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THE ZERO-DIVISOR GRAPH WITH RESPECT TO IDEALS
OF A COMMUTATIVE SEMIRING
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ABSTRACT. In a manner analogous to a commutative ring, the ideal-
based zero-divisor graph of a commutative semiring R can be defined as
the undirected graph I'y(R) for some ideal I of R. The properties and
possible structures of the graph I';(R) are studied.

1. INTRODUCTION

Throughout all semirings are assumed to be commutative semirings with
non-zero identity. The zero-divisor graph of a semiring is the (simple) graph
whose vertex set is the set of non-zero zero-divisors, and an edge is drawn be-
tween two distinct vertices if their product is zero. This definition is the same
as that introduced by D. F. Anderson and P. S. Livingston in [1]. In [5], Beck
introduced the concept of a zero-divisor graph of a commutative ring. How-
ever, he let all elements of R be vertices of the graph and his work was mostly
concerned with coloring of rings. In recent years, the study of zero-divisor
graphs has grown in various directions. At the heart is the interplay between
the ring-theoretic properties of a ring and the graph-theoretic properties of
its zero-divisor graph, begun in [1] and continued in [2, 13]. The zero-divisor
graph of a commutative ring has been studied extensively by several authors,
e.g. [1, 2,11, 13].

Let R be a commutative semiring with non-zero identity. We can define
the zero-divisor graph T'(R) as above. We know (at least as far as I am aware)
of no systematic study of zero-divisors in the semiring context. The bulk of
this paper is devoted to stating and proving analogues to several well-known
results of the ideal-based zero-divisor graph in the theory of rings. In fact,
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the main object of this paper is to study the interplay of semiring-theoretic
properties of R with graph-theoretic properties of I';(R) for some ideal I of
R.

For the sake of completeness, we state some definitions and notations used
throughout. By a commutative semiring, we mean a commutative semigroup
(R, ) and a commutative monoid (R, +,0) in which 0 is the additive identity
and -0 = 0-r = 0 for all » € R, both are connected by ring-like distributivity.
A commutative semiring R is said to be a semidomain if ab = 0 (a,b € R),
then either a = 0 or b = 0. A semifield is a commutative semiring in which
the non-zero elements form a group under multiplication. In this paper, all
semirings considered will be assumed to be commutative semirings with non-
zero identity.

A subset I of a semiring R will be called an ideal if a,b € [ and r € R
implies a + b € I and ra € I. A subtractive ideal (= k-ideal) K is an ideal
such that if z,z+y € K then y € K (so {0} is a k-ideal of R). The k-closure
cl(K) of K is defined by cl(K) = {a € R: a+ ¢ = d for some ¢,d € K} is
an ideal of R satisfying K C cl(K) and cl(cl(K)) = cl(K). So an ideal K
of R is a k-ideal if and only if K = cl(K). A prime ideal of R is a proper
ideal P of R in which x € P or y € P whenever xy € P. If I is an ideal of
R, then the radical of I, denoted by rad(I), is the set of all z € R for which
™ € I for some positive integer n. This is an ideal of R, contains I, and is
the intersection of all the prime ideals of R that contain I [3]. A primary ideal
I of R is a proper ideal of R such that, if zy € I and = ¢ I, then y" € I for
some positive integer n. If I is primary, then rad(I) = P is a prime ideal of
R by [4, Theorem 38]. In this case, we also say that [ is a P-primary ideal of
R. A proper ideal I of R is said to be maximal (resp. k-maximal) if J is an
ideal (resp. k-ideal) in R such that I G J, then J = R. A non-zero element a
of R is said to be semi-unit in R if there exist r, s € R such that 1+ ra = sa.
R is said to be a local semiring if and only if R has a unique maximal k-ideal.

Let R be a commutative semiring with non-zero identity. We use the
notation A* to refer to the non-zero elements of A. For two distinct vertices
a and b in a graph T', the distance between a and b, denoted d(a,b), is the
length of the shortest path connecting a and b, if such a path exists; otherwise,
d(a,b) = oco. The diameter of a graph T is

diam(T") = sup{d(a,b) : a and b are distinct vertices of I'}.

We will use use the notation diam(T'(R)) to denote the diameter of the graph
of Z*(R). A graph is said to be connected if there exists a path between any
two distinct vertices, and a graph is complete if it is connected with diameter
at most one.
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2. DEFINITION AND BASIC PROPERTIES OF I';(R)

Let I be an ideal of a commutative semiring R with non-zero identity.
We define an undirected graph I'y(R) with vertices {x € R—1I : zy €
I for some y € R — I}, where distinct vertices « and y are adjacent if and
only if xy € I. This definition is the same as that introduced by S. P. Red-
mond in [13].

Compare the next result with [13, Proposition 2.2 and Theorem 2.4].

LEMMA 2.1. Let I be an ideal of a semiring R. Then:

(i) If I = (0), then I';(R) =T'(R).

(i1) If I #(0), then I is a prime ideal of R if and only if Tr(R) = 0.
(iii) T1(R) is connected with diam(T';(R)) < 3.

PROOF. The proof is straightforward. O

An ideal T of a semiring R is called a partitioning ideal (= Q-ideal) if
there exists a subset @ of R such that R=U{q¢+I:¢q € Q} and if 1,42 € Q,
then (qg1 + I) N (g2 + I) # 0 if and only if g1 = g2. Let I be a Q-ideal of a
semiring R and let R/I = {q+1:q € Q}. Then R/I forms a semiring under
the binary operations @ and ® defined as follows: (q1 +1)® (g2 +1) = g3+ 1,
where g3 € @ is the unique element such that ¢ + g2 + 1 C g3 + I, and
(g1 +1)© (g2 4+ 1) = qa + I, where ¢4 € @ is the unique element such that
q1q2+1 C g4+ 1. This semiring R/ is called the quotient semiring of R by I.
By definition of Q)-ideal, there exists a unique gp € @ such that 0+1 C go+ 1.
Then g + I is the zero element of R/I. Clearly, if R is commutative, then so
is R/I (see [9, 10]).

THEOREM 2.2. Let I be a proper Q-ideal of a semiring R. ThenT'r(R) = ()
if and only if T(R/I) = 0.

PRrROOF. By Lemma 2.1 (ii) and [7, Theorem 2.6], I';(R) = 0 if and only
if R/I is a semidomain, and so the proof is complete. O

LEMMA 2.3. Let I be a proper Q-ideal of a semiring R. Then:

(i) If o € @Q and qo + I is the zero in R/I, then qo € I.
(ii) If g € INQ and qo + I is the zero in R/I, then g = qo.

Proor. (i) By [4, Lemma 36], we must have gy + I = I; hence qo € I
since every -ideal is a k-ideal of R by [10, Lemma 2].

(ii) Since ¢+ qo € (o +I) N (¢ + I), we must have g9 + I = g+ I, as
required. O

The next theorem investigates the relationship between I'f(R) and I'(R/I)
(compare the next result with [13, Proposition 2.5]).

THEOREM 2.4. Let I be a proper Q-ideal of a semiring R and let x =
gi+a, y=qg+be R—1I, where q1,q20 € Q and a,b € I. Then:
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(i) If ¢1 + I is adjacent to g2 + I in T'(R/I), then x is adjacent to y in
I/(R).
(ii) If x is adjacent to y in T';(R) and q1 # q2, then q1 + I is adjacent to
g2+ 1 inT(R/I).
(iii) If = is adjacent to y in I'1(R) and q1 = qo, then x2,y* € I.

Proor. (i) First note that ¢1,q2 ¢ I. Let go be the unique element in
Q such that go + I is the zero in R/I and let (1 + 1) ® (g2 + 1) = qo + I,
where gq1g2 + I C qo + I. So it follows from Lemma 2.3 that q1¢o + ¢ =
go + d € I for some ¢,d € I; hence q1q2 € I since I is a k-ideal. Therefore,
Y = q1g2 + age + bgr + ab € I; so z is adjacent to y in I';(R).

(ii) By assumption, g1q2 € I. Let g3 be the unique element of @) such that
(i +DO(g2+I)=qgs+Tand 12+ 1 C g3+ I. Tt follows from Lemma 2.3
(i) that q1g2 + go = g3 + e for some e € I; hence g3 € I. Now the assertion
follows from Lemma 2.3 (ii).

(iii) By hypothesis, ¢? = ¢3 € I; hence 2%,y? € I. O

Compare the next result with [13, Corollary 2.6].

COROLLARY 2.5. Let I be a proper Q-ideal of a semiring R and let x =
g +a,y=q+be R—1I, where q1,q2 € Q and a,b € I. If x is adjacent
toy in Tr(R) and g1 # qo, then all distinct elements of 1 + I and g2 + I
are adjacent in Tr(R). If 22 € I, then all the distinct elements of q1 + I are
adjacent in T'r(R).

ProOF. This follows from Theorem 2.4. O

Let G be a graph. We say that {G; }.c s is a collection of disjoint subgraphs
of G if all the vertices and edges of each G; are contained in G’ and no two of
these G; contain a common vertex (compare the next result with [13, Corollary
2.7]).

THEOREM 2.6. Let I be a proper Q-ideal of a semiring R. Then I'1(R)
contains |I| disjoint subgraphs isomorphic to T'(R/I).

PROOF. Let g9 be the unique element in @ such that gg + I is the zero
in R/I and let Z(R/I) —{qo + I} = U, col{e + I}, and if i # j, then
(¢i+I)N(gj +I) = 0. For each k € I, define a graph G} with vertices
{¢; +k: ¢ € Q}, where ¢; + k is adjacent to ¢; + k in Gy whenever ¢; + I is
adjacent to ¢; + I in I'(R/I). Then Corollary 2.5 gives Gy, is a subgraph of
I';(R). Also, each G, 2T'(R/I), and G), and G, contain no common vertices
if k #j. O

A vertex x of a connected graph G is a cut-point of G if there are vertices
y,z of G such that x is in every path from y to z (and = # y, x # 2).
Equivalently, for a connected graph G, z is a cut-point of G if G — {z} is not
connected (compare the next result with [13, Theorem 3.2]).
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THEOREM 2.7. Let I be a non-zero proper Q-ideal of a semiring R. Then
T';(R) has no cut-points.

PROOF. Suppose that z is a cut-point of I';(R). Then there are y, z €
R — I such that z lies on every path from y to z. By Lemma 2.1, the shortest
path from y to z is of length 2 or 3. Let t=q¢1 +a,y=¢2+band z =¢q3+c¢
where q1,q2,q3 € Q and a,b,c € I. We divide the proof into two cases.

CASE 1. Suppose y — x — z is a path of shortest length from y to z. If
q1 = q2, then Corollary 2.5 gives = is adjacent z implies y is adjacent to z.
Similarly, if ¢; = ¢3, then y is adjacent to z. So suppose that ¢; # g2 and
q1 # q3- Suppose that 0 # e € I; we show that x + e # y. Let us assume the
opposite. Since x +e=¢q +a+e=qg2+b € (g1 +1)N (g2 + I), we must
have g1 = ¢o, which is a contradiction. Thus = + e # y. Similarly, x + e # z.
Then zy,zz € I imply y(x +e),z(x +¢) € I. Hence y — (z + ¢) — z is a path
in I'7(R). Therefore, in all cases we get a contradiction.

CASE 2. Suppose (without loss of generality) y — x —w — z is a path of
shortest length from y to z and let w = g4 + f, where ¢4 € @ and f € I. If
q1 = qu4, then y is adjacent to x implies y is adjacent to w, therefore y —w — z
is a path. If g1 # q4, then let 0 £ e € I. As above, y and w are adjacent to x
means that y and w are also adjacent to « +e. Hence y — (z +¢) —w — 2z is
a path. Thus in all cases we get a contradiction. O

The connectivity of a graph G, denoted by k(G), is defined to be the
minimum number of vertices it is necessary to remove from G in order to
produce a disconnected graph. Let I be a @-ideal of a semiring R. We call
the subset ¢; + I (for some ¢; € Q) a column of I';(R). If ¢? € I, then we
call g; + I a connected column of T';(R) (compare the next result with [13,
Theorem 3.3]).

THEOREM 2.8. Let I be a proper Q-ideal of a semiring R. Then:
(i) If T(R/I) is the graph on one vertex, then k(I'r(R)) = |I| — 1.
(i1) IfT(R/I) has at most two vertices, then 2 < k(I';(R)) < [I|'k(T'(R/I)).

ProoFr. (i) By assumption, I';(R) cousists of a single connected columu;
so it is a complete graph on |I| vertices by Theorem 2.6.

(ii) Since the graph I';(R) is connected, we must have 1 < k(T';(R)).
Assume that k(T'(R/I)) = m and let ¢1 + I, g2 + I, ..., ¢m + I (for some ¢; €
Q) be vertices of I'(R/I) which, once removed, give a disconnected graph.
Define G to be the graph obtained from I'j(R) by removing the columns
corresponding to q1 + I, ..., ¢ + I (this means the removal of m - |I| vertices);
we show that G is disconnected. By hypothesis, there exist vertices ¢+ I and
¢ +1 (q,¢ € Q) of T(R/I) such that ¢ + I is not connected to ¢’ + I after
q1+1,...,qm + I are removed from I'(R/I). Then ¢ and ¢’ are vertices of G.
Suppose ¢ — a1 — ... — a, — ¢’ is a path in G. There are elements s, ..., s, € Q
and cy,...,c, € I such that a; = s; + ¢; for each 1 < ¢ < n. It is easy to
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see that for ¢ # j, a;a; € I if and only if s;5; € I since I is a k-ideal. Also,
qa; € I if and only if gs; € I. Similarly, for ¢'. Then ¢ —s1 — ... — s, — ¢
is a path in G. By Corollary 2.5, we may assume that s; + 1 # s;41 + I for
1 < j <n. Therefore, g+ I —s1+I1—...—s,+1—¢ +1isapathin T'(R/I)
after g1 + 1, ..., gm + I have been removed. This is a contradiction. Hence GG
must be disconnected. O

3. GIRTH

Let R be a semiring. The grith of a graph T', denoted gr(T"), is the length
of the shortest cycle in T, provided I contains a cycle, otherwise, gr(I') = co.
We will use the notation gr(I'(R)) to denote the grith of the graph of Z*(R)
(compare the Lemma 3.1, Proposition 3.2 and Theorem 3.3 with [13, Lemma
5.1, Lemma 5.2 and Theorem 5.5]).

LEMMA 3.1. Let I be a proper Q-ideal of a semiring R. Then gr(T';(R)) <
gr(D(R/I)). In particular, if T(R/I) contains a cycle, then so does T'1(R).

PROOF. We may assume that gr(I'(R/I)) = n < oo. Let

aq+I—qg+I— - —qgo+IT—q +1
be a cycle in I'(R/I) through n distinct vertices, where ¢; € Q for 1 <i <n.
Then Theorem 2.4 gives g1 — g2 — ... — ¢n — g1 is a cycle in I';(R) of length n,
as needed. O

PROPOSITION 3.2. Let I be a proper Q-ideal of a semiring R. Then:

(i) If|I| > 3 and T'1(R) contains a connected column, then gr(T';(R)) = 3.
(i) Assume that I # (0) and T'(R/I) has only one vertex. Then
ar(T1(R) =3 if 11| > 3, and gr(T1(R)) = oo if |T] = 2.
(i) If I has two elements, T'(R/I) has at least two vertices, and I'r(R) has
at least one connected column, then gr(I'r(R)) = 3.

PROOF. (i) Let ¢1 + I be a connected column of I';(R), where ¢ € Q.
Then ¢> € I. Let x = ¢; +a and y = g2 + b be non-zero elements of I,
where ¢1,q2 € Q and a,b € I; so q1,q2 € I since I is a k-ideal. Then
q—(¢+q1) — (g+q2) — q is a cycle of length 3 in I';(R) (note that gr(G) > 3
for any graph G).

(ii) If T'(R/I) has only one vertex, then (i) gives that I';(R) consists of
a single connected column. Thus it is a complete graph, and therefore has a
cycle of length 3 unless I';(R) has only two vertices.

(iii) Let ¢ + I be a connected column of I';(R), where ¢ € Q. Then
q> € I. Let ¢ + I be a vertex adjacent to ¢ + I. Suppose that 0 # = € I.
Then x = ¢q; + b for some ¢ € INQ and b € [ since [ is a k-ideal. Then
¢ —q—(¢+q)— ¢ is a cycle of length 3 in I';(R). O



ZERO-DIVISOR GRAPH 315

THEOREM 3.3. Let I be a non-zero proper Q-ideal of a semiring R that
is not a prime ideal. Then gr(T';(R)) = oo if T(R/I) has only one vertex
and |I| =2, gr(Tr(R)) = 4 if gr(T'(R/I)) > 3 and T';(R) has no connected
columns, and gr(I'1(R)) = 3 otherwise.

PRrROOF. By Proposition 3.2, it is enough to show that if I # (0), I';(R)
has no connected columns, and gr(I'(R/I)) > 3, then gr(I';/(R)) = 4. By
assumption, I'(R/I) must have at least two vertices. It follows from Lemma
3.1 that gr(T';(R)) < 4. Let x = q1 +a, y = ¢2 + b, and z = g3 + ¢ (where
q1,G2,93 € Q, a,b,c € I) be such that z—y—z—=z is a cycle in I';(R) of length 3
and we provide a contradiction. As gr(T'(R/T)) > 3, q+I1—qa+I—qs+1—q1+1
cannot be a cycle in I'(R/I). Therefore, we must have either ¢ = g2 = g3 or
q1 = q3. Let go be the unique element in ) such that ¢y + I is the zero in
R/I. If q1 = qo, then (¢1 + 1) ® (g2 + I) = qo + I, where ¢ + I C qo + I. So
¢? € I; hence ¢; + I is a connected column of I';(R), which is a contradiction.
We get a similar contradiction if g2 = g3 or ¢1 = ¢3. Hence, gr(I';(R)) = 4.

Let R be a semiring. R is called cancellative if whenever ac = bc for some
elements a,b and ¢ of R with a # 0, then b = ¢. Also, we define the Jacobson
radical of R, denoted by Jac(R), to be the intersection of all the maximal
k-ideals of R. Then by [14, Corollary 2.2], the Jacobson radical of R always
exists and by [7, Lemma 2.12], it is a k-ideal.

LEMMA 3.4. Let R be a semiring and let r € R. Then:

(i) If r is a nilpotent element of R, then it is not a semi-unit.
(i1) If r € Jac(R), then for every a € R, the element 1+ ra is a semi-unit
of R.

PROOF. (i) We may assume that r # 0. Suppose not. Then 1+ rs = tr
for some s,t € R. Let n > 2 be an integer such that r™ = 0, but "~ #£ 0.
Then (1 +7s)" =1+ ur =0 for some u € R; hence r"~! + ur™ = r"=1 =0,
which is a contradiction. Thus r is not a semi-unit.

(ii) Suppose that r € Jac(R). Suppose that, for some a € R, it is the
case that b = 1 + ra is not a semi-unit of R. Then 1 + ¢1b = t2b holds
for no ty,t2 € R. So, 1 ¢ cl(Rb) yields that cl(Rb) is a proper k-ideal of
R. By [13, Corollary 2.2], there exists a maximal k-ideal P of R such that
1+ ra € cl(Rb) C P. But r € P by definition of Jac(R), and so 1 € P, a
contradiction. O

LEMMA 3.5. Let R be a semiring. Then:

(i) Let I be an ideal in R that is mazimal among all annihilators of non-
zero elements of R. Then I is prime.

(ii) Let Py, ..., P, be prime k-ideals and let J be an ideal of R contained in
Ui, P;. Then J C P; for some i.
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PRrROOF. (i) Let I = (0 : z) for some x € R. Given ab € I, we must prove
that a € T or b € I. Assume a ¢ I. Then ax # 0 and I C (0 : az). By
hypothesis, it can not be properly larger. Thus I = (0 : ax); hence b € I. The
proof of the part (ii) is straightforward and can be found in [8]. O

Let I be an ideal of a semiring R. A prime ideal P of R is called an
associated prime ideal of I if P is the annihilator (0 : z) of some z € I (so P
is a k-ideal by [6, Lemma 2.1]). If R is a semiring, then R is Noetherian (resp.
Artinian) if any non-empty set of k-ideals of R has a maximal member (resp.
minimal member) with respect to set inclusion. This definition is equivalent to
the ascending chain condition (resp. descending chain condition) on k-ideals
of R.

LEMMA 3.6. Let R be a Noetherian semiring (in particular, R could be a
finite semiring) and I a non-zero ideal of R. Then:
(i) Every mazimal element of the family of k-ideals A={(0:2):0#z €
I} is an associated prime of I.

(ii) The set of zero-divisors for I is the union of all the associated primes
of I.

PROOF. (i) follows from Lemma 3.5 (i). To see (ii), assume that ax = 0
for some & # 0. Then a € (0: z) € A, and by (i) there is an associated prime
of I containing (0 : ), as needed. O

PRrROPOSITION 3.7. Let R be an Artinian cancellative semiring. Then:

(i) Every element of R is either a semi-unit or a nilpotent element.
(i) R is a local semiring.

PROOF. (i) Let = be a non-zero element of R which is not nilpotent;
we show that x is a semi-unit. Consider the sequence of k-ideals cl(Rx) D
cl(Rz?) D ... By the descending chain condition, there must be elements
r,s € R such that z"(1 + ra) = z™(sz) for some integer n. Since R is a
cancellative semiring and z™ # 0, we may cancel 2", and hence 1 + rz = sz,
as required.

(i) It is enough to show that the set of non-semi-units P of R is a k-
maximal ideal. By (i), P is the set of nilpotent elements of R: so it is an
ideal of R. It remains to show that P is a unique maximal k-ideal. Suppose
that a,a + b € P; we show that b € P. Let m be smallest integer with
a™ = 0 and let n be such that (a +b)” = 0. We may assume that m < n.
(a+ b)™ = 0 gives a™ 1b™ = 0. Suppose that b is not nilpotent. Then by (i),
b is a semi-unit; hence 1 + rb = sb. It follows from the equality a™ 1" = 0
that a™~1p"~! = 0. Similary, we get a™ b = 0; hence a™~! = 0, which is
a contradiction. Thus b is nilpotent; hence b € P. Since 1 is a semi-unit of
R, we must have P # R. As R is not trivial, it has at least one maximal
k-ideal, let J be one such ideal. Therefore, J C P ; R. Thus J = P since J
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is k-maximal. We have thus shown that R has at least one maximal k-ideal,
and for any maximal k-ideal of R must be equal to P. O

ProPOSITION 3.8. Let R be an Artinian cancellative semiring with a
unique mazimal k-ideal P. Then P = (0: x) for some 0 # x € P.

ProoF. By Proposition 3.7, we must have P C Z(P). By Lemma 3.6,
Z(P) is the set-theoretic union of all the associated primes P, ..., P,—1 and
P, of P (note that they are k-ideals). Now Lemma 3.5 gives P C P; for some
i; hence P = P;, as needed. 0

THEOREM 3.9. Let R be an Artinian cancellative semiring (in particular,
R could be a finite cancellative semiring) with a unique mazimal k-ideal P. If
I'(R) contains a cycle, then gr(I'(R)) = 3.

PROOF. Suppose I'(R) contains a cycle. Then P = (0; ) for some z € P
by Proposition 3.8. If there are y, z € P*—{z} with yz = 0, then y—z—z—y is
a is a triangle. Otherwise, I'(R) contains no cycle, a contradiction. Therefore,
gr(l'(R)) = 3. O

4. PRIMARY IDEALS

In this section, we will investigate the ideal-based zero-divisor graph with
respect to primary ideals of a semiring.

ProproSITION 4.1. Let I be an ideal of a semiring R. Then I is a P-
primary ideal of R if and only if T;(R) =P —I.

PROOF. Suppose that I is a P-primary ideal of R; we show that I';(R) =
P—1I. LetreTI(R). Thenr ¢ I and ra € I for some a ¢ I. Thus I primary
gives 7 € P —I; hence I';(R) C P — I. For the reverse inclusion, assume that
be P—1. Since b ¢ I, there must be an integer n > 2 such that b" ' =s ¢ I
and bs € I. Then b € T';(R), and so we have equality.

Conversely, assume that I'y(R) = P—1TI and let cx € I with z ¢ I; we show
that ¢ € P. Let us suppose the opposite. Then ¢ ¢ I; hence c € I'j(R) = P—1,
which is a contradiction. Thus I is a P-primary ideal of R. O

THEOREM 4.2. Let I be an ideal of a semiring R. Then I is a primary
ideal of R if and only if T1(R) U I is an (prime) ideal of R.

PRroOF. This follows from Proposition 4.1. O

THEOREM 4.3. Let I and J be P-primary ideals of a semiring R. Then
T';(R)=Ty(R) if and only if I = J.

PROOF. Since I C P and J C P, the result follows from Proposition 4.1.

0

LEMMA 4.4. If I is a P-primary k-ideal of a semiring R, then P is a
k-ideal of R.
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PROOF. Let a,a+b € P; we show that b € P. There is an integer n such
that ™ € T and (a +b)" = a™ +c+ b € I for some ¢ € P,so c+b" € I
since [ is a k-ideal. If ¢ € I, then the result is clear. So suppose that ¢ ¢ I.
Let m > 2 be a positive integer such that ¢, c?,...,¢™~! ¢ I, but ¢™ € I. By
assumption, ¢™+c™~1p" € I. Thus it follows that ¢~ 16" € I with ¢™~1 ¢ I;
hence b € I for some k. Thus b € P, as required. O

THEOREM 4.5. Assume that I is a P-primary Q-ideal of a semiring R
and let qo be the unique element in @ such that qo + I is the zero in R/I.
Then T'(R/I)U{qo + I} is a prime k-ideal of R/I.

PROOF. Suppose that I is a P-primary ideal of R. It follows from Lemma
4.4 and [7, Proposition 2.2 and Theorem 2.5] that P/I is a prime k-ideal of
R/I. Tt is enough to show that T'(R/I)U {qo + I} = P/I. Let ¢+ 1 €
D(R/I)U{qo+ I}, where g € Q. If ¢+ 1 = gop + I, then we are done. So we
may assume that g+1 # go+ 1. Then there is an element go+1 # ¢1+1 € R/I
such that (¢+1)® (g1 +1)=qo+ I, where g1 € Q and 1g+I C g+ 1 =1,
so q1q € I with ¢1 ¢ I by Lemma 2.3 and the fact that I is a k-ideal. Then
g € PN Q@ since I is a P-primary ideal; hence ¢ + I € P/I by [7, Proposition
2.2]. Therefore, I'(R/I)U{qo+ I} C P/I. For the other containment, suppose
that ¢ + I € P/I, where ¢ € @ N P. We may assume that qo + I # g + I.
Then g ¢ I and there is a positive integer n > 2 such that s = ¢"~! ¢ I and
gs € I since I is primary. There are ¢; € (Q and a € I such that s = q; + a;
so gs = qq1 + aq. Hence qq; € I since I is a k-ideal. There is a unique
element g2 of Q with (¢+1)® (qn +1)=¢2+ I and q¢1 + I C g2 + I. Then
qq1 + ¢ = g2 + d for some c¢,d € I; so qgo € I. Hence g2 = gy by Lemma 2.3.
Thus ¢+ I € T(R/I), and so we have equality. O

REMARK 4.6. Let R be a Noetherian semiring. Then:

(1) Every proper k-ideal of R is a finite intersection of irreducible k-ideals
(an ideal of R is irreducible if it is not a finite intersection of k-ideals
of R that properly contain it) (see [12, Lemma 2] and [8]).

(2) Every irreducible k-ideal of R is primary (see [12, Lemma 3] and [8]).

(3) Let P be a prime ideal of R, and let Q1, ..., @, be P-primary k-ideals
of R. Then (i_, Q; is also a P-primary k-ideal (see [4, Theorem 41]
and [7, Lemma 2.12]).

(4) By (1) and (2), every proper k-ideal of R is a finite intersection of
primary k-ideals. Therefore, by (3), every proper k-ideal (so 0) of R
has a minimal primary decomposition.

(5) Let I,...,I, be ideals of R and let P be a prime ideal containing
M, I;- Then I; C P for some i. If P =(\'_, I;, then P = I; for some
i [8).

(6) Let @ be a P-primary ideal of R, and let a € R. Clearly, if a € Q,
then (@ : a) = R. Suppose that a ¢ @Q; we show that (Q : a) is
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P-primary. If z € (Q : a), then € P; hence @ C (Q : a) C P, so
that P C 1/(Q :a) C P by [4, Corollary 25]. Hence 1/(Q : a) = P.
Now suppose that ¢,d € R are such that ecda € Q, but d ¢ P. Then Q
primary gives ¢ € (Q : a).

7) Assume that 0 = (,_, Q; with \/Q; = P; is a minimal primary de-
composition of 0, and let P € Ass(R). Then P = (0 : a) for some
a € R. Then we must have (0 : a) = (;_,(Q; : a). By (6), we have
(Qi : a) = Rif a € Q;, while (Q; : a) is P-primary if a ¢ Q;. Let
i1,...,is be such that a ¢ Q;,, ..., Q;,. Hence by [4, Corollary 25], we see
that P = 4/(0:a) = ﬂ§=1 P;;; hence P = P;, for some k. Therefore,
we must have Ass(R) is a finite set.

THEOREM 4.7. Let I be a P-primary Q-ideal of a Noetherian semiring
Then diam(I'(R/I)) < 2.

PROOF. Let gg be the unique element in Q) such that gg + I is the zero in

R/I. By Theorem 4.5, I'(R/I) U {qo + I} = P/I is a prime ideal of R/I. Tt
follows from Lemma 3.6 (ii) that P/I is the union of all the associated primes
of R/I; hence P/I € Ass(R/I). Tt follows from Lemma 3.5 (ii) and Remark

4.6

(7) that P/I = (0 : p) for some p € T'(R/I); hence diam(T'(R/I)) <2. O
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