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THE ADDITIVE UNIT STRUCTURE OF COMPLEX

BIQUADRATIC FIELDS

Volker Ziegler

Graz University of Technology, Austria

Abstract. We determine which rings of the form Z[α] are generated

by their units, where α is a root of the polynomial X
4
− BX

2 + D such
that α and all its conjugates are complex.

1. Introduction

Zelinsky [12] was the first who investigated the additive unit structure of
rings, i.e. Zelinsky proved, if V is a vector space over a division ring D, then
every linear transformation can be written as the sum of two automorphisms
unless dimV = 1 and D is the field of two elements. Zelinsky’s work gave rise
to many investigations of rings that are generated by their units (see [10] for
an overview). These investigations led Goldsmith, Pabst and Scott [5] to the
following definition:

Definition 1.1. Let R be a ring (with identity). An element r is called
k-good if r = e1 + · · · + ek, with e1, . . . , ek ∈ R∗. If every element of R is
k-good we call also the ring k-good.

The unit sum number u(R) is defined as min{k : R is k − good}. If the
minimum does not exist but the units generate R additively we set u(R) = ω.
If the units do not generate R we set u(R) = ∞.

Although this topic has a history of more than 50 years, the interest in
algebraic integers was marginal. In 1964 Jacobson [6] asked which quadratic
fields have the property that every (algebraic) integer can be written as the
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sum of distinct units. The problem was solved by Śliwa [8]. The cubic and
quartic case was considered by Belcher [2, 3]. Moreover, Belcher [2] character-
ized all quadratic fields whose rings of integers are generated by their units.
About thirty years later Ashrafi and Vámos [1], Jarden and Narkiewicz [7]
and Tichy and Ziegler [9] resumed this topic. In particular Ashrafi and Vámos
showed that the ring of integers of quadratic fields, complex cubic fields and
fields of the form Q(ζ2n), with ζ2n is a 2n-th primitive root of unity, do not
have finite unit sum number. This was generalized to all number fields by
Jarden and Narkiewicz. Tichy and Ziegler [9] characterized all purely cubic
number fields whose ring of integers are generated by their units. The case
of purely complex quartic fields was solved by Filipin, Tichy and Ziegler [4].
Note that the case of quadratic fields has been rediscovered by Ashrafi and
Vámos [1].

For the rest of the paper we assume f(X) = X4−BX2 +D is irreducible
and all its roots are complex, i.e. 4D > B2 or −B, D > 0. Let α be one of
the roots of f(X). Then we investigate the additive unit structure of Z[α]. In
particular we prove the following theorem.

Theorem 1.2. Z[α] is generated by its units if and only if D = ±1 or
B, D fulfill one of the cases listed in Table 1. In particular, if Z[α] is generated
by its units, then D = ±1 or B2 − 4D = −4,−3.

Table 1. List of unit bases for Z[α], where ρ = −1+
√
−3

2 and

i =
√
−1.

B D ǫ Basis

2n2 n4 + 1 n + α {1, i, ǫ, ǫi}
−2n2 n4 + 1 n3 + α + nα2 {1, i, ǫ, ǫi}

2n2 + 1 n4 + n2 + 1 n + α {1, ρ, ǫ, ǫρ}
2n2 − 1 n4 − n2 + 1 n + α {1, ρ, ǫ, ǫρ}
−6n2 + 1 9n4 − 3n2 + 1 (3n3 − 2n) + 2n2α + nα2 + α3 {1, ρ, ǫ, ǫρ}
−6n2 − 1 9n4 + 3n2 + 1 (3n3 + 2n) + 2n2α + nα2 + α3 {1, ρ, ǫ, ǫρ}

−3 3 1 + α + α3 {1, ρ, ǫ, ǫρ}

In Table 1 we denote by n an arbitrary integer. The case D = ±1 can
be excluded in our further investigations, since in this case α is a unit and
Z[α] is by trivial reasons generated by its units. The case D = 0 can also be
ignored, since otherwise f(X) is reducible.

Before we start with the proof of the theorem, we have to determine
the unit structure of the rings under consideration, in particular we have to
determine, which roots of unity may appear (see section 2). The proof of
Theorem 1.2 is divided into two cases. In the first case we assume that the
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“discriminant” ∆ := B2−4D is positive. In this case it turns out that the field
Q(α) is a CM-field, i.e. a totally complex field which is the quadratic extension
of a totally real field. Since in CM-fields the unit structure is well known we
will succeed in this case (see section 3). In section 4 we are concerned with
the case of ∆ < 0. In this case we will see that the Diophantine equation
X2 − ∆Y 2 = ±4 is closely related to our problem and leads us to systems of
equations, which are solved by using Groebner bases. In the last section we
discuss some corollaries to Theorem 1.2.

In tables we assume that the signs must not be mixed, i.e. in one row we
have to choose always the upper case sign or the lower case sign for all entries.
In some tables, especially if we list units that generate rings of integers, mixed
signs are allowed. Those tables are labeled with ”mixed signs”.

2. Roots of unity and unit bases

In this section we determine in which cases roots of unity appear. By
ζn we denote a primitive n-th root of unity. Before we start to investigate
the unit structure we have to determine the Galois group of the polynomial
X4 − BX2 + D.

Lemma 2.1. The polynomial X4 − BX2 + D is reducible if and only if
B2 − 4D is a square or D = d2 and B = b2 − 2d for some integers b and d.

Assume X4−BX2 +D is irreducible. The Galois group G corresponding
to X4 −BX2 + D is Z2 ×Z2 if and only if D is a square in Z, Z4 if and only

if D = B2

4+k2 with some k ∈ Q, D not a square in Z and D4 otherwise. In the

case D not a square, M = Q(
√

B2 − 4D) is the unique quadratic subfield of
Q(α).

Proof. First, we prove the irreducibility statement. If B2 − 4D is a
square it is obvious that X4 − BX2 + D is reducible. Therefore we assume
B2 − 4D is not a square. Assume X4 −BX2 + D is reducible. Since B2 − 4D
is not a square no root of X4 − BX2 + D is a rational. Therefore we have

X4 − BX2 + D = (X2 + b1X + d1)(X
2 + b2X + d2),

with b1, b2, d1, d2 ∈ Z. By comparing coefficients we find b1 = −b2 = b. Note
that b 6= 0 since otherwise X2 −BX +D is reducible which yields B2 − 4D is
a square. Moreover, we find B = b2 − d1 − d2, 0 = b2d1 + b1d2 and D = d1d2,
i.e. d1 = d2 = d, D = d2 and B = b2 − 2d.

Next, we compute the Galois group. We note that the only transitive
subgroups of S4 are S4, A4, D4, Z4 and Z2 × Z2 up to conjugacy classes. Let
α1, . . . , α4 be the roots of X4 − BX2 + D in a suitable order. Then we have

(2.1) α1 + α2 = α3 + α4 = 0

and αi + αj 6= 0 for i < j and (i, j) 6= (1, 2), (3, 4). Note that the cyclic
permutation (1, 2, 3) of the indices of α does not induce an automorphism.
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Therefore G = Gal(Q(α), Q) is not S4 nor A4. The only cyclic permutations
of length 4, which leave (2.1) fixed, are (1, 3, 2, 4) and (1, 4, 2, 3). Moreover, in

the case α1α3 =
√

D ∈ Z, the field Q(α) is Galois and the Galois group cannot
be cyclic, since the only admissible cyclic permutations yield automorphisms
with

√
D 7→ −

√
D. Note that the Galois group Z2×Z2 is exactly the transitive

group such that (2.1) and α1α3 stays invariant. If
√

D ∈ Q(α)\Z then Q(α) is

Galois and there exists an automorphism with
√

D 7→ −
√

D, i.e. G 6= Z2×Z2

and therefore G = Z4. In the case of
√

D 6∈ Q(α) the field Q(α) is not Galois
and therefore has Galois group D4.

If D is not a square in Z then Q(α) has Galois group Z4 or D4. It
is an immediate consequence of Galois theory that fields with such Galois
groups have a unique quadratic subfield. On the other hand Q(

√
B2 − 4D)

is a quadratic subfield of Q(α), hence it is unique for D 6∈ Z2. Furthermore

if G = Z4 we have Q(
√

D) = Q(
√

B2 − 4D) which yields k2D = B2 − 4D for
some k ∈ Q.

Let ζn be a primitive n-th root of unity. We prove:

Proposition 2.2. The field Q(α) contains fourth and sixth roots of unity
respectively in the following cases:

• If B2 − 4D = −4m2 with m ∈ Z, then ζ4 = −B+2α2

2m ;

• If B2 − 4D = −3m2 with m ∈ Z, then ζ6 = m−B+2α2

2m ;

• If D = d2 and B + 2d = −m2, with d, m ∈ Z, then ζ4 = −(B+d)α+α3

Bm

provided B 6= 0 and ζ4 = dα−α3

dm otherwise;

• If D = d2 and B + 2d = −3m2, with d, m ∈ Z, then ζ6 =
Bm−(B+d)α+α3

2Bm provided B 6= 0 and ζ6 = dm+dα−α3

2dm otherwise.

Before we prove the proposition let us remark that the case m = 0 is
impossible, since otherwise we obtain in all cases B2 − 4D = 0. But this
implies X4 − BX2 + D is reducible.

Proof. Let us assume D is not a perfect square and ζn ∈ Q(α) with

n = 4, 6. Then the only quadratic subfield of Q(α) is Q(
√

B2 − 4D) = Q(ζn).
We consider the case n = 4 first. Therefore we conclude B2 − 4D = −m′2 or
equivalently B2+m′2 = 4D. Assuming m′ odd, we obtain 0 ≡ B2+m′2 ≡ 1, 2
mod 4 which is a contradiction. Therefore m′ = 2m and we have B2 − 4D =
−4m2. In the case of n = 6 we obtain B2 − 4D = −3m2 similarly.

Now let us assume D = d2. Then there are 3 non-isomorphic quadratic
subfields of Q(α). These are beside Q(

√
B2 − 4D) the fields Q(

√
B ± 2d).

If ζn 6∈ Q(
√

B2 − 4D), then ζn ∈ Q(
√

B + 2d). Indeed, if ζn 6∈ Q(
√

B + 2d)

then make the change d → −d. The case ζn ∈ Q(
√

B2 − 4D) has been treated
above. Therefore we conclude B + 2d = −m2,−3m2 depending on n.
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Now we have to compute the roots of unity. Note that α = ±
√

B±
√

B2−4D
2 .

Therefore we have −B + 2α2 = ±
√

B2 − 4D. If we substitute B2 − 4D =
−4m2, −3m2 respectively we obtain the first two cases. Note that ±

√
−1 and

(1 ±
√
−3)/2 is for either sign a fourth and sixth root of unity respectively.

Now assume D = d2 and B +2d = −m2,−3m2. In this case we can write

α = (e1

√
B + 2d + e2

√
B − 2d)/2,

with e1, e2 ∈ {±1}. By a simple computation we find

α3 = (e1(B − d)
√

B + 2d + e2(B + d)
√

B − 2d)/2.

Therefore −(B+d)α+α3

B = e1

√
B + 2d provided B 6= 0. Inserting B+2d = −m2

and B + 2d = −3m2 yields the third and fourth statement of the proposition
respectively. The case B = 0 can be proved similarly.

If ζn ∈ Q(α) we have φ(n)|4, i.e. n = 1, 2, 3, 4, 5, 6, 8, 10, 12. Since for n
odd ζ2n = −ζn it suffices to consider the case n is even.

Proposition 2.3. We have the following relations:

ζ4 ∈ Z[α] ⇐⇒ B2 − 4D = −4 or B = D = 1;

ζ6 ∈ Z[α] ⇐⇒ B2 − 4D = −3;

ζ8 ∈ Z[α] ⇐⇒ B = 0, D = 1;

ζ12 ∈ Z[α] ⇐⇒ B = D = 1.

Moreover, ζ10 6∈ Z[α] for any α.

Proof. Assume ζ4 ∈ Z[α]. Because of Proposition 2.2 either B2 − 4D =
−4m2, with m = ±1 or B + 2d = −m2, where Bm = ±1. In the first case
we obtain B2 − 4D = −4 and in the second case we get ±1 + 2d = −1, i.e
B = −1 and d = 0 or B = 1 and d = 1. This yields the first statement. Note
that d = 0 yields D = 0 which has been excluded.

If ζ6 ∈ Z[α], then we have B2 − 4D = −3m2 with m = ±1 or B + 2d =
−3m2 with 2Bm = ±1. The first case yields B2 − 4D = −3 and the second
case is a contradiction.

In the case of n = 8, 10, 12 we have Q(ζn) = Q(α) and ζn ∈ Z[α] implies
that Z[α] is the maximal order. Computing discriminants we see that δZ[α] =

16(B2 − 4D)2D and δn = 28, 53, 2432 for n = 8, 10, 12 where δn denotes the
discriminant of Q(ζn). Note if Z[α] is the maximal order of Q(α) = Q(ζn) we
have δZ[α] = δn. For n = 8 we deduce (B2 − 4D)2D = 16 which yields B = 0

and D = 1, for n = 10 we have 16|53, a contradiction, and for n = 12 we
obtain (B2 − 4D)2D = 9 which yields B = D = 1.

Next we investigate possible integral bases for Z[α] which consist of units.
We prove the following version of [9, Lemma 1]:
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Lemma 2.4. Let α be an algebraic integer of degree 4, totally complex, i.e
all its conjugates are complex, and let ζ ∈ Z[α] be an n-th root of unity, with
n maximal. Then the ring Z[α] is generated by its units if and only if it is
generated by {1, ζ, ζ2, . . . , ζn−1, ǫ, ζǫ, . . . , ζn−1ǫ3}, where ǫ is the fundamental
unit of Z[α].

Proof. By Dirichlet’s unit theorem we may assume Z[α] is generated by

{ζk1ǫl1 , ζk2ǫl2 , ζk3ǫl3 , ζk4ǫl4}.
Since ǫ is an algebraic integer of degree four, ζkǫl can be written as a linear
combination of ζk, ζkǫ, ζkǫ2, ζkǫ3, which already proves the lemma.

Proposition 2.5. Let |D| > 1, and assume Z[α] is generated by its units.
Then there exists a unit ǫ ∈ Z[α]∗ such that:

• The basis {1, ǫ, ǫ2, ǫ3} generates Z[α] if B2 − 4D 6= −3,−4;
• The basis {1, ζ6, ǫ, ǫζ6} generates Z[α] if B2 − 4D = −3;
• The basis {1, ζ4, ǫ, ǫζ4} generates Z[α] if B2 − 4D = −4.

Moreover, in each case the basis, where ǫ is replaced by ǫ−1, generates also
Z[α].

Proof. By Proposition 2.3 we know, if |D| > 1 roots of unity other
than ±1 occur in Z[α] if and only if B2 − 4D = −3,−4. Let us assume
B2 − 4D 6= −3,−4. Since Q(α) is totally complex and of degree four we have
by Dedekind’s unit theorem, that all units are of the form ±ǫk, where ǫ is a
fundamental unit. Therefore the first case is proved.

Now assume B2 − 4D = −4,−3. By Lemma 2.4 we know if Z[α] is gener-
ated by its units then there exists a subset of E = {1, ζ, ǫ, ǫζ, ǫ2, ǫ2ζ, ǫ3, ǫ3ζ}
with four elements which is a basis for Z[α]. By ζ we denote ζ4, ζ6 depending
on B2 − 4D = −4,−3. Indeed, since ζ3

6 = ζ2
4 = −1 and ζ2

6 = ζ6 − 1 we
only have to consider subsets of E. A subset B = {ǫ1, ǫ2, ǫ3, ǫ4} is a basis of
Z[α] if and only if the Matrix M corresponding to the base change from B
to {1, α, α2, α3} has determinant ±1. Let us write ǫ = x + yα + zα2 + wα3.
Moreover let ǫi = xi+yiα+ziα

2+wiα
3 ∈ E, then Z[α] has basis {ǫ1, ǫ2, ǫ3, ǫ4}

if and only if

detM = det









x1 y1 z1 w1

x2 y2 z2 w2

x3 y3 z3 w3

x4 y4 z4 w4









= ±1.

We compute the determinant for all 70 possible cases and recognize that
each determinant has the factor Dw2 + Bwy + y2. This yields in any case
Dw2 + Bwy + y2 = ±1. But the determinant corresponding to the basis
{1, ζ, ǫ, ǫζ} is exactly Dw2 + Bwy + y2. Therefore the cases B2 − 4D = 3, 4
are established.
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Now we prove the last statement of the proposition. Obviously a ba-
sis of Z[α] remains a basis if each of its elements is multiplied by the same
unit ǫ. Therefore we conclude, if {1, ǫ, ǫ2, ǫ3} is a basis then {ǫ−3, ǫ−2, ǫ−1, 1}
(multiplication by ǫ−3) is also a basis. Similar, if {1, ζ, ǫ, ǫζ} is a basis, then
{ǫ−1, ǫ−1ζ, 1, ζ} (multiplication by ǫ−1) is also a basis.

3. The case B2 − 4D > 0

This section is devoted to the case B2−4D > 0. Therefore Q(α) is a CM-
field, i.e. a field that is a totally complex extension of a totally real number
field. The following theorem yields a tool to prove Theorem 1.2 in this case
(see [11, Theorem 4.12]).

Theorem 3.1. Let K be a CM-field and let R be an order of K, E the
unit group of R, K+ the maximal real subfield of K, E+ the unit group of
R ∩ K+ and W the roots of unity lying in R. Then

[E : WE+] = 1, 2.

Proof. The proof of this theorem can be taken word by word from [11,
Theorem 4.12]. Note that Washington proved this theorem in the case of R
is the maximal order but this property is not needed.

Because of Proposition 2.3 we know that Z[α] contains no roots of unity
other than ±1. Let ǫ ∈ Z[α]∗, then we conclude by Theorem 3.1 that either
ǫ or ǫ2 is real. In the case ǫ is real obviously Z[α] is not generated by 1, ǫ, ǫ2

and ǫ3. Therefore we assume that ǫ is not real but ǫ2 is real. Let us write

ǫ = x + yα + zα2 + wα3.

We compute

ǫ2 = (x2 − 2Dwy − Dz2 − BDw2) + 2(xy − Dwz)α

+ ((Bw + y)2 + Bz2 + 2xz − Dw2)α2 + 2(wx + Bwz + yz)α3.

Since α and α3 are purely imaginary and linear independent we conclude

xy =Dwz, wx + Bwz + yz = 0.(3.1)

Multiplying the second equation by y yields z(Dw2 + Bwy + y2) = 0. Since
Dw2 + Bwy + y2 = 0 implies Q(α) is not quartic, we deduce z = 0, hence
wx = xy = 0. Therefore either x = 0 or w = y = 0. In the case of x = 0,
we deduce that α is a unit, hence D = ±1. In the case of w = y = 0 we get
ǫ = x = ±1. But obviously ±1 does not generate Z[α].
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4. The case of B2 − 4D < −4

Because of Proposition 2.5 (see also [9, Lemma 1]) we may assume
{1, ǫ, ǫ2, ǫ3} generates Z[α]. Let the notations be as above and write

ǫ2 = x2 + y2α + z2α
2 + w2α

3,

ǫ3 = x3 + y3α + z3α
2 + w3α

3,

with

x2 = −BDw2 + x2 − 2Dwy − Dz2, y2 = 2xy − 2Dwz,

z2 = B2w2 − Dw2 + 2Bwy + y2 + 2xz + Bz2, w2 = 2wx + 2Bwz + 2yz

and

x3 =x(x2 − 3Dw(Bw + 2y)) − 3Dz(w2(B2 − D) + 2Bwy + y2)

− 3Dxz2 − BDz3,

y3 =D2w3 − B2Dw3 + 3x2y − 3BDw(wy + z2)

− 3D(wy2 + 2wxz + yz2),

z3 =3x(w2(B2 − D) + 2Bwy + y2) + 3z(x2 + (Bw + y)(B2w − 2Dw + By))

+ 3Bxz2 + z3(B2 − D),

w3 =B3w3 − 2BDw3 + 3wx2 + 3B2w2y − 3Dw2y + 3Bwy2 + y3

+ 6xz(Bw + y) + 3z2(B2w − Dw + By)z.

Then {1, ǫ, ǫ2, ǫ3} generates Z[α] if and only if

detM = det









1 0 0 0
x y z w
x2 y2 z2 w2

x3 y3 z3 w3









= ±1

(see [9] or proof of Proposition 2.5). A computation shows

detM =

(

(

y + B
w

2

)2

− ∆

4
w2

)

×
(

((B2 − D)w2 + 2Bwy + y2)2 + (B2 − 4D)z4

−2(B(B2 − 3D)w2 + 2(B2 − 2D)wy + By2)z2
)

,

(4.1)

i.e. (2y + Bw)2 − ∆w2 = ±4. Since ∆ = B2 − 4D < −4, we conclude
w = 0 and y = ±1. But {1, ǫ, ǫ2, ǫ3} is a basis and therefore {1, ǫ−1, ǫ−2, ǫ−3}
generates also Z[α]. Because of w = 0, y = ±1 and ǫ a unit we obtain

ǫ−1 = x−1 + y−1α + z−1α
2 + w−1α

3,
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with w−1 = 0 and y−1 = ±1. On the other hand we have

x−1 = −Bx + x3 − Dz + 2Bx2z + (B2 + D)xz2 + BDz3,

y−1 = ±(B − x2 − 2Bxz − B2z2 + Dz2), z−1 = x − x2z − Bxz2 − Dz3,

w−1 = ±(Bz2 + 2xz − 1).

Since we have w−1 = 0, we find 1 = z(Bz + 2x), which yields z = e = ±1 and

x = e(1 − B)/2. Furthermore, we obtain y−1 = (B−1)2−4D
4 = ±1. Therefore

B = 1 ± 2
√
±1 + D and we have B = 1 + e12n and D = n2 + e2 with n ∈ Z

and e1, e2 ∈ {±1}. Therefore we conclude ǫ = ±(n+α2)±α with mixed signs.
But a short computation shows that in this case we have | detM | = 4 6= 1, a
contradiction.

5. The cases B2 − 4D = −3,−4

We start with the case B2 − 4D = −4. Obviously B has to be even and
we write B = 2b and D = b2 + 1. By the proof of Proposition 2.5 we know
that we have to investigate the equation Dw2 + Bwy + y2 = ±1, i.e. we have

(5.1) (y + bw)2 + w2 = 1.

Therefore we conclude w = 0, y = ±1 or w = 1, y = −b or w = −1, y = b.
By Proposition 2.5 the coefficients of ǫ−1 have also to satisfy an analogous
relation. Let us write ǫ−1 = x−1 + y−1α + z−1α

2 + w−1α
3. The formulas for

y−1 and w−1 are computed in Table 2.
Hence we obtain 16 systems of equations. For each system we compute

a Groebner basis (see Table 3) with respect to the lexicographic term order
induced by x ≻ z ≻ b.

Table 2. The values of y−1 and w−1 in the case of B2 − 4D = −4.

y w y−1 and w−1

1 0
y−1 = −x2 + z2 − 3b2z2 + b(2 − 4xz)
w−1 = −1 + 2xz + 2bz2

−1 0
y−1 = x2 − z2 + 3b2z2 − b(2 − 4xz)
w−1 = 1 − 2xz − 2bz2

−b 1
y−1 = −1 − 2xz + b3z2 + b2(1 + 2xz) + b(x2 − 3z2)
w−1 = −b − x2 − 2bxz + z2 − b2z2

b −1
y−1 = 1 + 2xz − b3z2 − b2(1 + 2xz) − b(x2 − 3z2)
w−1 = b + x2 + 2bxz − z2 + b2z2

The first four Groebner bases do not yield solutions since otherwise we
would obtain 4|1. The last two Groebner bases yield b = ±(z2 − 1/z2), hence
z2 = 1 and therefore b = 0 and D = −1 which yields a trivial case. The fifth
(sixth) Groebner basis yields either z = 0 and b = x2 (z = 0 and b = −x2) or
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Table 3. The Groebner bases.

y w y−1 w−1 Groebner basis

±1 0 ±1 0 1 + 4z2 − 4bz2 − 4z4, x + 2z − bz − 2z3

±1 0 ∓1 0 1 − 4z2 − 4bz2 − 4z4, x − 2z − bz − 2z3

±b ∓1 ±b ∓1 1 + 4z2 + 4bz2 − 4z4, x + 2z + bz − 2z3

±b ∓1 ∓b ±1 1 + 4z2 − 4bz2 + 4z4, x + 2z − bz + 2z3

±1 0 ±b ∓1 bz + z3, xz + bz2, b − x2 + z2 + b2z2

±b ∓1 ±1 0 bz − z3, xz + bz2, b + x2 − z2 − b2z2

±1 0 ∓b ±1 1 − bz2 − z4, x − z3

±b ∓1 ∓1 0 1 + bz2 − z4, x + z3

z 6= 0 and b = −z2, x = z3 (z 6= 0 and b = z2, x = −z3). Let us put x = n in
the case z = 0 and z = n in the other case, where n ∈ Z is arbitrary. These
two cases yield all possible ǫ for which Z[α] is generated by {1, ζ4, ǫ, ǫζ4}.
These ǫ are listed in Table 4. It is easy to check that in each case ǫ is a unit
(one has to verify NK/Q(ǫ) = ±1 for each possible ǫ).

Table 4. Units ǫ such that {1, ζ4, ǫ, ǫζ4} generates Z[α].
(mixed signs)

B D ǫ

2n2 n4 + 1
±n ± α

±(n3 + nα2) ± (n2α − α3)

−2n2 n4 + 1
±n ± (n2α + α3)
±(n3 + nα2) ± α

Now we consider the case B2 − 4D = −3. In this case B has to be odd
and therefore we write B = 2b − 1 and D = b2 − b + 1. By Proposition 2.5
we have to investigate the equation detM = (y + wB/2)2 + 3w2/4 = ±1 or
equivalently

(5.2) (2y + 2wb − w)2 + 3w2 = ±4.

Equation (5.2) has exactly 6 solutions namely

(y, w) = (±1, 0), (±b,∓1), (±(1− b),±1).

As in the case of B2 − 4D = −4 we know that the coefficients of ǫ−1 satisfy
also relation (5.2), i.e. (2y−1 + 2w−1b−w−1)

2 + 3w2
−1 = ±4. In order to find

more relations we compute y−1 and w−1 (see Table 5).
Similar as in the case of B2−4D = −4 we find 36 systems of equations. We

compute for each system a Groebner basis with respect to the lexicographic
term order x ≻ z ≻ b. The first element of each Groebner basis is given in
Table 6.
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Table 5. The values of y−1 and w−1 in the case of B2 − 4D = −3.

y w y−1 and w−1

1 0
y−1 = −1 + 2b − x2 + 2xz − 4bxz + 3bz2 − 3b2z2

w−1 = −1 + 2xz + (2b − 1)z2

−1 0
y−1 = 1 − 2b + x2 − 2xz + 4bxz − 3bz2 + 3b2z2

w−1 = 1 − 2xz − (2b − 1)z2

−b 1
y−1 = b(b − 2 + x2) + 2(b2 − 1)xz + (1 − 3b + b3)z2

w−1 = 1 − b − x2 − 2bxz + z2 − b2z2

1 − b 1
y−1 = (b − 1)(1 + b + x2) + 2(b − 2)bxz + (b3 − 3b2 + 1)z2

w−1 = x(2z − x) − b(1 + 2xz + (b − 2)z2)

b −1
y−1 = b(2 − b − x2) − 2(b2 − 1)xz − (1 − 3b + b3)z2

w−1 = x2 + b − 1 + 2bxz − z2 + b2z2

b − 1 −1
y−1 = (1 − b)(1 + b + x2) − 2(b − 2)bxz − (b3 − 3b2 + 1)z2

x(x − 2z) + b(1 + 2xz + (b − 2)z2)

Table 6. The first element of the Groebner bases.

y w y−1 w−1 first element of the Groebner basis

±1 0 ±1 0 1 + 6z2 − 4bz2 − 3z4

±1 0 ∓1 0 1 − 2z2 − 4bz2 − 3z4

±1 0 ±(1 − b) ±1 4 + 4z2 − 4bz2 − 3z4

±1 0 ∓b ±1 4 − 4bz2 − 3z4

±1 0 ±b ∓1 4z − 4bz − 3z3

±1 0 ±(b − 1) ∓1 4bz + 3z3

±b ∓1 ±1 0 1 − 2b + b2 − 2z2 + 2bz2 − 3z4

±b ∓1 ∓1 0 1 + 2b + b2 − 6z2 + 2bz2 − 3z4

±b ∓1 ±(1 − b) ±1 1 − 2b + b2 − 6z2 + 2bz2 − 3z4

±b ∓1 ∓b ±1 b2 − 8z2 + 2bz2 − 3z4

±b ∓1 ±b ∓1 b2 + 2bz2 − 3z4

±b ∓1 ±(b − 1) ∓1 1 + 2b + b2 − 2z2 + 2bz2 − 3z4

±(b − 1) ∓1 ±1 0 b2 + 2bz2 − 3z4

±(b − 1) ∓1 ∓1 0 4 − 4b + b2 + 4z2 + 2bz2 − 3z4

±(b − 1) ∓1 ±(1 − b) ±1 1 − 2b + b2 − 2z2 + 2bz2 − 3z4

±(b − 1) ∓1 ∓b ±1 4 − 4b + b2 + 2bz2 − 3z4

±(b − 1) ∓1 ±b ∓1 b2 + 4z2 + 2bz2 − 3z4

±(b − 1) ∓1 ±(b − 1) ∓1 1 − 2b + b2 + 6z2 + 2bz2 − 3z4

Let us investigate the case z = 0. In this case the first elements of
the Groebner bases, get polynomials in b. Only in the cases y = ±1, w = 0,
y−1 = ±b, w−1 = ∓1 and y = ±1, w = 0, y−1 = ±(b − 1), w−1 = ∓1 the
considered element vanishes unconditionally. In these cases the corresponding
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systems turn into

±(−1 + 2b − x2) = ±(b − 1), ∓1 = ∓1,(5.3)

±(−1 + 2b − x2) = ±b, ∓1 = ∓1.(5.4)

System (5.3) yields b = x2 and (5.4) yields b = x2 + 1. Let x = n, with n ∈ Z

arbitrary, then we obtain B = 2n2 − 1, D = n4 + n2 + 1 and ǫ = ±n± α and
B = 2n2 + 1, D = n4 − n2 + 1 and ǫ = ±n± α with mixed signs respectively.
By computing norms we see that these ǫ’s are indeed units. See also Table 1.

In all other cases we deduce b = −1, 0, 1 or 2. The case b = 0, 1 implies
D = −1. Inserting z = 0, b = 1 and z = 0, b = 2 into Table 5 respectively
yields the equations 1 = 0, x2 ± 1 = 0 and x2 ± 2 = 0. Note that the equation
x2−1 = 0 appears only for b = −1,y = ±b, w = ∓1, y−1 = ±(b−1), w−1 = ∓1.
Therefore we have ǫ = ±1 ± (α + α3) with mixed signs, if −B = D = 3.

Now we may assume z 6= 0. In each case we compute the zeros of the first
element of the Groebner bases (see Table 6) considered as polynomials in b.
The solutions can be found in table 7.

Table 7. Expressions for b.

y w y−1 w−1 b

±1 0 ±1 0 1
4

(

6 + 1
z2 − 3z2

)

±1 0 ∓1 0 1
4

(

−2 + 1
z2 − 3z2

)

±1 0 ±(1 − b) ±1 1 + 1
z2 − 3z2

4

±1 0 ∓b ±1 1
z2 − 3z2

4

±1 0 ±b ∓1 1 − 3z2

4

±1 0 ±(b − 1) ∓1 − 3z2

4
±b ∓1 ±1 0 1 − 3z2, 1 + z2

±b ∓1 ∓1 0 −1 − z2 ± 2z
√

z2 + 2

±b ∓1 ±(1 − b) ±1 1 − z2 ± 2z
√

z2 + 1

±b ∓1 ∓b ±1 −z2 ± 2z
√

z2 + 2
±b ∓1 ±b ∓1 −3z2, z2

±b ∓1 ±(b − 1) ∓1 −1 − z2 ± 2z
√

z2 + 1
±(b − 1) ∓1 ±1 0 −3z2, z2

±(b − 1) ∓1 ∓1 0 2 − z2 ± 2z
√

z2 − 2
±(b − 1) ∓1 ±(1 − b) ±1 1 − 3z2, 1 + z2

±(b − 1) ∓1 ∓b ±1 2 − z2 ± 2z
√

z2 − 1

±(b − 1) ∓1 ±b ∓1 −z2 ± 2z
√

z2 − 1

±(b − 1) ∓1 ±(b − 1) ∓1 1 − z2 ± 2z
√

z2 − 2

Table 7 shows that we have 18 different subcases. The first two cases
yield z2 = 1 since otherwise b would not be an integer. Therefore we obtain
b = 1 and b = −1. But b = 1 yields D = 1 and we ignore this case. In the case
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of b = −1 the corresponding system turns into (x − 3e1)
2 = 1 and 2xe1 = 4,

where z = e1 with e1 ∈ {±1}. Therefore we find x = 2e1. Indeed this solution
yields a unit. Note that b = −1 implies B = −3 and D = 3.

The cases 3 and 4 yield for integral z no integral b, hence we have no
solution.

Now let us consider the cases 5, 6, 7, 11, 13 and 15. In the cases 7, 11, 13
and 15 we see that for any integral z we obtain an integral b. Therefore we
let z = n where n ∈ Z is arbitrary. In the cases 5 and 6 we find that for
every even z we have an integral b. Therefore we put z = 2n with n ∈ Z.
Inserting these results into the equations given by Table 5 we obtain systems
of equations in x and n. Solving for x we find in each case an integral solution
for x. These solutions yield indeed units. We list these solutions in Table 8.

Now we consider the remaining cases. In each expression for b we find the
term 2z

√
z2 − k, with k = 2, 1,−1. Since we assume z 6= 0 the only possibility

for b to be an integer is k = −1 and z2 = 1. This corresponds to the cases 16
and 17. We obtain b = 1 (case 16) and b = −1 (case 17). Since b = 1 yields
D = 1 we ignore this case. The other case yields B = −3, D = 3, z = e1,
y = (1 − b)e2 = 2e2 and w = e2, where e1, e2 ∈ {±1}. Using Table 5 we find
the system (x − 3/2e1)

2 = 1/4, (x − 2e1)
2 = 1, which yields x = e1. Again

the corresponding ǫ is a unit.

Table 8. Solutions for ǫ. (mixed signs)

B D ǫ

2n2 + 1 n4 + n2 + 1
±n ± α

±
(

n3 + n − nα2
)

±
(

(n2 + 1)α − α3
)

±
(

|n|3 − |n|α2
)

±
(

n2α − α3
)

2n2 − 1 n4 − n2 + 1
±n ± α

±
(

n3 − n − nα2
)

±
(

(n2 − 1)α − α3
)

±
(

n3 − nα2
)

±
(

n2α − α3
)

−6n2 + 1 9n4 − 3n2 + 1
±

(

6n3 − n + nα2
)

± α
±

(

3n3 + n + nα2
)

±
(

(3n2 − 1)α + α3
)

±
(

3n3 − 2n + nα2
)

±
(

3n2α + α3
)

−6n2 − 1 9n4 + 3n2 + 1
±

(

6n3 + n + nα2
)

± α
±

(

3n3 − n + nα2
)

±
(

(3n2 + 1)α + α3
)

±
(

3n3 + 2n + nα2
)

±
(

3n2α + α3
)

−3 3
±1 ± (α + α3)
±(2 + α2) ± α

±(1 + α2) ± (2α + α3)
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6. Two corollaries

In this section we want to prove two corollaries. The first corollary treats
the case of purely quartic complex fields and the second corollary treats rings
of the form Z[α] with α =

√
a +

√
b.

Corollary 6.1. Let 0 < D ∈ Z and let α be a root of X4 + D. The ring
Z[α] is generated by its units if and only if D = 1.

Proof. Due to Theorem 1.2, if Z[α] is generated by its units, then D =
±1 or B2 − 4D = −4D = −4,−3. In any case we deduce either D = 1 or a
contradiction.

Corollary 6.2. Let a, b ∈ Z such that a < 0 or b < 0, both not squares
and assume Q(

√
a+

√
b) is quartic. Then the ring Z[

√
a+

√
b] is not generated

by its units except if a = b ± 1.

Proof. First, we note that the field Q(α) with α =
√

a +
√

b is totally
complex. Next we compute the minimal polynomial of α. Since the conjugates
of α are

√
a +

√
b,
√

a −
√

b,−√
a +

√
b,−√

a −
√

b, we find that X4 − 2(a +
b)X2 + (a − b)2 is the minimal polynomial of α and with B = 2(a + b) and
D = (a−b)2 we find B2−4D = 4(a+b)2−4(a−b)2. If Z[α] is generated by its
units either D = ±1 or B2−4D = −4,−3. The first case yields a = b±1 Since
4|B2 − 4D it remains to investigate the equation (a + b)2 − (a − b)2 = −1 or
equivalently 4ab = −1. Since a, b ∈ Z the last equation yields a contradiction.
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