vertices with

some number, m, of edges, where an edge describes a

presence of hydrogen bond between two water mole-

cules. If, for each edge, we know which of its terminal

vertices (water molecules) donates a proton and which

one accepts this proton, then instead of G, we describe

the totality of directed bonding by a digraph H. As a wa-

* This paper is dedicated to the memory of Professor Dean Rosenzweig.

** Author to whom correspondence should be addressed. (E-mail: vukicevi@pmfst.hr)



ter molecule can donate mostly up to two protons to

other water molecules and accept mostly up to two pro-

tons, in corresponding digraph H, there are mostly up to

two outgoing and mostly up to two ingoing arcs, i.e. the

valency of each vertex in underlying graph G is mostly

up to four. Further, a simultaneous donation and accep-

tance of protons along a given bonds in H is not al-

lowed, i.e. there are no undirected bond in H.

Adjacency matrix is convenient way to represent

connectivity in the graph:7–9 for a graph G with n verti-

ces, the adjacency matrix A = A(G) is the n-th order

square matrix whose element aij equals 1 if vertices i

and j are connected by an edge in G, and 0 otherwise.

For a digraph H the element aij is 1 if there is an arc go-

ing from vertex i to vertex j, and 0 otherwise.

For e.g. clusters of three water molecules there are

only two distinct undirected graphs: 3-cycle and a path

of length 3. The underlying graph of the path cluster is

shown in Figure 1a together with its adjacency matrix.

There are three topologically distinct digraphs of path

and one of them is shown with its adjacency matrix in

Figure 1b. A digraph shown together with its adjacency

matrix in Figure 1c is equivalent to one shown in Figure

1b.

METHOD

The MA method considers all possible adjacency matri-

ces of underlying graphs. It proceeds further by elimi-

nating graphs having vertices of degrees larger than 4,

while this restriction is implemented as a core of our al-

gorithm. However, both methods have to eliminate dis-

connected graphs and duplicates.

After having at disposal the underlying graphs, for

each of them one has to consider all its corresponding

digraphs satisfying the above restrictions on valencies. The

MA method considers all possible orientations of edges

and then eliminates those that don’t satisfy restrictions

on valencies, where we adhere to the same restrictions,

but we put them in the very core of our recursive algo-

rithm.

The last step in both methods is to eliminate dupli-

cates. Here, we introduce the notion of canonical label-

ing. Let consider the adjacency matrix of graph shown

in Figure 1a. Its non-zero elements above the main diag-

onal are marked as bolded. The corresponding elements

in adjacency matrices of two isomorphic digraphs shown

in Figures 1b and 1c read as binary numbers are 11 and

00, respectively. The digraph with smaller, in general with

the smallest among such numbers, we call canonically

labeled digraph. Our method eliminates duplicates much

quicker than the MA method, because we consider only

the automorphisms of the underlying graph instead of

considering all the permutations of vertices. Namely, as

for a graph on n vertices there are n! permutations to be

considered in the MA method, in our method one con-

siders only a few automorphisms.

ALGORITHM

We use the following variables in our algorithm (and we

assume that at the beginning of the execution of the pro-

gram all variables are set to zero):

• NumVertices is the number of vertices of the graphs

under consideration. It is the input given to the program

(it is assumed that NumVertices ≥ 7 as the results of enu-

meration for the graphs with lower number of vertices

have been already given by Miyake and Aida1,2);

• MaxDeg is the maximum degree of the graph consi-

dered. Three options are successively examined: MaxDeg

= 2,3,4;

• a is the matrix in which the adjacency matrix of a

graph (respectively digraph) G (respectively H) will be

stored;

• deg (indeg, outdeg) are arrays in which degrees (in-

degrees, outdegrees) of each vertex are stored;

• NumOfGraphs (NumOfDigraphs) stores the number

of the graphs (digraphs) with the required properties;

• NumOfAutomorphisms stores the number of auto-

morphisms of the observed graph;

• Aut stores all the automorphisms of the observed

graph;

• NumAut is the number of the automorphisms of the

observed graph;

• NumEdges stores the number of edges;

• Edges is NumEdges × 2 array in which edges are

stores. Edges [i][1] and Edges [i][2] are vertices that are

incident to the i-th edge (the first and the second vertex

uniquely determnine the edge).

The algorithm (in the pseudo-code) is given below:

main( )

For MaxDeg = 2,...,4

deg[1] = MaxDeg

For i = 2,..., MaxDeg + 1

a[1][i] = 1,a[i][1] = 1

deg[i] = 1

For i = MaxDeg + 2,...NumVertices

a[1][i] = 0,a[i][1] = 0

deg[i] = 0

348 D. VUKI^EVI] AND A. GRAOVAC

Croat. Chem. Acta 81 (2) 347¿350 (2008)

(a) (b) (c)

Figure 1. Underlying graph and two equivalent digraphs of path
cluster of three water molecules with their adjacency matrices.



rec(2,3) // this function is described below

END

rec(x,y)

If y = NumVertices + 1

If x = NumVertices

If graph G is connected

If IsGraphCanonical() // this function

checks if graph has the form described

in the paper1 and we skip its pseudocode

Analyze() // this function is described below

Else

rec(x+1,x+2)

Else

If NumVertices + 1 – y + deg[x] ≥ 2

rec(x,y+1)

If deg[x] < MaxDeg and deg[y] < MaxDeg

a[x][y] = 1, a[y][x] = 1, deg[x] = deg[x]+1,

deg[y] = deg[y]+1

rec(x,y+1)

a[x][y] = 0, a[y][x] = 0, deg[x] = deg[x]–1,

deg[y] = deg[y]–1

END

Analyze( )

NumOfGraphs = NumOfGraphs + 1

NumOfAutomorphisms = 0

FindAllAutomorphisms // this is a standard graph-

theoretical algorithm, hence we skip its pseudocode

NumEdges = 0

For 1 ≤ i < j ≤ n

If a[i][j] = 1

NumEdges = NumEdges + 1,

edges[NumEdges][1] = i,

edges[NumEdges][2] = j

For i = 1,...,n

InDeg[i] = 0, OutDeg[i] = 0

RecOrient(1,2) // this function is described below

END

RecOrient(x,y)

If y = NumVertices

If x = NumVertices

If IsDigraphCanonical( ) // this function is

described below

NumOfDigraphs = NumOfDigraphs + 1

Else

RecOrient(x+1,x+2)

Else If a[x][y] = 0

RecOrient(x,y+1)

Else

If (OutDeg[x] < 2) and (InDeg[y] < 2)

a[x][y] = 2, a[y][x] = 0,

OutDeg[x] = OutDeg[x] + 1,

InDeg[y] = InDeg[y]+1

RecOrient(x,y+1)

a[x][y] = 1, a[y][x] = 1,

OutDeg[x] = OutDeg[x] – 1,

InDeg[y] = InDeg[y] – 1

If (InDeg[x] < 2) and (OutDeg[y] < 2)

a[x][y] = 0, a[y][x] = 2,

InDeg[x] = InDeg[x] + 1,

OutDeg[y] = OutDeg[y] + 1

RecOrient(x,y + 1)

a[x][y] = 1, a[y][x] = 1,

InDeg[x] = InDeg[x] – 1,

OutDeg[y] = OutDeg[y] – 1

END

IsDigraphCanonical()

If NumAut ≥ 2

For i = 1,..., NumAut

If IsThisBetter(i) // this function is described

below

Return False

2) Return True

END

IsThisBetter(x)

For i = 1... NumEdges

If
a[Edges[i][1]] [Edges[i][2]] <

a[aut[Edges[i][1]]] [aut[Edges[i][2]]]

Return True

If
a[Edges[i][1]] [Edges[i][2]] >

a[aut[Edges[i][1]]] [aut[Edges[i][2]]]

Return False

Return False

RESULTS AND DISCUSSIONS

This work was motivated by Miyake and Aids study of

water clusters.1,2 The largest clusters they have been able

to treat are those on 8 vertices. The algorithm presented

ENUMERATION OF WATER CLUSTERS 349

Croat. Chem. Acta 81 (2) 347¿350 (2008)



here is able to go a step forward and up to now we have

been able to enumerate topologically distinct clusters up

to 12 vertices. Our algorithm is superior due to two facts:

1) it incorporates restrictive conditions on genera-

tion of unoriented graph into recursive function which

results in much less number of generated objects,

2) it eliminates duplicates of digraphs using only

automorphisms of the underlying graph instead of con-

sidering all permutations of vertices (hence, we consider

only a few automorphisms of the graph instead of n!

permutations to be considered in the method of Miyake

and Aida).

As an example of the advantages of our algorithm,

Ref. 10 gives an example in which it is shown that our

algorithm needs to consider only 15 697 041 matrices as

compared to 68 719 476 736 matrices to be considered

in the method of Miyake and Aida.

The results obtained by the algorithm described here

are summarized in table given below:10

Acknowledgment. – Partial support of the Ministry of Sci-

ence, Education and Sports of the Republic Croatia (Grants

No. 098-0982929-2940 and No. 177-0000000-0884) is grate-

fully acknowledged.

REFERENCES

1. T. Miyake and M. Aida, Chem. Phys. Lett. 363 (2002)

106–110.

2. T. Miyake and M. Aida, Internet Electronic Journal of Mo-

lecular Design 2 (2003) 24–32.

3. D. J. Wales and M. P. Hodges, Chem. Phys. Lett. 286 (1998)

65–72.

4. I.-L. Kuo, J. V. Coe, S. J. Singer, Y. B. Band, and L.

Ojamäe, J. Chem. Phys. 114 (2001) 2527–2540.

5. B. Bollobás, Graph Theory, Springer Verlag, Berlin, 1979.

6. A. Gibbons, Algorithmic Graph Theory, Cambridge Uni-

versity Press, Cambridge, 1985.

7. A. Graovac, I. Gutman, and N. Trinajsti} Topological Ap-

proach to the Chemistry of Conjugated Molecules, Springer

Verlag, Berlin, 1977.

8. N. Trinajsti}, Chemical Graph Theory, CRC Press, Boca

Raton, 1983; 2nd revised Ed., 1992.

9. I. Gutman and O. E. Polansky, Mathematical Concepts in

Organic Chemistry, Springer Verlag, Berlin, 1986.

10. D. Vuki~evi}, T. Grube{a, and A. Graovac, Chem. Phys.

Lett. 416 (2005) 212–214.

SA@ETAK

Algoritam za prebrojavanje posebne klase usmjerenih grafova:
primijena na klastere molekula vode

Damir Vuki~evi} i Ante Graovac

Miyake i Aida su nedavno predlo`ile model zasnovan na usmjerenim grafovima i razvile algoritam za pre-

brojavanje svih mogu}ih, topolo{ki razli~itih, vodikovim vezama povezanih, grozdova molekula vode. Ovdje je

prikazan novi algoritam temeljen na rekurzivnim funkcijama. Broj~ani rezultati pokazuju da je ovaj znatno br`i

od Miyake-Aida algoritma.

350 D. VUKI^EVI] AND A. GRAOVAC

Croat. Chem. Acta 81 (2) 347¿350 (2008)

TABLE I. Number of graphs and digraphs describing water clus-
ters with up to 12 water molecules

Vertex(a) Graph(b) Digraph(c)

2 1 1

3 2 5

4 6 22

5 21 161

6 78 1 406

7 353 14 241

8 1929 164 461

9 12207 2 115 335

10 89402 29 903 139

11 739335 460 066 726

12 6800637 7 644 586 673

(a)The number of the vertices.
(b)The number of the graphs generated.
(c)The number of the digraphs generated.


