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Abstract. The anti-Kekulé number is the smallest number of edges
that must be removed from a connected graph with a perfect matching
so that the graph remains connected, but has no perfect matching. In
this paper the values of the Anti-Kekulé numbers of the infinite triangular,
rectangular and hexagonal grids are found, and they are, respectively, 9, 6
and 4.

1. Introduction

Graph theory models have extensively been used as predictors of prop-
erties of chemical compounds (see [6, 7] and references within). A perfect
matching [4] in a graph corresponds to the notion of a Kekulé structure in
chemistry, and plays a very important role in the analysis of benzenoid sys-
tems, fullerenes and other carbon cages [2, 5]. For example, it is well-known
that carbon compounds without Kekulé structures are unstable [5].

The anti-Kekulé number was introduced in [10] and further studied in
[3, 9]. This paper continues these studies. It is well-known that the plane can
be regularly tiled only by triangles, squares and hexagons. These three types
of tilings result in three (infinite) grids: the triangular grid, the rectangular
grid, and the hexagonal grid. In this paper, we show that the anti-Kekulé
number of the triangular grid is 9, of the rectangular grid is 6 and of the
hexagonal grid is 4.
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2. Basic definitions and preliminaries

Throughout this paper, we use standard graph-theoretical terms and no-
tation [1, 8, 11]. Let G be a connected graph with at least one perfect matching
(Kekulé structure). Let E (G) denote the set of edges of G and V (G) its set
of vertices. Let S ⊆ E (G) . Denote by G − S the graph obtained by deleting
the edges in S from G. Edges in S will be called deleted edges. If G − S is
connected and has no perfect matching, then we say that S is anti-Kekulé
set. The cardinality of the smallest anti-Kekulé set is called the anti-Kekulé
number of graph G and it is denoted by akn (G) .

Borrowing chemical terminology, given a perfect matching M, we say an
edge is a double bond if it is contained in M, and otherwise, we call it a single
bond.

3. Main results

As the main results, we give three theorems in which the anti-Kekulé num-
bers of the infinite triangular, rectangular and hexagonal grids are calculated.
These infinite graphs are called G3, G4 and G6, respectively.

Theorem 3.1. The anti-Kekulé number of the hexagonal grid, G6, is
equal to 4.

Proof. From Figure 1, it can be easily seen that akn (G6) ≤ 4. Just note
that the two back vertices can not both be met by any perfect matching.

Figure 1. Anti-Kekulé set consisting of four edges

Now, let us prove that akn (G6) ≥ 4. Suppose to the contrary that there
is a set D consisting of at most three edges such that G6 − D is connected,
but has no perfect matching. Of course, we may assume that |D| = 3.

We say that a hexagon is conjugated by a perfect matching M if it contains
three double bonds (that is, three edges of M). Note that each hexagon can
be conjugated in two different ways as in Figure 2. Divide the hexagons of
the hexagonal grid into three classes as in Figure 3.

One can easily see that there is a set CA (resp. CB, CC) of perfect match-
ings that consist solely of double bond edges of hexagons of A (resp. B, C).
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Figure 2. Two ways a hexagon can be conjugated
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Figure 3. Division of hexagons in three classes

It follows that there is a hexagon denoted by HA in A (resp. HB in B, HC in
C) that contains at least two edges of D. Since |D| = 3, the three hexagons
HA, HB and HC each contain exactly 2 edges in D. Since no two hexagons
share two edges, it follows that one edge of D is shared by HA and HB; one
by HA and HC ; and one by HB and HC . This is possible only when all three
edges are incident to the same vertex, but then G6 − D is disconnected, a
contradiction. Hence, |D| ≥ 4.

Theorem 3.2. The anti-Kekulé number of the infinite rectangular grid,
G4, is equal to 6.

Proof. From Figure 2 we see that akn (G4) ≤ 6. Just note that the two
black vertices can not both be met by any perfect matching. Let us prove that

Figure 4. An anti-Kekulé set consisting of 6 edges

akn (G4) ≥ 6. Suppose to the contrary that there is a set D consisting of at
most five edges such that G6 − D is connected, but has no perfect matching.
Of course, we may assume that |D| = 5. We say that a line is conjugated by M
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if all its vertices are met by edges of M that lay on that line. Of course, each
line can be conjugated in two ways as shown in Figure 5. Since, G4 − D has

Figure 5. Two ways in which a line can be conjugated

no perfect matching, it follows that there are at least one horizontal and one
vertical line each containing two edges of D. Since |D| = 5, there is exactly
one vertical line vl and one horizontal line hl containing at least two edges
of D each. Let vertex v be the intersection of these two lines. Distinguish
between the following five cases:

Case 1: There are four deleted edges incident to v.

In this case, the graph is disconnected which is a contradiction.
Case 2: There are three deleted edges incident to v.

Without loss of generality, we may assume that we have the following
situation:

vl

hl

Figure 6. Graph for Case 2.

Denote by D′ the set of remaining two edges in D. Denote by B1 the set
of bold lines on the left hand-side of Figure 7 and by B2 the set of bold lines
on the right hand-side in Figure 7.

Note that D′ has at least one edge on vl. Hence, (B1 ∪ B2) ∩ D contains
at most one element. Since B1 ∩ B2 has only one edge and it is not in D,

it follows that at least one of sets B1 ∩ D′ and B2 ∩ D′ is empty. Without
loss of generality, let us assume that B1 ∩ D′ is empty. Note that each line
represented by a dotted line contains at most one edge in D. Hence, it can be
conjugated (choosing conjugation that avoids that edge). But, then there is a
Kekulé structure in G4−D that consists of the edges in B1 and in conjugated
dotted lines. This is a contradiction.

Case 3: There are two deleted edges incident to v and they lie on the
same line.
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hl hl

vl vl

Figure 7. Sets B1 and B2 and conjugated lines

Without loss of generality, we may assume that we have the following
situation:

hl

vl

Figure 8. Graph for Case 3

The proof goes analogously to that of Case 2 by observing the following
figure:

Figure 9. Case 3: Disjoint sets of double bonds and sets of
conjugated lines.

Case 4: There are two deleted edges incident to v and they are on
different lines.
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Without loss of generality, we may assume that we have the following
situation:

hl

vl

Figure 10. Graph for Case 4.

The proof goes analogously to that of Case 2 by observing the following
figure:

Figure 11. Case 4: Disjoint sets of double bonds and sets
of conjugated lines.

Case 5: There is at most one deleted edge incident to v.

Without loss of generality, we may assume that we have the following
situation:

hl

vl

Figure 12. Graph for Case 5.



ANTI-KEKULÉ NUMBER 249

The proof goes analogously to that of Case 2 by observing the following
figure:

Case 5: Disjoint sets of double bonds and sets of conjugated lines.

All the cases are exhausted and the theorem is proved.

Before the following theorem, we need some auxiliary results. Suppose
that a coordinate system is introduced in G4.

Lemma 3.3. Let P ⊆ E (G4) be a finite set of edges. Let C be the com-
ponent of the graph G4 − P. Then,

|P | ≥ 2 · (max {x (T ) : T ∈ V (C)} − min {x (T ) : T ∈ V (C)} + 1) +

2 · (max {y (T ) : T ∈ V (C)} − min {y (T ) : T ∈ V (C)} + 1) .

Proof. Just note that above and below (not necessarily immediately
above and below) each point in C, there is at least one edge in P ; and also to
the left and to the right (not necessarily immediately to the left and to the
right) of each point in C, there is at least one edge in P.

From here, it directly follows that:

Lemma 3.4. If C is a component of G4 −P and |P | ≤ 5, then C consists
of a single vertex and P contains all edges incident to that vertex.

Lemma 3.5. Let C be a connected component of G4 − P and |P | = 6.

Then either:
1) C consists of a single vertex and P contains all edges incident to that
vertex, or
2) C consists of two vertices and P contains all edges incident to these vertices
(except one connecting these two vertices).

Now, we can prove:

Theorem 3.6. The anti-Kekulé number of the infinite triangular grid,
G3, is equal to 9.

Remark 3.7. For the sake of simplicity, we draw the triangular grid in
the following (isomorphic) form:
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Figure 13. Triangular grid

Proof. From Figure 14, it can be easily seen that akn (G3) ≤ 9. Just
note that the two black vertices can not both be met by any perfect matching.

Figure 14. An anti-Kekulé set consisting of nine edges.

Let us prove that akn (G3) ≥ 9. Suppose to the contrary that there is
a set D consisting of at most eight edges such that G3 − D is connected,
but has no perfect matching. The edges of G3 can be divided into three
groups according to their direction: the set of horizontal ones, vertical ones
and skew ones. Denote by Dh, Dv and Ds the sets of horizontal, vertical and
skew edges in D, respectively. Denote by Gh,v the subgraph of G3 consisting
of only horizontal and vertical edges, and define Gh,s and Gv,s analogously.
Note that Gh,v, Gh,s and Gv,s are all isomorphic to G4.

Without loss of generality, we may assume that |Dh| ≤ |Dv| ≤ |Ds| .
Note that |Dh| ≥ 2, because otherwise there is a perfect matching in G3 − D

consisting of conjugated horizontal lines. From |Dh| + |Dv| + |Ds| ≤ 8, it
follows that |Dh| = 2.

Note that |Dh|+ |Dv| ≤ 5. From Theorem 2, it follows that Dh∪Dv is not
an anti-Kekulé set in Gh,v. Since, Gh,v − (Dh ∪ Dv) has no perfect matching,
it follows that it is disconnected. From Lemma 4, it follows that there is a
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vertex w such that all horizontal and vertical edges incident to w are in D.

Distinguish two cases:
Case 1: |Dh| + |Ds| ≤ 5.

Analogously as above, it follows that Dh∪Ds is not an anti-Kekulé set in
Gh,s and hence Gh,s − (Dh ∪ Ds) is disconnected. From Lemma 4, it follows
that there is a vertex w′ such that all horizontal and skew edges incident to
w′ are in D. Since there are only two horizontal edges in D, it follows that
w′ = w. But then, all edges incident to w are in D, and G3−D is disconnected,
which is a contradiction.

Case 2: |Dh| + |Ds| ≥ 6.

In this case |Dh| = |Dv| = 2 and |Ds| = 4. Since, both horizontal and
both vertical edges in D are incident to w, it follows that at least one of the
skew edges incident to w is not in D. But then, the following figure gives a
perfect matching in G3 which is a contradiction. This proves the theorem.

w

Figure 15. Perfect matching in G3 − D

As an open problem, we propose the analysis of the anti-Kekulé number
of multidimensional grids.
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[7] N. Trinajstić, Chemical Graph Theory, CRC Press, Boca Raton, 1992.
[8] D. Veljan, Kombinatorna i diskretna matematika, Algoritam, Zagreb, 2001.



252 D. VELJAN AND D. VUKIČEVIĆ
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Department of Mathematics
University of Split,
Nikole Tesle 12
HR-21000 Split
Croatia
E-mail : vukicevi@pmfst.hr

Received : 15.12.2006.

Revised : 9.11.2007. & 28.12.2007.


