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Determination of a crystal structure without Fourier calculation of the scattering density (thus
also avoiding the phase problem) is achieved in a fractional coordinate parameter space of dimen-
sion 3m where m is the number of independent atoms, reduced to equal point scatterers at rest.
For demonstration of the basic ideas, two-dimensional parameter spaces (representing, e. g.,

one-dimensional two-atom structures) are used. "Central reciprocal lattice row" reflections al-
low for solving one-dimensional projections of the structure, each requiring less reflections and
simultaneously providing better resolution than does a corresponding Fourier summation. The
projection solution can be obtained either from the common intersection of the hyper-faces in
the m-dimensional parameter space defined by the chosen scattering amplitudes or by exploring
the permitted "solution region(s)" that follow from the mere ranking of these amplitudes. All
possible solutions satisfying the data are found, including "false minima". The reconstruction
of a hypothetical three-dimensional 11 atom structure from the solutions of one-dimensional
projections is illustrated in an example based on "theoretical", i. e. error-free data. Since most
of the theoretical background is laid down in two former, refereed publications, emphasis is put
on different options to cope with the computing demands in practical applications. Advantages
and shortcomings of the concept are discussed.
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INTRODUCTION AND GENERAL CONCEPT

In the past decades, the determination of crystal struc-
tures has matured to an almost routine task driven by the
successes of "Direct Methods". After allocating approxi-
mate phase values to a sufficient number of structure
amplitudes, a scattering density approximation of the ac-
tual structure is obtained by Fourier summation over those
structure factors and a structure model follows from the

three-dimensional maxima of the generated scattering
density distribution, since these maxima are interpreted
as atomic positions. Thus, the ever dominant "phase pro-
blem" is overcome by the derivation of appropriate
phases whose mutual differences are structure invariants
hidden in the total intensity distribution of the selected
observed data. Their number is generally much larger than
that of the unknown structure parameters, namely the ato-
mic fractional coordinates x, y, z.

* Dedicated to Professor Dr. Klaus Knorr (Technical Physics, Saarbruecken) on the occasion of his 65th birthday.
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During the same span of time, only a few "new de-
velopments" were reported most of which, however, still
use the Fourier technique or are associated with it, see e.

g. the recent "charge flipping" method by Oszlány and
Sütõ.1 More strictly algebraic, geometrical or analytical
approaches are those developed by Rothbauer,2–6 Navaza
and Silva,7 Cervellino and Ciccariello8–10 and11 follow-
ing.12 All those concepts were briefly addressed in two
papers.13,14 Particularly, Navaza and Navaza15 stressed the
role of atomicity for any "direct space" approach and Cic-
cariello and Cervellino16 proved that, given observations
from a point structure, only a limited number of low or-
der reflection intensities suffices for obtaining all other
ones.

To date, in most cases, a refinable structure model
results from a kind of "black box" procedure which does
not require operator’s intervention unless the method fails
or must be sharpened or applied in some sort of non-rou-
tine way. If, for example, the data set is limited or the
spatial resolution of the scattering density distribution is
insufficient or if the structure itself possesses some tric-
ky "pseudo-symmetry" (as frequently observed in "new
materials" with interesting physical properties), the rou-
tine structure determination may be hampered, and even
after a refinement, unsatisfactory model ambiguities may
remain. Also, cases of exact "homometry" (identical sets
of inter-atomic distances for two or more different struc-
tures, of which the wrong one(s) can, however, usually
be identified by chemical considerations) may be appro-
ximated due to experimental errors. Then, a set of two or
more "quasi-homometric" structures can be obtained, with
their corresponding diffraction data merely differing with-
in the uncertainties. In such cases, usually only one solu-
tion is found and reported without even knowing that ot-
her ones or another exist(s), let alone how these alterna-
tive structures look like. In other words, one may well
end up in a so-called "false minimum".

The aim of this paper is to present a concept for struc-
ture determination which circumvents reciprocal space in
order to derive a suitable model (or at least valuable struc-
ture information) from generally less than the usual re-
flections, and this with a higher direct space resolution
as compared to conventional structure determination
methods. While some principles of the underlying ideas
have been published before (see Refs. 13 and 14 as well
as some conference abstracts), we aim here at showing
that and how a structure determination can be conducted
without Fourier inversion. Even though some parts of the
process are presented only in a preliminary state and in
need of further more detailed exploration, particularly with
respect to data error allowances, we believe that a "first
lap completed" report may interest chemists and bio-crys-
tallographers as a potentially helpful tool in solving pro-
blem structures. This implies that we neither wish nor can
offer a "competition" of any kind with existing program

systems. We merely illuminate a point of view that is dif-
ferent from, but complementary to the established one(s)
and as such to be considered.

THEORETICAL BASIS

The basic concept is rather simple, if not naive and can
be outlined in four statements:

1) As described in more detail in Ref. 13, we use a
structure reduced to equal point atoms at rest so that
their scattering power may be f = 1 throughout re-
ciprocal space. For this model, the so-called "geo-
metrical structure amplitudes" of a centric structure
are given by

g(hkl) = | cos
j∑ 2p(hxj + kyj + lzj) |

with j = 1, …, m for m independent atoms. Corre-
spondingly, measured structure amplitudes must be
reduced to "experimental g(hkl)" which inevitably
enhances the experimental errors by some errors due
to approximations. Details see below ("Data reduc-
tion and its errors").

2) Each of the 3m unknown positional parameters of the
point structure plots on one axis of a 3m-dimensio-
nal ortho-normal ("hyper-cubic") "parameter space",
thus defining the 3m components xj, yj, zj [0; 1] of a
"structure vector" X that represents the atomic arrange-
ment within the asymmetric part of the unit cell. (For
simplicity, we use space group P1 and P1 through-
out this paper.) Due to the equal scatterers, the pa-
rameter space P3m possesses permutation symmetry
of order m! with the consequence that only one asym-
metric part A3m (1/m! of the 3m-dimensional volume
of the hypercube-shaped parameter space) must be
considered for finding X. (A possible asymmetric part
can be simply defined by a given sequence of these
atoms, see below: "One-dimensional projections")

3) Mapping a geometrical structure amplitude into the
parameter space yields a (3m–1)-dimensional hyper-
face called "iso-surface" and denoted as G [h; g]. This
imposes additional symmetry to that of the parame-
ter space. – To most of us, the inability of imaging
multi-dimensional spaces leaves us with computa-
tions. A two-dimensional parameter space (represent-
ing a one-dimensional structure of two atoms, here
with inversion symmetry) can, however, be nicely
illustrated and thus further the understanding of the
basic ideas that apply also to higher dimensions.
Figure 1(a) and 1(b) show that for reflection orders
h > 1, any set of iso-surfaces for g(h) is periodic, re-
peating the pattern of g(1) or its mirror image on linear
scale 1/h. (For more details see Figure 3(a) and 3(c)
in Ref. 13.) – Compare also the "graphical abstract"
of this paper representing the parameter space P3 for
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centrosymmetric one-dimensional structures of three
atoms with the iso-surface for g(1) = 0.

4) These iso-surfaces are the essential "tools" for find-
ing X, because, provided error free g(h), the point of
intersection of (at least) 3m independent iso-surfaces
is X. The iso-surfaces as well as those generated from
combinations of experimental data – see below "Se-
ries of g, q or e …" – can also be used for excluding
from A3m those parts that cannot contain the solution
X, e. g. by statements like "a calculated g(hkl) must
be larger (or smaller) than a given threshold value
derived from the experimental data".

Looking geometrically simple in the above case, in
general, the common intersection of a number of iso-sur-
faces stands for solving (at least) 3m equations for 3m

unknown scatterer coordinates which – in praxi – does
not yet appear feasible. Instead, we have tried various
approximations or "trial and error" tests. One of them, a
"linear approximation" technique, has been described in
more detail in Ref 13., including some examples. Here,
we treat mainly those trial-and-error tests that appear the
most successful so far.

SOME PRINCIPAL ADVANTAGES
OF THE PARAMETER SPACE CONCEPT

Before entering practical considerations, some advantages
of the above concept may be noted:

1) There is no need for phases of structure factors, i.

e. the phase problem plays no role. (About origin defini-
tion, see below: "One-dimensional projections".)
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Figure 1. Parameter space [0; ½] for 1-dimensional, centrosymmetric 2-atom structures: each vector (x1, x2) represents a structure with
these coordinates x1, x2. Origin (depicting x1 = x2 = 0) at lower left corner; x1 along horizontal coordinate axis, x2 vertical coordinates.
The asymmetric part A2 is one half of the square shown: triangle (0, 0), (½, ½), (½, 0). Half of the asymmetric part A2 is indicated by the
smaller triangle (two heavy lines and horizontal coordinate axis) and suffices for description of all possible structures (the other half being
symmetrically equivalent due to the inversion centre at (x1 = x2 = ½) which may eventually be used as alternative "origin").

1(a) Iso-surfaces G [1; g], contours at 0.2. G [1; 0] is depicted as diagonal from upper left corner (x1 = 0, x2 = ½) to lower right corner
(x1 = ½, x2 = 0); G [1; 2] coincides with the lower left corner (x1 = x2 = 0) and upper right corner (x1 = x2 = ½).

1(b) Iso-surfaces G [3; g] : note the repetition of G [1; g] and its mirror images after reduction of scale by factor h = 3.

1(c) Iso-surfaces Q [2; 3] for an observed inequality 0 < q(2, 3) ≤ 1, i. e. g(3) ≥ g(2). The iso-surfaces for q = 1 are the borders of the
white areas that represent all "forbidden" structures with q > 1. Contours at 0.05.

1(d) Iso-surfaces E [1; 6], e = 0 along diagonal as for G [1; 0] in Figure 1(a), contours at ≈ 0.2.



2) Locating X yields the complete solution, i. e. the
coordinates of all scatterers are found simultaneously.

3) For comparable resolution, less reflections are
needed than for Fourier summation. Series termination ef-
fects are avoided and in principle, even infinite resolu-
tion would be obtained if the above-mentioned 3m g(hkl)
were error free.

4) The solution is either unique or if not, then all
possible atomic arrangements satisfying the experimen-
tal data, i. e. at the same time all so-called "quasi-homo-
metric" structures are also determined.

Looking at both the problems and the potential for
determining crystal structures from a parameter space
point-of-view may thus offer some new insights and
shed light on old and sometimes trivial knowledge that
is buried in the actual, most effective structure solution
programs.

SOME PRACTICAL PROBLEMS

There are two main questions that arise immediately:

(i) Why should we prefer "trial and error" procedures
over approximation techniques, and

(ii) how can we obtain the basically needed data g(hkl)
on absolute scale given a relatively limited set of
measured intensities?

For reasons discussed below, we can continue this
discussion to a projection of the point structure onto one
of the three normalized lattice vectors, e. g. a/a, implying
that a structure projection has to be solved from, say, the
first n g(h00) amplitudes (abbreviated as g(h)) and their
corresponding iso-surfaces G[h; g] (see Figure 1(a), (b)).

1) Then, there are two options for absolute scaling of
the point structure amplitudes g derived from un-
scaled experimental data:

(i) The quotients q(h1, h2) = g(h1)/g(h2) of two geomet-
rical amplitudes are always on absolute scale and their
iso-surfaces Q[h1, h2] can be illustrated as shown in
Figure 1(c) for general centrosymmetric cases (m =
2). More details are found in Ref. 14.

(ii) For a batch of (un-scaled) g(h), one can define "quasi-
normalized amplitudes" e(h, n), for example as:

e(h, n) = g(h) / {(1/n) ⋅ [ g
i

2∑ (hi)]1/2}, h, hi = 1, …, n

where the g(h) are from a "central reciprocal lattice
row". These e values are also on absolute scale and
likewise their associated iso-surfaces E [h, n], see
Figure 1(d). (See also Ref. 17 for a similar scaling.
More details will be given in a separate paper.)

Both q and e data were mostly used in test calcula-
tions, simply because they are on absolute scale and thus
preserving the relative intensity distribution, therefore re-

flecting – though not unambiguously – the structure in-
formation.

2) Comparing the three different types of iso-surfaces
(Figure 1(a), (c), (d)) one may conclude from the
different shapes of their corresponding iso-surfaces
that G[h; g] can be approximated (e. g. by linear or
spherical hyper-faces) within wider ranges of the pa-
rameter space than Q [h1, h2] and E [h, n], which ex-
hibit less smooth curvatures within A. Therefore, us-
ing Q- and/or E-isosurfaces, a combination of system-
atic and random assessment appears the best choice
which directly leads to a third question.

3) How many systematic tries are necessary? – In prin-
ciple, a huge number Np of "test structure vectors"
Xt has to be tested by comparing calculated q or e

values with "experimental" ones: Using a grid of p

equidistant points along each principal direction of
the parameter space, the number of hyper-cube-shap-
ed test volumes Np in the asymmetric part A of P is
roughly p3m/(m!) for p > m (for a more accurate, but
here unnecessary and more complicated estimate, the
borders of A must be accounted for properly). For
practical purposes, Np should be small enough to be
handled with a standard PC when a selection of dif-
ferent measures described in the next section is ap-
plied.

(About random assessment see below: sections "Re-
ducing Np by grid coarsening" and "Practical exam-
ple …".)

A centrosymmetric, one-dimensional 2-atom exam-
ple (x1 = 0.06; x2 = 0.04) demanding substantial spatial
resolution has been successfully treated applying differ-
ent techniques of the parameter space concept: (i) linear
approximation based on g(h), see Ref. 13, example (2)
and Figure 6(a), (b); (ii) graphic solution as well as (iii)
grid computing based on q(h, k), see Ref. 14, Figure 6
and Table II (the latter including various data errors). In
all cases, between 3 and 9 reflection amplitudes were
employed, whereas a Fourier summation with 10 er-
ror-free reflection amplitudes and correct signs provided
but hardly useful results (see Ref. 13, Figure 6(c)).

SELECTION PROCEDURES

One-dimensional Projections

A first step for a substantial reduction of Np is the use of
data from "central reciprocal lattice rows" from which,
of course, only one-dimensional projections of the struc-
ture can be obtained. This measure is connected with ex-
perimental advantages, but also with two shortcomings:

(i) strict "atomicity" may be lost in cases where project-
ed scatterers more or less coincide, and
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(ii) homometric structures are much more probable in
one-dimensional projections than in three dimensio-
nal space so that also quasi-homometric cases caus-
ed by the unavoidable errors in the observations will
more frequently occur.

In a one-dimensional projection, e. g. onto the x di-
rection, the equal point scatterers can be sorted in de-
scending order of their coordinates

x1 ≥ x2 ≥ … ≥ xm ≥ 0

thus defining an asymmetric part Am of the parameter
space (details see Ref. 13). For a centrosymmetric struc-
ture projection, x1 ≤ 0.5 is sufficient. Also, only one half
of Am needs to be searched for the solution vector X cor-
responding to one of the two possible origins (see Fig.
1). How the solution of a structure projection is actually
obtained, is described below (section "Solution of each
projection").

Re-constructing the three-dimensional direct space
arrangement of the atoms from projections is a task simi-
lar to, e. g., generating an X-ray tomographic absorption
density distribution from one-dimensional projection data.
The task is, however, much less complicated because the
structure model to be developed contains only a known
number of discrete point scatterers. Hence, one can de-
note it as "point tomography"11 (see also Refs. 18 and
19) which, so far, we have successfully applied to centro-
symmetric structures (for acentric structures, the problem
of origin conservation has still to be solved in praxi).
How this can be worked out is demonstrated in the "Prac-
tical example …" below. More details will appear in a
separate paper.

Experimental Data of One-dimensional Projections

A single spot of a Laue-type diffraction diagram (record-
ed with white primary radiation and both crystal and de-
tector in fixed positions) may contain several "harmonic"
reflection orders, depending on the glancing angle 2q, the
range of the primary l-spectrum and the indices h, k, l of
the first order reflection. For large d-spacings, i. e. short
reciprocal lattice vectors, the intensities of reflections nh,

nk, nl up to high orders contribute to this single spot. The
separation and quantitative intensity measurement of the
harmonic reflections is achieved by using a properly align-
ed energy-dispersive detector whose response is transform-
ed into a sequence of n intensity peak profiles by mul-
ti-channel analyzing (MCA). Thus, at the same time, a
sequence of reflection amplitudes from a "central recip-
rocal lattice row" can be obtained from one crystal- and
diffractometer-setting,20,21 provided the primary intensity
spectrum and all relevant correction factors are known. A
kappa-type single-crystal diffractometer equipped with
two independently operating detectors22 permits simulta-
neous measurements on two central reciprocal lattice
rows, again in a fixed-crystal, fixed-detector mode (e. g.

at beam-line F1 at HASYLAB/DESY, now operated by
Prof. Bismayer, Hamburg).

If in addition, a crystal contains an atomic species
called "a" exhibiting significant anomalous scattering (i.
e. the x-ray absorption edge wavelength la is contained
in the primary radiation spectrum), some of the harmo-
nic reflections can be shifted, one after the other, across
the respective la by a simple w-2q-scan. The intensity
changes at la caused by changes in fa' and/or fa" of the
anomalous scatterers can be used to determine the "par-
tial structure amplitudes" of these a-atoms, e. g., by the
procedure of Karle.23 Simultaneously, the harmonics with
wavelengths far from la help monitoring and thus in re-
ducing the relatively large relative statistical uncertain-
ties as a consequence of the generally small "anomalous
scattering signal". (It should be noted in this context, that
both fa' and fa" are point scatterer based quantities and as
such well complying with the underlying point structure
model. – A partial structure means, of course, a reduced
m and consequently its solution is a much easier task.

Series of g, q or e Sorted for Magnitude and New

Inequalities for Approximating a Structure

Sorting (the relative) g(hi), i = 1, …, n into a sequence of
decreasing amplitudes (called "data ranking") provides

gmax = g(h1) ≥ g(h2) ≥ g(h3) ≥ … ≥ g(hn).

The sequence of these "ranked g(h)" is identical with
that of the equivalent series of

e(h1, n) ≥ e(h2, n) ≥ e(h3, n) …

and of 'neighbour' q's:

1 ≥ q(h2, h1), 1 ≥ q(h3, h2), … (n–1 different ones).

In Ref. 14 (Figure 4(a)) was demonstrated, how the "so-
lution region" in the parameter space can be more and
more confined by a sequence of such new inequalities
q(hi, hi–1) ≤ 1 by using iso-surfaces of q(hi, hi–1) = 1 as
borders between 'permitted = possible' and 'forbidden =
impossible' regions of the parameter space. Since for all
structures, the "neighbour" q’s of the above sequence are
as close as possible to 1, these borders enclose the true
solution point X as close as possible, tighter than any
other q’s calculated from the same batch of data. From
this we may infer that – apart from the quantitative use
of the data – already the index sequence of hi defines (a)
region(s) of approximate solution(s) depending on how
many reflections are considered. It is obvious that any
additional reflection never augments the volume of the
m-dimensional solution region already defined, it can only
reduce it. (For high resolution by a kind of "nonius ef-
fect" see Figure 4(b) in Ref. 14) It should be noted that
this technique makes merely a qualitative use of quanti-
tative data and does not require absolute scaling as is ne-
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cessary with g(h). The quality of the data is unimportant
as long as their uncertainties do not affect their ranking –
see Eqs. (6) and (7) in Ref. 14 where also the potential
and limitation(s) of these q-series are discussed.

Depending on the case, more or also even less than
m inequalities are needed or suffice, respectively, for ob-
taining one (or more) solution region(s) which, after con-
ventional least-squares refinement, provide the solution
and discard possible alternatives.

The practical application employing a grid technique
requires either

(i) computing for each of the Np grid test vectors Xt (in
Am) the associated q(hi, hk) for n – 1 inequalities,
comparing it with the observation in question and
discarding the grid point (= Xt) or keeping it for the
next inequality check or

(ii) using a beforehand computed data pool of test vec-
tors, specific to m, the desired grid density and the
observed q-sequence.

Evidently, the second alternative is much faster as it
substitutes the systematic grid search by a "look-up" pro-
cedure. Such data pools, however, contain Np ⋅ Nq "flag-
ged" entries (where Nq denotes the number of possible
sequence permutations, see below) whose large number
presently appears to preclude practical application. As a
consequence, options for reducing Np ⋅Nq were explored
and are discussed in the next two sections.

"Salami Tactics" for the Above Series for Reducing

Nq (theoretical example)

Assume n = 13 reflections have been measured and rank-
ed as above. Then, in principle, Nq = 13! ≈ 6 ⋅ 109 differ-
ent ranking sequences are possible. (There will be some-
what less, because not all permutations are permitted due
to the general restriction that � cos 2�hxj � ≤ 1 and to known
inequalities like those given by Harker and Kasper.24) Af-
ter cutting the sequence into 4 parts, e. g. h = 1 … 4; h =
4 … 7 and so on, each of the 4 batches allows at most 4!
= 24 permutations, a number that can be handled com-
fortably.

The data pool could thus be reduced by a factor of
about 6 ⋅ 109 / 96 ≈ 6 ⋅ 107. Then, for each batch, one has
only to select the sole permutation (of 24) that complies
with the observed ranking sequence so that the region
common to the once found 4 permitted solution regions
defines approximate solution(s) with respect to all xj of
the structure projection.

Reducing Np by Grid Coarsening

Choosing a smaller p (the basis of the exponential ex-
pression for Np) provides an effective reduction of Np

and is, of course, primarily justified for low-order reflec-
tions. Combining this measure with the (qualitative) 'in-
dex sequence after ranking' provides fast separation of

'permitted' solution regions in Am from 'forbidden' ones.
In a next step, only these approximations Xp to possible
solutions must be subjected to a more detailed check – e.

g. by applying a finer grid defined in a m-dimensional
box with centre Xp or by randomly generating in each of
the boxes a given number of X vectors. This latter ap-
proach is fast, effective and has been successfully ap-
plied in a great number of tests.

The Use of Extreme Amplitude Values

The highest possible diffraction contrast is found be-
tween g(h1) = m and g(h2) = 0 (or corresponding values
for q or e).

In the parameter space representation, the iso-surface
of a g(h1) = m plots as one or more discrete point(s) in
Am (the number increases with increasing h1 and their po-
sitions are a priori known). Thus, a (scaled) g(h) close
to m restricts the solution regions to small 'hyper-spheres'
about these points. I. e., for g(h1) ≥m – D ≈ m (i. e. D <<
m), possible X vectors are limited to be within a radius
defined by D and h1.

Similarly, g(h2) = 0 is a singular branch of the g(h2)-
iso-surfaces providing valuable structure information (in
acentric structures it is an (m–2)-dimensional iso-surface).
That an accidentally extinct reflection is more valuable
than any other has already been discussed as early as 1927
by one of our ancestors, H. Ott,25 who showed that and
how a structure can even be determined from just a few
zero observations. Details about using such highly con-
trasting observations, including error dependencies, will
be dealt with in a more theoretically oriented paper.26

Data Reduction and Error Sources

In order to obtain g(hkl) values for a small batch of
experimental data, i. e. observed scattering amplitudes
| fj∑ ⋅Tj ⋅cos 2p(hxj+kyj+lzj) | where Tj = – Bj ⋅ (sin²q/l²)
one cannot resort to Wilson statistics. Instead, one has to

(i) estimate isotropic thermal displacement parameters
Bj (or an overall one, B) and

(ii) correct each observation by the respective average
over all fj ⋅Tj for obtaining estimated g(hkl)obs ap-
proximating

g(hkl) = | cos 2p∑ (hxj+kyj+lzj) |.

Bj may be reasonably well guessed from chemical
experience. Nevertheless, deviations from the "true" Bj

introduce systematic errors increasing with q. The sec-
ond approximation must be expected to cause errors due
to assuming that all scatterers are equal and deviations
from this assumption will contribute according to the
geometrical terms cos 2p(hxj+kyj+lzj). These errors are
necessarily distributed in an unknown way over all re-
flections so that also the in principle absolutely scaled q-
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or e-values can be affected. Also, these errors increase,
of course, with increasing fj contrasts, but they may be
tolerable, e. g. for X-ray scattering data from organic
compounds neglecting hydrogen atoms. The general ef-
fect of unequal scatterers in the structure is briefly ad-
dressed in Ref. 13 (see Figure 10), namely breaking the
permutation symmetry of the parameter space and dis-
tortion of the iso-surfaces.

Step (ii) involves smaller errors for neutron diffrac-
tion data than for X-ray measurements, because in the
X-ray case, the fj exhibit different dependencies on (sin
q)/l whereas in the neutron case merely the differences
in the nuclear scattering amplitudes add to the errors
caused by the Debye-Waller temperature factors. (For
different signs of nuclear neutron scattering amplitudes
see Ref. 13, Figure 11.)

PRACTICAL EXAMPLE: A SMALL THREE-DIMEN-
SIONAL CENTROSYMMETRIC TEST STRUCTURE
(m = 11)

One of us (A. K.) has made numerous feasibility and test
computations, mainly on one-dimensional structures or
one-dimensional projections of two- and three-dimen-
sional structures. These calculations, presently still per-
formed on the basis of error free data stemming from the
point scatterer model, aimed to combine some of the
tools described above and at gradually increasing the
number of atoms. The result of one of them is presented
in the following.

Test Point Structure and Its "Experimental" Basis

An 11-atom fragment of a molecule with 20 independent
atoms (see Figure 2) was taken from a known crystal
structure with symmetry P1. The coordinates are indi-
cated as "true" in Table I. The atoms were considered
equal, and the geometrical structure amplitudes g(hkl) of
this model structure were calculated up to reflection or-
der 7 for the i) three principal axes (e. g. [100]), ii) six
face diagonals (e. g. [110]), and iii) four space diagonals
(e. g. [111]). These data were quasi-normalized to e(h, 7)
for each of the 13 structure projections. Ranking each
group of reflections in descending order yielded thus 13

sequences h1 … h7 corresponding to chapter "Series of
g, q or e …", each serving as basis for finding a solution
vector X for the respective structure projections.

Solution of Each Projection

In a first step, the asymmetric part A11 of a 11-dimen-
sional grid was scanned in every direction using grid
points given by coordinates td = 0.02 + 0.03067 ⋅ d (d = 1
… 15). Those vectors Xt0 that produced a (merely quali-
tative!) e-ranking equal to the "observed" one were
saved as survivors of a coarse, but in terms of PC-time
efficient pre-selection of possible solution regions. In
step two, the space within a hyper-cube of edge length
0.032 around each Xt0 was inspected by random genera-
tion of vectors Xt1 (e. g. 20,000 tries) and testing of the
quantitative agreement. If, for example, for all n ≤ 7 re-
flections |e(h, n)cal – e(h, n)obs | ≤ 0.1, the vector was ac-
cepted for a further calculation of R(e). If then, R(e) was
found below a given threshold (e. g. 0.03), the very vec-
tor was considered as promising candidate for a final
conventional least-squares refinement on the basis of
"observed" e(h, n) extended to n = 15 (step 3). Fre-
quently, step 2 can also be performed with, say, reflec-
tion orders 5 – 9 which improves discrimination and re-
duces the number of least-squares candidates. Generally,
the winning Xt2, i. e. a satisfactory structure (projection)
determination was found within the say 3 to 5 candidate
vectors producing the best conventional agreement indi-
ces. It should, however, be noted in this context that the
numbers of test reflections and the grid-point density are
critical parameters that might be even better adjusted.

Three-dimensional Reconstruction of the Structure

Starting with the refined x, y, and z parameters from the
"best solutions", Xt2 (0 < xi ≤ 0.5; 0 < yj ≤ 1.0; 0 < zk ≤
1.0; i, j, k = 1 … m), all possible coordinate sums for the
face and space diagonals, e. g. =∑ xi + yj + zk for the
[111] direction or of =∑ xi – yj for the [1,–1, 0] direc-
tion, were calculated and compared with the respective
projection results. When the differences were below a
preset threshold, e. g. 0.013, these coordinates were ac-
cepted as belonging to a possible atom position. From a
total of 4m³ = 5324 "principally possible" positions in
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a) b)

Figure 2. 11-atom part of the molecule’s crystal structure. Left: true atom arrangement. Right: found as described in the text.



the asymmetric half of the unit cell, only 15 survived the
checking with respect to the 10 non-axial projections
(four pairs were so close to each other that they could be
considered identical). These final results reproduced all
atom positions, and they were essentially the same inde-
pendent of the sequence of the projection checks. The
differences between the "true" and the derived coordi-
nates are rather small yielding coordinate and "true" de-
viations as given in Table I. For an assumed lattice of
6.0 × 7.0 × 9.0 Å, on average of 0.02 Å with a maximum
of 0.043 Å. These results demonstrate again the resolu-
tion potential of the method (see Figure 2 for compari-
son).

In addition, the example conveys an important result:
less than m independent e(h, n) data suffice (at least in
this case) to select a set of solution vectors allowing for
a successful one-dimensional structure determination upon
"refinement" on n > m data.

(Examination of other types of reconstruction algo-
rithms are under progress and will be reported elsewhere.)

DISCUSSION AND SUMMARY

Not quite unexpectedly, the method outlined has both
advantages and disadvantages. Some of the "pro’s" have
already been mentioned in the above section "principal
advantages". In addition, it is noteworthy that the use of
one-dimensional projections reduces the problem of
space group handling in the parameter space to the two
one-dimensional cases, P1 and P1. The actual space
group of the structure becomes only relevant in the re-
construction process ("point tomography") which takes
place in the 3-dimensional fractional coordinate space,
optionally supported by monitoring the results in the di-
rect crystal space which allows for checking against che-
mical constraints, i. e. reasonable bond lengths and an-
gles. Other interesting advantages result from the high
resolution, because:

i) any well-defined solution(s) of one- or two-dimen-
sional structure projection(s) should be able to supply
Direct Methods with useful phase information;

ii) the determination of the partial structure of one or
more anomalous scatterers (the phases of their par-
tial structure contributions thus known) may provide
a better basis for completing the structure than does
the same partial structure obtained from Patterson
methods, and

iii) selected data may be used to unravel structural de-
tails as illustrated by a feasibility study on a split atom
problem.27

Inherent "contra’s", on the other hand, are readily de-
fined by:

i) two types of problems caused by data errors in the
"experimental" g(hkl) data, namely the above men-
tioned errors in the data reduction process, and the
vulnerability of the method against individual, un-
detected gross errors in the measurements (whereas
a few of them do not necessarily compromise a Fou-
rier summation);

ii) the use of one-dimensional projections which give rise
to a partial loss of "atomicity", an increased probabil-
ity to obtain (quasi-)homometric solutions, and a loss
of "easy" origin definition in acentric projections;

iii) the large computing demand: increasing almost pro-
portional to pm.
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TABLE I. True and found fractional coordinates, their absolute dif-
ferences on the basis of an assumed orthogonal lattice: a0 = 6.0,
b0 = 7.0, c0 = 9.0 Å. Dev is the distance between the true and
the derived atomic position.

atom coord. true found diff abs. diff / Å dev / Å

1 x 0.4423 0.4423 0.0000 0.0 0.0037

y 0.1610 0.1609 0.0001 0.0007

z 0.7398 0.7394 0.0004 0.0036

2 x 0.4384 0.4345 –0.0039 –0.0234 0.0237

y 0.1275 0.1277 –0.0002 –0.0014

z 0.6270 0.6266 0.0004 0.0036

3 x 0.3722 0.3722 0.0000 0.0 0.0012

y 0.2191 0.2190 0.0001 0.0007

z 0.4395 0.4394 0.0001 0.0009

4 x 0.3693 0.3728 –0.0035 –0.0189 0.0194

y 0.3069 0.3112 –0.0043 –0.0301

z 0.7903 0.7903 0.0000 0.0

5 x 0.3691 0.3728 –0.0037 –0.0222 0.0224

y 0.2565 0.2565 0.0000 0.0

z 0.5519 0.5516 0.0003 0.0027

6 x 0.3040 0.3040 0.0000 0.0 0.0009

y 0.4311 0.4310 0.0001 0.0007

z 0.7110 0.7111 –0.0001 –0.0009

7 x 0.2993 0.3040 –0.0047 0.0282 0.0292

y 0.4194 0.4205 –0.0011 –0.0077

z 0.5914 0.5914 0.0000 0.0

8 x 0.2309 0.2309 0.0000 0.0 0.0033

y 0.5967 0.5963 0.0004 0.0028

z 0.7360 0.7358 0.0002 0.0018

9 x 0.2176 0.2176 0.0000 0.0 0.0329

y 0.5842 0.5795 0.0047 0.0329

z 0.5419 0.5420 –0.0001 –0.0009

10 x 0.1809 0.1809 0.0000 0.0 0.0343

y 0.6891 0.6888 0.0003 0.0021

z 0.6304 0.6266 0.0038 0.0342

11 x 0.1048 0.1048 0.0000 0.0 0.0432

y 0.8774 0.8723 0.0051 0.0357

z 0.6293 0.6266 0.0027 0.0243



Adopting, however, an optimistic point of view, the
last disadvantage is the least serious considering the still
rapid progress in both numerical methods and comput-
ing technology. Calculations seeming hopeless to be per-
formed on a to-date PC may well become routine task in
the near future. Therefore, the presently achieved knowl-
edge of the method should be consolidated (e. g. by im-
provements of the algorithms) but simultaneously, it is
of pressing importance to focus on the compatibility of
the "parameter space approach" with "real" experimental
data.
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SA@ETAK

Koncept odre|ivanja kristalne strukture bez uporabe Fourierove inverzije:
neki koraci prema primjeni

Karl F. Fischer, Armin Kirfel i Helmuth Zimmermann

Odre|ivanje kristalne strukture bez prora~una raspodjele elektronske gusto}e Fourierovom transformacijom
(~ime se izbjegava i tzv. fazni problem) ostvaruje se u 3m dimenzijskom prostoru relativnih prostornih parame-
tara, gdje je m broj neovisnih atoma, svedenih na jednake centre (to~ke) raspr{enja u mirovanju. Kao demonstracija
osnovnih ideja, primijenjuju se dvodimenzijski parametarski prostori, koji predo~uju na pr. jednodimenzijske
strukture od dva atoma. Sredi{nji nizovi refleksa u recipro~noj re{etki omogu}avaju rje{avanje jednodimenzij-
skih projekcija strukture, uz manji broj refleksa u svakom nizu, te uz ostvarenje boljeg razlu~ivanja nego pomo}u
Fourierovih redova. Rje{enje se mo`e ostvariti ili pomo}u zajedni~kog presjeka hiper-ploha u m dimenzijskom
parametarskom prostoru definiranom odabranim amplitudama raspr{enja, ili inspekcijom dozvoljenih, mogu}ih,
podru~ja rje{enja {to slijedi iz jednostavnog nizanja amplituda. Nalaze se sva mogu}a rje{enja koja zadovolja-
vaju ulazne podatke, uklju~uju}i i "la`ne minimume". Primjerom, koji se osniva na teorijskoj pretpostavki da
su ulazni podatci to~ni, ilustrira se odre|ivanje hipoteti~ke trodimenzijske strukture od 11 atoma na osnovi jedno-
dimenzijskih projekcija. Budu}i da je teorijska osnova opisana u dva prethodno objavljena rada, u ovom radu
naglasak je na razli~itim opcijama koje se uskla|uju s ra~unalnim zahtjevima u prakti~noj primjeni. Rasprav-
ljaju se prednosti i nedostatci predlo`enog koncepta.
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