GLASNIK MATEMATICKI
Vol. 43(63)(2008), 451 — 479

PULL-BACKS AND FIBRATIONS IN APPROXIMATE
PRO-CATEGORIES
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ABSTRACT. In this paper we introduce the category Apro- ANR called
the approximate pro-category of ANR’s, whose objects are all systems
of ANR’s and whose morphisms are obtained as equivalence classes of

system maps for some equivalence relation. We show that any 2-sink

X SN Z<< Yin Apro- ANR admits a weak pull-back and it admits

a pull-back if they are systems of compact ANR’s. Moreover, it admits
a pull-back if they are objects of pro- ANRU. Here ANRU is the full sub-
category of the category Unif of uniform spaces and uniform maps, whose
objects are uniform absolute neighborhood retracts (ANRU’s) in the sense
of Isbell. We define the approximate homotopy lifting property (AHLP) for
morphisms in Apro- ANR and show that the category Apro- ANR with fibra-
tion = morphism with the AHLP with respect to paracompact spaces, and
weak equivalence = morphism inducing an isomorphisms in pro- H(ANR)
satisfies composition and factorization axioms and part of pull-back axiom
for fibration category in the sense of Baues. Finally, we show that the limit
of the pull-back of any 2-sink X .z vin Apro- ANR consisting of
systems of compact ANR’s is a pull-back in the category Top of topologi-
cal spaces and continuous maps, and conversely every pull-back in the full
subcategory CH of Top whose objects are compact Hausdorff spaces admits
an expansion which is a pull-back in Apro- ANR.

1. INTRODUCTION

Although the category Top of topological spaces and continuous maps
has pull-backs, subcategories of Top do not have pull-backs in general. For
example, the full subcategory ANR of Top whose objects are ANR’s does not
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have pull-backs. However, every 2-sink X 7 % ¥ in ANR has a pull-
back in ANR if the map f is a strong fibration [13], i.e., it has the strong
homotopy lifting property with respect to any spaces A: if h : A — X and
H : A x I — Z are maps such that fh = Hy, there is amap H: Ax [ — X
such that h = Hy and fH = H, and whenever H is constant on a x I, H is
constant on a X I.

An analogous result holds for the pro-category. A 2-sink X Joz 8y
in the full subcategory ANR of pro- Top whose objects are the objects called
ANR-objects has a pull-back in ANR if the morphism f is a strong pro-
fibration [14], i.e., it has the following strong homotopy lifting property with
respect to any spaces A: For any admissible pair (A, u) € A X M there exists
an admissible pair (X, ') > (A, p) such that whenever h: A x 0 — X, and
H:AxI— Y, are maps such that f, psxh = Ho, then there is a map
H:AxI— X, satisfying payh = Hy and f,tpf(“)Af{ = ¢ »H and the
property that whenever H is constant on a x I, then H is constant on a X I.
Here ANR-objects are objects which are isomorphic to systems of ANR’s in
pro- Top.

The pro-category pro- ANR is a significant category because shape theory
is based on the homotopy pro-category pro- H(ANR) of ANR’s. However, the
category pro- ANR does not have pull-backs in general unless the morphism
f has the appropriate homotopy lifting property. In this paper we consider
a category which induces the homotopy pro-category pro- H(ANR) but has
pull-backs for any 2-sinks in the category. More precisely, we introduce the
category Apro- ANR called the approximate pro-category of ANR’s, whose
objects are all systems of ANR’s and whose morphisms are obtained as equiv-
alence classes of system maps for some equivalence relation. We show that

any 2-sink X Tz yvin Apro- ANR has a weak pull-back and it admits
a pull-back if they are systems of compact ANR’s. More generally, any 2-sink

x5z v Apro- ANRU admits a pull-back. Here ANRU is the full
subcategory of the category Unif of uniform spaces and uniform maps, whose
objects are uniform absolute neighborhood retracts (ANRU’s) in the sense of
Isbell [5].

Mardesi¢ and Rushing [8] introduced the notion of approximate pro-
fibration for morphisms in the pro-category pro- ANR. An approximate pro-
fibration is a morphism having the approximate homotopy lifting property
with respect to any spaces. Secondly in this paper, we define the approximate
homotopy lifting property for morphisms in the approximate pro-category
Apro- ANR and show that the category Apro- ANR with fibration = morphism
with the AHLP with respect to paracompact spaces, and weak equivalence =
morphism inducing an isomorphisms in pro- H(ANR) satisfies composition and
factorization axioms and part of pull-back axiom for fibration category in the
sense of Baues [2]. The notion of fibration category was introduced by Baues
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[2], and it makes the constructions of the homotopy theory available in more
contexts than the notion of model category by weakening the assumptions
and concentrating on fibrations.

Finally, we show that the limit of the pull-back of any 2-sink X 7,
Z<< Yin Apro- ANR consisting of systems of compact ANR’s is a pull-back
in the category Top of topological spaces and continuous maps, and conversely
every pull-back in the full subcategory CH of Top whose objects are compact

Hausdorff spaces admits an expansion in Apro- ANR which is a pull-back in
Apro- ANR.

2. APPROXIMATE PRO-CATEGORIES

For any coverings U and V of a set X, U is said to refine V, in notation,
U < V, provided for each U € U there is V € V such that U C V. Let
UNY ={UNV :UelU,VeViandUxV={UxV:Ue€clU,V €V}
Let U and V be coverings of sets X and Y, respectively. For any subset A
of X, let st(A,U) =U{U eld :UNA#0}andU|A={UNA:U e U}.
If A= {x}, we write st(z,U) for st({z},U). Let stUd = {st(U,U) : U € U}.
Two points z, 2’ € X are U-near, denoted (x,2") < U, provided z,z’ € U for
some U € U. Two functions f,g : X — Y are V-near, denoted (f,g) < V,
provided (f(x),g(x)) <V for each € X. For any function f: X — Y, let
fU={fU):Uel}and f7'V={f"YV):V eV}

Let X = (X, pan, A) and Y = (Y}, guur, M) be inverse systems (systems,
in short) in a category C. A system map (f, f.) : X — Y consists of a function
[+ M — A and morphisms f, : Xf(,) — Y, for 4 € M such that for p < /'
there is A > f(u), f(') such that f, o priyr = quu © fur D A-

X

Pr(uA
PruHa

X Xyw)

a |

Aup’
YH -~ Y;tl

For systems X = (X, pan, A) and Y = (Y, gax, A) with the same index
set, a level morphism (fy) : X — Y consists of morphisms fy : X\ — Y} for
A € Ain C such that fy opyy = q@an o for for A < .

X/\ P’ X)\’

l [

q
Y)\ AN/ YAI
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Throughout the paper, we assume space=topological space, map = continuous
map, uniform map=uniformly continuous map between uniform spaces. Let
Top denote the category of spaces and maps, and let ANR denote the full
subcategory of Top whose objects are ANR’s.

For any subcategory C of Top, systems in C are called C-systems. For any
space X, let Cov(X) denote the family of all normal open coverings of X. In
what follows, we consider the case where C is any subcategory of Top.

Now we define the category Apro-C, which we call the approximate pro-
category. The objects of Apro-C are all C-systems. Morphisms f: X — Y
are defined as follows: First, we define a relation ~, between system maps
X — Y by saying (f, fu) ~a (9,94) if and only if for each p € M and
V € Cov(Y,) there exists A > f(u),g(u) such that (f.psa 9uPgya) < V-

PROPOSITION 2.1. ~, is an equivalence relation.

PrROOF. It suffices to verify the transitivity. Suppose that (f, f.) ~a
(9,9,) and (g,9u) ~a (h,hy). Let p € M and V € Cov(Y,), and take V' €
Cov(Y),) such that stV’ < V. There is A > f(u), g(n), h(p) such that

(fﬂpf(;t))\7gﬂpg(;t))\) < V/a
(g,upg(;t))\a huph(;t))\) <V.

So, (fuPf(urs Pubn(wyr) <V, which means (f, fu) ~a (h,h,) as required. 0O

We define the morphisms f : X — Y in Apro-C as the equivalence classes of
system maps (f, fu): X =Y.

For any system maps (f,f,) : X — Y and (9,9.) : ¥ — Z =
(Zy, v, N), consider the composition (g,9.) o (f, fu) = (v few), f9) : X —
Z.

PROPOSITION 2.2. (1) If (f',f]): X =Y is a system map such that

(f’ fu) ~a (fl7f;2)7 then (g)gl/) © (f7 flt) ~a (gagl/) o (flaf;ll,)
(2) If (¢',q.,) : Y — Z is a system map such that (g,9,) ~a (¢',9,,), then

(gagu) © (f7 fu) ~a (glagllj) © (fa f,u)
PRrROOF. For assertion (1), let v € N, and let V € Cov(Z,). Then there
is A > fg(v), f'g(v) such that
(fg(v)pfg(u)ka f;(y)pf’g(v))\) < g;1V7
which implies
(9v Fa)Praw)ns 9v g Psrgn) < V-
For assertion (2), again let v € N, and let W € Cov(Z,). Then there is
w > g(v), ¢ (v) such that

(gVQg(l/);u g:;Qg/(z/);t) <W.
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Since (f, fu) is a system map, there is A > fg(v), f¢'(v), f(i) such that

Fa)Prgx = Qg fulsrs
foPraw)x = dg @) FuPs(ur-
Thus
(9v Fo)Prgin: Gu g Prgrn) <W
as required. O

For any morphisms f : X — Y and g : Y — Z, the composition g o f :
X — Z is defined as the morphism represented by (g,9.) o (f, f.), where
(f, fu) and (g,g,) are system maps representing f and g, respectively. The
well-definedness of the composition is guaranteed by Proposition 2.2 above.

Let the identity 1x : X — X be the morphism induced by the system
map (1x,,1a) consisting of the identity maps 1x, : Xy — X and the identity
function 15 : A — A.

It is readily seen that Apro-C together with the composition and the
identity becomes a category. Our primary concern is the case where C = ANR.

From the construction of Apro-C, there is an obvious functor F' : pro-C —
Apro-C.

We have the following facts for Apro-C, which are analogous to [9, The-
orems 2, 3, Ch. I, §1.3)):

PROPOSITION 2.3. Every system X in Apro-C indexed by a set A admits
an isomorphic system'Y indexed by a directed cofinite ordered set M such that
the terms and bonding maps of Y are those of X and card(M) < card(A).

Proor. This is obvious by [9, Theorem 2, Ch. I, §1.3] and the existence
of the functor F : pro-C — Apro-C. O

PRrROPOSITION 2.4. For any morphism f: X —Y in Apro-C there exist
a morphism ' : X' — Y' between cofinite systems X' and Y' and iso-
morophisms 1 : X — X' and j :' Y — Y’ such that f is represented by a
level morphism, j o f = f' o4, and each term and bonding morphism of X’
and Y' is that of X and Y, respectively.

Proor. This is proven exactly as for [9, Theorem 3, Ch. I, §1.3], using
Proposition 2.3. O

For any system map (f, f,) : X — Y, a pair (A, u) € A x M is said to be
admissible if A > f(u).

PRrOPOSITION 2.5. Let f : X — Y be a morphism in Apro-C which is
represented by a system map (f, fu) : X — Y. Then if f is an isomorphism
in Apro-C, then for each admissible pair (A, u) € A x M and for each U €
Cov(Xy) and V € Cov(Y,) there exist an admissible pair (X, ') > (A, p) and
a map h:Y,, — Xy such that
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(2.1) (P A fwppuna) <U,
(fupsahs quu) < V.

X)\/

159y
Py
X Pfwyx

Flw) =—— X X

\*\ A
ful \\ lf}l/
N

Qpup’
Y# Y,u/

PROOF. Let (A, ) € A x M be an admissible pair, and let & € Cov(X))
and V € Cov(Y,). Let g : Y — X be a morphism in Apro-C which is the
inverse of f, and let g be represented by a system map (g, g»). Then there
exists p' > gf(u), g(A), u such that

(Fudrwos s Gup) <V,
9w gf(w)w = Pfp)AIrdg(N)p/
Moreover, there exists X > A, fg(\), f(¢') such that
(Paxs gxfanPrgon) <U,
JoonPrgox = Qg fwPs -
Then the map h = gaqg(n),s satisfies (2.1) and (2.2) as required.

XA/
P
P Y\
//AV Tt
pf(u)%
Xfa(n) X
9f(u
l y \ fgm
gf(u)qgfww’ Y(/\) fur
\N/

Y

O

A system map p = (py) : X — X = (X, par, A) is a resolution of X if
it satisfies the following two conditions:
(R1) For each ANR P, V € Cov(P) and map f: X — P, there exist A € A
and a map g : X, — P such that (gpx, f) <V, and
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(R2) For each ANR P and V € Cov(P), there exists V' € Cov(P) such that
whenever A € A and g,¢' : X, — P are maps with (gpx,g’'pr) < V',
then (gpax, g'pan) <V for some A > A\

For any subcategory C of Top, a resolution p = (py) : X — X =
(X, pan, A) is called a C-resolution if all the coordinate spaces X, are in

C.

The following is a useful characterization:

THEOREM 2.6. ([9, Theorem 5, Ch. I, §. 6.2], [7, §. 5]) A system map
p=(px): X — X = (Xx,pan, ) with all Xy being ANR’s is a resolution of
X if and only if it satisfies the following two conditions:

(B1) For each A\ € A and for each open set U in Xy such that px(X) C U,
there exists N > X such that paxx(Xy) C U, and

(B2) For each U € Cov(X), there exist A € A and V € Cov(X)) such that
Py Y <U.

Note here that condition (B1) is equivalent to condition (B1)* below,
which was introduced as condition (B4) in [17, 3.5]:

(B1)* For each A € A and U € Cov(X,), there exists A’ > A such that
P (X)) C stpa(X),U).

Ifp=(py): X — X = (X, par, A) is a resolution of a topologically complete
space X and if all X are normal, then p is an inverse limit of X [9, Theorem
6, Ch. I, §6.3]. Conversely, if X are compact Hausdorff spaces, then every
inverse limit p : X — X of X is a resolution of X [9, Theorems 4, 5, Ch. I,
§5.2].

PROPOSITION 2.7. If p = (py) : X — X = (X, pax, ) is a resolution
and if (f, fu) : X = Y is a system map which induces an isomorphism in
Apro- Top, then the system map (fups)): X — Y is a resolution.

PROOF. We show that the system map (fups(,)) has properties (R1) and
(R2). For (R1), let P be an ANR, W € Cov(P), and let h : X — P be a map.
Fix 4 € M, and choose W' € Cov(P) such that st W' < W. Then property
(R1) for (py) implies that there exist A > f(u) and a map k : X\ — P such
that

(2.3) (h,kpx) <W'.

By Proposition 2.5 we have an admissible pair (X, x') > (A, 1) and a map
g : Y, — X, such that

(2.4) (Paxs 9 fwpuyn) < kW
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(2.3) and (2.4) imply (h, kg fupsuyn < W. So, (h,kgfupsy) < W. This
verifies property (R1).

p—" x-".x,

Xy = X Xy

For (R2), let P be an ANR and W € Cov(P). Let W; € Cov(P) be such
that st Wy < W. Choose W' € Cov(P) with the property that if A € A and
h,h': Xy — P are maps such that (hpx,h'py) < W', then there exists A’ > A
such that (hpan,h/panv) < Wi. Let p € M, and let h,h’ : Y,, — P be maps
such that

(PSP () h/fupf(u)) <W.
Then if we choose A > f(u), then
(Rfupf(yaPxs B fulryapa) < W',
so there exists A > X such that
(2.5) (P Supsoxe B fupgae) < Wi

Then by Proposition 2.5, there exist an admissible pair (X, ') > (A, u) and
amap g:Y,, — X, such that

(2.6) (fltpf(M)A”g7 quu/) < h_lwl A h/_lwl.

By (2.5) and (2.6),
(hq;l,y/, h//q/_“_l/) < st Wl < W

Pr(p) Par Pt !
wa )N

pf( A DPxar

as required.

o — X - XA” Xf(/-" )
-h%/ Qup’
P Y, Y,
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3. APPROXIMATE SYSTEMS AND APPROXIMATE MAPS

Let us recall the definitions of approximate system and approximate map
in the sense of Mardesi¢ and Watanabe [10]. But we only need the commuta-
tive case for our purpose.

A commutative approximate system X = (Xx,Ux,prn,A) consists of an
inverse system (Xx,pax,A) and Uy € Cov(Xy), A € A, with the following
property:

(AI) For each A € A and U € Cov(X,) there exists X' > A such that Uy, <
pranld for N > N

If each U, is the open covering by open e)-balls for some €5 > 0, then we
write X = (X)\, EXNy DAN A)

For commutative approximate systems X = (Xy,Ux,par,A) and 9 =
(Y., Vu, @uur, M), an approximate map (f, fu) : X — 2 consists of a function
f i+ M — A and maps f, : Xy — Yy, p € M, with the following property:

(AM) For any p,p/ € M with p < p/, there exists A € A, A > f(u), f(¢)
such that

(31) (q;tu’fu’pf(,u/)Xyfupf(ﬂ))\/) < st VH for )\/ > A.

An approximate map (f, f,,) is said to be commutative if

Qup Juw D uryx = Jub gy for N>

instead of (3.1).

There is another way to express the category Apro-C using the the-
ory of approximate resolutions. In [10] it is shown that there is an equiv-
alence between the category CTop of topologically complete spaces and maps
and the category APRESanr of cofinite approximate ANR-resolutions and
equivalence classes of approximate maps. The equivalence relation ~ be-
tween approximate maps is defined by saying (f, f.) ~ (g, 9,) if and only if
there exist a finite collection of approximate maps (fi, (fi)u), ¢ =0,1,...,n,
such that (fo,(fo)u) = (f;fu)s (fn, (fu)u) = (9,9u), and (fi, (fi)u) =
(fit1, (fi+1)n). Here for any approximate systems X = (Xx,Ux,pax, A) and
Y = (Yu, Vo, quw , M) and for any two approximate maps (f, f.), (9, 9,) : X —
D, (f, fu) = (9, 9,) means that for each p € M there exists A > f(u), g(u)
such that (fupfas 9uPg(uyrr) < stV for X > A

ProrosiTiON 3.1. For any commutative approximate systems X =
(Xk7u)\7p)\k'7A) and 2) = (Y;L7Vu7quu’7M) m ANR7 let X = (Xk7p)\k'7A)
and Y = (Y, quu, M) be the induced ANR-systems. Then for any system
maps (f, fu),(9:9u) : X = Y, (f, fu) ~a (9,9,) in our sense if and only

if (f,fu) = (9,9,) in the sense of [10], considering (f, fu.) and (g,9.) as
commutative approxrimate maps X — ).
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PRrROOF. It is obvious that (f, f.) ~a (9,9,) implies (f, fu) = (9,9u)-
Conversely, suppose (f, fu) = (9,9,). Let p € M, and let V € Cov(Y),).
Choose V' € Cov(Y,,) such that stV’ <V, and take p/ > p such that V, <

q;:,V'. Note that stV < q;:, stV'. By (f, f.) = (9,9,) and the fact that
(f, fu) and (g,9,) are system maps, there is A > f(¢'), g(¢’) such that

(P runns G Pg(unn) < st Vi,

fupf(p,))\ = quu’f;t'pf(p/))n

IuPg(p)x = Qup' I Pg(p') 1+
Then (QMM'fM’pf(;U))\;QMM’gp"pg(;t/)k) < V’ S0 (fﬂpf(;t))\7gﬂpg(;t))\) < Vﬂ which
means (fa fu) ~a (g;gu) a

We also need the following result for the later sections.

PROPOSITION 3.2. (1) Every system X = (X, pax, A) in Top admits
a commutative approzimate system X = (Xo,Uu, Poeys N) and an in-
creasing function ox : A — A with the following properties:

(a) A is cofinite, directed, and antisymmetric,

() Xa =Xox(a) fora €A, and Dpor = Dox (a)ox (o) Jor a < o,

(c) Uy < p;;,ua for a < o,

(d) for any X\ € A and for any U € Cov(X)) there exists a € A such
that ox () = X and U, = U,

(e) the system map (0x,155(a)) : X — X = (X0, Dour, N) repre-
sents an isomorphism in pro- Top.

(2) Every system map (f, fu) : X =Y = (Y, quu, M) with f being an
increasing function admits a commutative approximate map (f,fﬁ) :
X—-9= (Yg,Vg,qﬁﬁ,,M) such that

(a) f is an increasing function such that ox f(8) > f(oy(B3)) for
BeM, o B

() T = Jox @P v @.0x7() * X50) = Vi

(c) Z/l?(ﬁ)<f3 Vg for f € M, B

(d) the following diagram commutes for 3 € M :

Pfoy(B),0x F(B) foy (B)
(3.2) Xox7(8) ——= Xfov(8) — Yoy (8)
_ 7, L
X5s) Y

(3) If X is a system in the full subcategory CM of Top whose objects are
compact metric spaces, then we can choose the open coverings Uy in
X as finite open coverings by open £,-balls for some €, > 0 such that
d(z,2") < eqr for z,2" € X o implies A(Ppp (T), Do (') < €a-
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PROOF. To show the first assertion, we first recall the definition of the
approximate system X in the proof of [17, Proposition 3.7]. Let

FA) ={(\U): Xe A, U € Cov(Xy)}

and
K(A) ={K CF(A): K is finite and K # (}.

Let A = K(A) be ordered by inclusion. Then A has property (a). Let 7x :
A — A be a function such that 7x ({(\,U)}) = A for (\,U) € F(A). Then
there exists an increasing function ox : A — A such that ox > 7x and
ox({(\U)}) = A for (\,U) € F(A). Asin (b), let Xo = X, (a) for a € A
and P = Pox (a)ox (o) for a < . For each a = {(A1,U1),...,(An,Un)} €
A, let U, = pzllo'x(a)UI A--- /\p;:ﬁx(a)un € Cov(X, 4 (a))- The construction
immediately implies conditions (c), (d), and (e). This shows the first assertion.

To show the second assertion, let (f, f.) : X — Y = (Y., quu, M)
be a system map. For each 8 = {(u1,V1),-..,(itn,Vn)} € M, choose

U € Cov(Xj4y (5)) such that U < f71 ( Mlay B)Vl/\ qm}w(ﬁ)vn). Then

there is an increasing function f : M — A such that f(3) > {(foy(8),U)} for
B € M, and we define a map fﬁ ) Yﬁ by fﬁ = fay(ﬁ)pfay(ﬁ) ox f(B)
Thus conditions (a), (b), and (c) are fulfilled. For 8 < &, aXf(ﬁ) <oxf(B)
since ox and f are increasing functions. So, we have qﬁﬁ/fﬁ/ = fﬁzr(ﬁ) 78"
Thus we have a system map (f, fﬁ) X Y = (Yg,qﬁﬁ, M), and by the
construction we have the commutative diagram (3.2). This proves the second
assertion.

The third assertion follows from the compactness of the terms and the
cofiniteness of A. O

4. APPROXIMATE HOMOTOPY LIFTING PROPERTY

First, we recall the definition of the approximate homotopy lifting prop-
erty for system maps [7]. Let X = (Xy,pax,A) and Y = (Y}, quu, M) be
ANR-systems. A system map (f, f.) : X — Y has the approzimate homotoy
lifting property (AHLP) with respect to a space Z provided it satisfies the
following property:

(AHLP) For any admissible pair (A, u) € A x M and for any U € Cov(X))
and V € Cov(Y)) there exist an admissible pair (X, p’) > (A, 1) and
V' € Cov(Y,,) such that whenever h : Zx0 — Xy and H : ZxI — Y,
are maps with

(4.1) (furpfuynh, Ho) <V,
there exists a map H : Z x I — X such that
(4.2) (pxh, Ho) < U,
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(4.3) (fupf(u)kg’ Quuw H) < V.
Here I denotes the closed interval [0, 1].
Xy
Pax/ h
Pf(uHa
Pin
Xpon <= X2 5 Xp) Zx0
f“l fu/j;\\’i'\\ lg
D T~
Yu Yu’ A Z x 1

The admissible pair (AN, ') and V' in (AHLP) are called a lifting index and
lifting mesh, respectively.

The next step is to extend the definition of the AHLP for system maps
over morphisms in Apro- ANR.

ProPOSITION 4.1. Let (f, fu), (9,94) : X — Y be system maps. If
(f, fu) ~a (9,9u) and if (f, fu) has the AHLP with respect to a space Z, so
does (g, 9,)-

PROOF. Let (A, u) € A x M be an admissible pair for (g,g,), and let
U € Cov(X,) and V € Cov(Y,). Choose V; € Cov(Y,) such that stV < V.
By (f, fu) ~a (g,9,), there is Ay > A, f(u1) such that

(4.4) (fuP s GuPg(un) < Vi-

Apply the AHLP for the system map (f,f.,) with the admissible pair
(A1, 1) and the open coverings p;Allu and V7, and we obtain an admissi-
ble pair (N, u') > (A1, 1) and V' € Cov(Y,,) with property (AHLP). Choose
Vi € Cov(Y,,) such that stV; < V'. Again by (f, fu) ~a (9,9,), there is
AL > N, g(p') such that

(4.5) (furPs(unng> IwPg(uyny) < Vi-

We claim that the admissible pair (A}, ') and the open covering Vi are a
lifting index and a lifting mesh for (g, g,), respectively (see diagram (4.9)
below). Indeed, suppose that h: Z x0 — Xy, and H : Z x I — Y),» are maps
such that

(4.6) (gu’pg(u’)A’lh; Hy) < V1.
By (4.5) and (4.6),

(fwpsun s Ho) < V',
So there is a map H : Z x I — Xy, such that
(4.7) (f;tpf(u)hgv G H) <V,
(4.8) (Pau by Ho) < pxa, U
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By (4.4), (4.7), and (4.8),

(gupg(u)hgvﬂuu’H) <stVp <V,
(Pax; hs pax, Ho) < U,

as required.

/
Py’ Parat

(4.9) Xy, Xy Xy,
A
Pg(u)x T~ < H
Xg(p) Xguwy =— X Xpy ~~ X Z x0
ful % f,ul o R Ci
YM QMMI Y/J/ H Z )( I

A morphism f : X — Y in Apro- ANR is said to have the approximate
homotopy lifting property (AHLP) with respect to a space Z provided f is
represented by a system map (f, f,) which has the AHLP with respect to Z.
This is equivalent to saying that every system map (f, f,,) representing f has
the AHLP with respect to Z.

For the rest of this section, let X and Y have the same index set, and
write X = (X,\,p)\,\/,A) and Y = (Y,\,q,\)\/,/\).

For level maps, we have the following characterization of the AHLP [3,
Lemma 4.3]:

PROPOSITION 4.2. A level map (fx) : X — Y has the AHLP with respect
to a space Z if and only if it satisfies the following condition:

(AHLP) For any X € A and for any U € Cov(Xy) and V € Cov(Y)) there
exist ' > X and V' € Cov(Xy) such that whenever h: Z — Xy and
H:Z x I — Yy are maps with

(410) (f)\/h, H()) < V/,
then there is a map H : Z x I — X with

(4.11) (paxh, Ho) < U,

(412) (fAf{;q)\XH) < V.

If X and Y are ANR-systems, we have the following characterization of
property (AHLP):

PROPOSITION 4.3. Let (fy) : X — Y be a level morphism.
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(1) If Y is an ANR-system, and if the level map (fx) has the formally
weaker lifting property (WAHLP), with respect to a paracompact space
Z which is obtained from (AHLP)y, by replacing (4.10) by the equality
fxh = Hy, then it has property (AHLP) with respect to Z.

(2) If X is an ANR-system, and if the level map (f) has property (AHLP)
with respect to a paracompact space Z, then it has the formally stronger
lifting property (SAHLP)p, with respect to Z which is obtained from
(AHLP);, by replacing (4.11) by the equality

pvh = Hy.

PRrOOF. (1) is proven by the modification of the proof of [14, Proposition
4.3], and (2) is proven in [4, Theorem 3.2]. O

A system map (f, fu) : X — Y has the homotopy lifting property (HLP)
with respect to a space Z provided it satisfies the property (HLP) which
is obtained from property (AHLP) by replacing (4.1), (4.2), (4.3) by the
following equalities, respectively:

fwprynh = Ho,
paxh = Hy,
JuPfrH = quuw H.

We have the following characterization of property (HLP) (see [3, Lemma
4.3]):

PROPOSITION 4.4. A level map (f») : X — Y has the HLP with respect
to a space Z if and only if it satisfies the following condition:

(HLP)y For any A € A there exists N > X such that whenever h : Zx0 — Xy
and H : Z x I — Yy are maps with
fah = Hy,
there exists a map H:Zx1I— Xy such that

paxh = Ho,
fAH = q)\AIH.

Note here that property (HLP) is not invariant in pro- ANR (see [8, Re-
mark 4]) and hence is not invariant in Apro- ANR. However, Propositions 4.2,
4.3 (1) and 4.4 immediately imply

COROLLARY 4.5. If a level map (fy) : X — Y between ANR-systems has
the HLP with respect to a paracompact space Z, then it has the AHLP with
respect to Z.

Finally in this section, we recall the definition of fibration category in the
sense of Baues [2]. A fibration category is a category F with the structure
(F, fib,we) which satisfies axioms (F1), (F2), (F3), (F4) below. Here fib
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and we are classes of morphisms, called fibrations and weak equivalences,
respectively.

(F1) Composition aziom. The isomorphisms in F are weak equivalences
and fibrations. For any morphisms f : X — Y and g : Y — Z, if
any two of f, g, and g o f are weak equivalences, so is the third. The
composite of fibrations is a fibration.

(F2) Pull-back aziom. For any 2-sink B - Y < X in F with f being a
fibration, there is a pull-back diagram in F

ELX

7| |7

B2 .Yy

where f is a fibration. Moreover, if f (g, respectively) is a weak equiv-
alence, so is f (g, respectively).

(F3) Factorization aziom. Each morphism f : X — Y admits a factoriza-
tion

X4f>Y

| A
A
where g is a weak equivalence and h is a fibration.
(F4) Axiom on cofibrant models. Each object X in F admits a trivial fibra-
tion (i.e., a morphism which is both a fibration and a weak equivalence)
RX — X where RX is a cofibrant in F. An object R is a cofibrant if
each trivial fibration f : Q — R admits a morphism s : R — @ such
that fos=1g.
The category Top has structures of a fibration category if fibration = Hurewicz
fibration, and weak equivalence = homotopy equivalence.

5. COMPOSITIONS AXIOM

THEOREM 5.1. A system map (f, f.) : X — Y which induces an isomor-
phism f : X — Y in Apro- ANR has the AHLP with respect to any space.
Hence every isomorphism f : X — Y in Apro-ANR has the AHLP with
respect to any space.

PROOF. Let g : Y — X be the inverse of f, and let g be represented
by a system map (g,g»). To show that (f, f,) has the AHLP with respect
to any space Z, let (A,u) € A x M be any admissible pair, and let U €
Cov(Xy) and V € Cov(Y),). Choose U’ € Cov(X,) such that sti/’ < U. By
(g.9x) o (f, fu) ~a (1a,1x,), there is Ay > A, fg(A) such that

(5.1) (P I gD rgn) < U’
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By (f, fu) ©(9,9x) ~a (1am,1y,) and the fact that (g,gx) is a system map,
there is p’ > p, gf (1), g(N\) such that

(52) (QH#’vf#gf(;t)ng(;t);t’) <V,
(5.3) Pr(orIx g = 95 () 9gf w’ -
Let

(5.4) V=g VA qg*(f\)“,g;ll/l'.

By the fact that (f, f,) is a system map, there is X' > Ay, f(x') such that

(5.5) faopraon = dgoow fupry

Then (X, ') is a lifting index, and V' is a lifting mesh (see diagram (5.7)
below). Indeed, suppose that h: Z x0 — Xy and H : Z x I — Y, are maps
such that

(5.6) (furpgquynh, Ho) < V'.
By (5.1), (5.4), (5.5) and (5.6),
(9xqg(0 ) Ho, paxh) <U.
By (5.2) and (5.3),
(Quw H, fupp(mrgadgogw H) < V.

Thus the map H : Z x I — X defined by H = IrGg(nyw H 1s the desired
homotopy.

Py’

(57) X)\l X)\/

Daxy PruHa h
Prg(Mx

O

PROPOSITION 5.2. Let f : X — Y and g : Y — Z be morphisms in
Apro-ANR. If f and g have the AHLP with respect to a space Z, so does
gof.
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PROOF. It is proven in [3, Proposition 5.4] that if (f, f,) : X — Y and
(9,9») : Y — Z represent the morphisms f and g, respectively, and if (f, g,,)
and (g, g,) have the AHLP, so does the composition (g,g.) o (f, f.). This
immediately implies the theorem. O

For any ANR-system X = (X, pan,A), let [X] denote the induced sys-
tem (X, [pax],A) in the homotopy category H(ANR) of ANR. Here for any
map f : X — Y, let [f] denote the homotopy class of the map f. Any
morphism f : X — Y in Apro- ANR induces a morphism [f] : [X] — [Y]
in pro-H(ANR). Indeed, let f be represented by a system map (f,f.) :
X — Y. Then (f, f,) induces a system map (f,[f.]) : [X] — [Y], and
let [f] be the morphism represented by ([f.], f). This is well-defined since
it (f, fu) ~a (9,94), then for any pu € M and for any V € Cov(Y,) so that
any V-near maps into Y, are homotopic, there is A > f(u), g(u) such that
(fuPx: GuPg(uyx) <V, which means fupg(x =~ guPg(u)a-

Then we immediately have

ProrosITION 5.3. Consider a sequence X Ty Sz Apro- ANR.
If any two of f, g, gf induce isomorphisms in pro- H(ANR), so does the third.

By Theorem 5.1 and Propositions 5.2 and 5.3 we have
COROLLARY 5.4. The category Apro- ANR together with fibration = mor-

phism with the AHLP with respect to any spaces, weak equivalence = mor-
phism inducing an isomorphism in pro- H(ANR) satisfies composition aziom.

6. FACTORIZATION AXIOM

THEOREM 6.1. Every morphism f : X — Y in Apro- ANR admits a
commutative diagram in Apro- ANR

PN

E

where g s a morphism inducing an isomorphism in pro- H(ANR) and h is a
morphism with the AHLP with respect to any space.

(6.1) X

PROOF. Recall the construction of the system E from the proof of [14,
Theorem 6.1]. In view of Propositions 2.3 and 2.4, we can assume that f
is represented by a level map (fy) : X — Y and that X = (Xy,pan,A)
and Y = (Y),qxn,A) are indexed by a cofinite directed set A. We define
Vy € Cov(Yy) by induction on the number of predecessors of the elements of
A. If XA € A has no predecessors, then we let V\ be any open covering of Y.
If we have defined open coverings V, for all A € A that have at most n — 1
predecessors, and if A € A has n predecessors, then we define an open covering
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V) of Y, as follows: If \;, i =1,...,n, are the predecessors of A, then for each
i, we take an open covering U; € Cov(Yy,) such that

(6.2) U; <V, and
(6.3) any two U;-near maps into Yy, are V,,-homotopic.
We then take an open covering V) € Cov(Yy) such that

(6.4) Vs < Naxhits.

i=1
For each A € A, let
B\ = {(z,w) € Xx x Y{ : (fa(z),w(0)) < V\}.

Then E) are ANR’s since it is an open subset of the ANR X, x Y/\I. Since
Vv < gy Va for A < X by (6.2) and (6.4), then there is a well-defined map

v Ex — Ex i rawv(z,w) = (pan (x), guvw) for A < N
For each A € A, we define maps
gx: Xo = Ex:ga(x) = (z,ef, () for z € Xy,

and
hx: Eyx — Yy :hy(z,w) =w(l) for (z,w) € E,.

Here for any space W and for any wy € W, let e,,, € W’ denote the constant
path defined by e, (t) = wg for t € I. Then there is a commutative diagram:

Py

Xy<=—""Xyn
Xl I <
Fa E DL Ey

Y, D evE— Yy
Then we have an ANR-sytem E = (E\, r\x, A) and level maps (g)) : X — E
and (hy) : E — Y which induce the commutative diagram (6.1).

The system map (gx) : X — E has the AHLP with respect to any spaces
since each gy has the homotopy lifting property with respect to any spaces
(see [11, Theorem 6.5.10]). Moreover, using (6.3) we can show that the system
map (hy) : E — Y induces an isomorphism in pro- H(ANR) (see [14, Theorem
6.1]). O
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7. PULL-BACKS

LEMMA 7.1. Every 2-sink Y -2+ Z J xin Apro-C admits commu-
tative approzimate systems X = (X¢,Ue,pier, E), Y = (Y¢, Ve, ¢4, E), and
3= (Z{,We,rier, E) and a commutative diagram in Apro-C

(7.1) y—2-z-T x
I
g r

Y —Z' =—X'

where X' = (X¢, Peers B), Y' = (Y¢, qter, ), and Z' = (Z¢reer, 2) are the
systems induced by X, ), and 3, respectively, and they satisfy the following
conditions:

(1) the index set 2 is a cofinite directed set,

(2) the terms and bonding maps of X', Y', and Z' are those of X, Y,
and Z, respectively,

(8) We < rég,ll/\/g for £ < ¢,

(4) i, 3, and k are isomorphisms, and

(5) f' and g' are represented by level morphisms.

Moreover, if Z is a system in CM,

(6) we can choose the open coverings We as the open coverings by eg¢-
balls for some e¢ > 0 such that d(z,2") < egr, 2,2 € Zgr, implies
d(rge(2),1ge0 (7)) < ¢

PRrROOF. Let X = (X)\,p)\,\/, A), Y = (Y#, qM,/,M), and Z = (Zl,, TDU/,N),
and let f and g be represented by (f, f,) and (g,g.), respectively. By [9,
Lemma 2, Ch. I, § 1.2] and by the functor F : pro-C — Apro-C, we can assume
that f and g are increasing functions. By Proposition 3.2 there exist commuta-
tive approximate systems X = (Xo,Un, oo N)s D = (Y5, V5,985, M), and
3= (Z,,W,,T, N) and system maps (?,?,Y) : X — Z and (g, K Y - Z
with the properties in Proposition 3.2, where X, Y, and Z are the systems in-
duced by X, ), and 3, respectively. Then we have the following commutative
diagram:

v dgo 7 (v),029(7) 9oz (v) foz(n X pftfz(’v)ﬂz?(v)X _
ozg(y) = tgoz(y) — T “oz(v) = foz(v) = oz ()
- 9, — iy -
Vi) Z, X7
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So we have the commutative diagram in Apro-C:

y 2.z x
nn
S g L F L
Y —>Z<—X

where f and g are morphisms in Apro-C represented by (?’?7) and (g,9,),
respectively, and 4’, §', and k' are isomorphisms represented by (ox, Lox(a))
(0y,15y(5)), and (0z, 15,(4)), respectively.

Let = be the set of triples (o, 3,7) € A x M x N such that a > f(v)
and 3 > g(v), and let = be ordered by (o, 8,7) < (¢/,4',7') if and only if
a <o, B <f, and y <4 Foreach § = (a,3,7) € E, let X[ = X,
Y =Yg, Zg = Zy, Up = U, Vi = Vg, Wi = W,, and define maps pg, =
Door Xé, — Xé, qég, = Qppr : YE/’ — Yg’, Tég, = Tyy Zé, — Zé. Then
X' = (X§ U, e, B), D' = (Y, Vi G, E), and 3" = (Zg, Wi, ¢, E) form
commutative approximate systems. For each £ = (o, 3,7) € E, we define
maps [ XL = 200 JL = TPy and g ¥, — 25 g = 5,y For
E<¢ =(d,p,7"), we have the commutative diagram:

—  GG(+)p'— Gy f ! =<5 p_('v Yo/ —
Vo =% Vo) ——= Zy ~—— X5,y == Ko
App’ Tg(a(+") l Ty l PF()T(") iﬁaa'
= T8 9, = [y Pia —
Yg——>Yg(y) Zy Xf(v) a

So we have level maps (f{): X' — Z" and (g;) : Y' — Z'.

We then define system maps (i,i¢) : X — X', (4,j¢) : Y — Y’ and
(k,ke) : Z — Z' as follows: First, we define functions i : 2 — A, j: = — M,
k:Z — N byi(&) =a, j(€) = 8, k(&) = v. We define the maps i¢ = Ix.,
Jje = 1y, ke = 17 . For each £ = (o, 8,7) € E, there is a commutative
diagram:

- g’vqg(v)ﬁ— f Ir('v)a—

Y4>Z’ X
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Then we have the following commutative diagram in Apro-C:

— ry

Y ——>2Z,~—X

j” \L k// \L \Li//
’ f/

Y/ g S Z/ < X/
Here £, g, f, 9,4, 3", k" are the morphisms represented by (f, f,y), (9,9,
(fe)s (9¢)s (iyig), (4, Je), (K, ke), respectively.
It remains to show that i, j”, and k" are isomorphisms in Apro-C. To

show that " is an isomorphism, we define a system map (i',i,) : X' — X
such that

(7'2) (i’iﬁ) o (ilvi/a) ~a (157 1Xé)a

(7.3) (7',in) 0 (iyig) ~a (A5, 1)

Choose 79 € N arbitrarily, and choose [y € M such that Bo > 7(70). Choose
then an increasing function ¢ : A — A such that ¢(a) > «, f(70). Define the
function i’ : A — Z by i’(a) = (p(a), Bo,Y0), and define the map i/, : X{,(a) —
Xo by ily = Pap(a)- Then igli(e) = Pap(a) A0 iii(a) = Pagp(a), Which means

(7.2) and (7.3). Similarly we can show that j” and k" are isomorphisms. O

THEOREM 7.2. Apro- ANR has weak pull-backs.

PROOF. Suppose that we have a 2-sink X .z v Apro- ANR.
By Lemma 7.1, we can assume that X, Y, and Z have the same index set and
that f and g are represented by level morphisms (fy) and (gy), respectively.
Write X = (X, pa0, A), Y = (Y, qon, A), and Z = (Z,ran, A). Moreover,
we can assume that there exists an associated commutative approximate sys-
tem (Zx, Wh, @axn, A) such that Wy < r;;,WA for A < X. For each \ € A,
let

(7.4) Ex={(z,y) € Xa xYx: (fa(x),9x(y)) < Wi}

For each (x,y) € Ex and for A < X, (fv(x),9x(y)) < Wy implies
(fapan (), gagan (y)) < Wh, so there is a well-defined map

sav s Exe— Ex o saxv(z,y) = (o (@), o ().

Note that each E) is an ANR since it is an open subset of the product X x Y}
of two ANR’s. Thus we have an ANR-system E = (E), san, ) and a square
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in Apro- ANR:

(7.5) E—=X
l ;
y 2>z

Square (7.5) commutes in Apro- ANR. Indeed, for each A € A and for each
W € Cov(Zy) choose ' > X such that Wy, < 754, W. Then

(Faing, gagn) < Whr.
This together with the commutativity of diagram (7.6) below implies
(faiasan, gajasan) < W.

This means fi = gj in Apro- ANR.

(7.6)

ax)\/

)\/
./
5N

TA)\’
‘IM’

)\%‘ZA

To show that (7.5) is a weak pull-back, consider the following commutative
diagram in Apro- ANR:

Write D = (D, tuw, M), and let k and h be represented by system maps
(k,kx) and (h, hy), respectively. We must find a morphism ! : D — E which
makes the diagram commute. Since fk = gh, for each A € A thereisl(\) € M
such that {(A) > k(X), h(X) and

(akxtionviony s oAt oiay) < Wa.
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So we have a function [ : A — M : X+ [(A), and a map Iy : Dy — Ex
such that i)l = k‘)\tk()\)l()\) and jaly = h,\th(/\)l(/\). Then (Iy,1) : D — E is
a system map. Indeed, by the fact that (k, ky) and (h, hy) are system maps,
for each A < X there is p > I(A),1(\') such that

Eatiogun = Paxkxtion
Patnoye = Oahatnony -

This means Ixt;(x), = saxixtivy, as required. O

THEOREM 7.3. In the weak pull-back (7.5) if f has the AHLP with respect
to any paracompact space W, then j has the HLP and hence the AHLP with
respect to W.

PRrROOF. Assume the setting in the proof of Theorem 7.2. To show that
(x) has the HLP with respect to W, let A € A (see diagram (7.9) below).
Apply property (SAHLP), for (fx) with the index A and W), € Cov(Z,), and
obtain A’ > A and W’ € Cov(Zy/) with property (SAHLP), (see Proposition
4.3 (2)). Choose X" > X such that Wy» < r},},W'. To show that A" is a
lifting index for (j)), suppose that h: W x 0 — Ex» and H : W x I — Yy~
such that Hy = javh. We must find a map H:WxI— FE)\ such that

(77) HO = S)\,\//h,
(78) ])\I‘j[ = q,\)\//H.
Note that

(famixrh, gar Ho) < Wi,
S0
(rxvae farine by rasar gy Ho) < W,
which means
(fxpxariseh, gy Ho) < W'

This together with property (SAHLP); implies that there is a map H’ :
W x I — X such that

(SNH  ronrgar H) < Wa,
H(l) :p)\k”ik”h-

Thus H' and g H determine a map H : W x I — Ey such that ixH = H’
and (7.8) holds. Moreover, (7.7) holds since both maps in (7.7) are determined
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by the maps gax»Ho and H{. This completes the proof of the theorem.

(7.9)
ix
Ex X
/A Sax/ /4 Pxxr
/
/ N %
/ Ey X
/ /
. . 7 P/
N In | g \ a \
/ )\/)\// / .
h N
W x0 1 ~ £ EXI XA”
M /
H Far
/ 4 g
s Y
/ Y 7 Zy
/
g\’ T\
c| /\y NG \\ Farr
/
/ / g’
IH s Y Ly
/ /
s qx’ ! TN
I, \ \
(%
H g
W X I Y)\N ZA”

O

8. PULL-BACKS IN THE APPROXIMATE PRO-CATEGORY OF UNIFORM SPACES

In this section we discuss the existence of pull-backs in the approximate
pro-category of ANRU’s.

A uniform space X is an ANRU (uniform absolute neighborhood retract)
provided whenever X is embedded in a uniform space Y then there is a uniform
retraction of some uniform neighborhood of X in Y onto X, equivalently, every
uniform map f : A — X from a uniform subspace A of a uniform space Z
into X extends over some uniform neighborhood of A in Z.

Let Unif be the category of uniform spaces and uniform maps, and let
ANRU be the full subcategory of Unif whose objects are ANRU’s.

For any uniform space X, let Covy(X) denote the family of all uniform
coverings of X.

In an analogous way we can show that Propositions 2.1 and 2.2 hold for
any subcategory C of Unif, and hence we can define the approximate pro-
category Apro-C. Moreover, it is a routine to check that Propositions 2.3,
2.4, 2.5, 3.1, and 3.2 hold in the uniform case. Note here that the uniform
version of the theory of the approximate resolutions is discussed in [16].

We can also define the AHLP with respect to a uniform space for sys-
tem maps between ANRU’s. Proposition 4.1 holds for the uniform case, and
hence the AHLP is well-defined for morphisms in Apro- ANRU. Replacing
spaces, maps, coverings by uniform spaces, uniform maps, uniform coverings,
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respectively, we can show that Theorem 5.1 and Proposition 5.2 hold for the
morphisms in Apro- ANRU.

In the category Unif we consider a homotopy called the semi-uniform
homotopy in the sense of [12]. Two uniform maps f,g: X — Y are said to be
semi-uniform homotopic provided there exists a uniform map H : X x I — Y
such that Hy = f and H; = g. Here X x I denotes the semi-uniform product
in the sense of [5, p. 44]. For any ANRU-system X = (X, pxn,A), we have
an induced system [X] = (X2, [pax], A) in the homotopy category H(ANRU).
Then, in an analogous way, each morphism f : X — Y in Apro- ANRU
induces a morphism [f] : [X] — [Y] in pro- H(ANRU). Note here that for any
ANRU Y, there exists V € Covy (Y) such that any V-near uniform maps are
semi-uniformly homotopic [5, Proposition 16, Chap. V]. Using this notion of
homotopy, we have the uniform version of Proposition 5.3.

Moreover, by a completely analogous argument, we see that the uniform
version of Theorem 6.1 also holds. Note here that Ey\ = {(z,¢) € X X
U(I,Yy) : (fa(z),0(0)) < Y2}, where x denotes the uniform product, is an
ANRU, by the facts that if A and B are ANRU’s, then the set U(I, B) of all
uniform maps f : I — B is an ANRU and the uniform product A x U(I, B)
is also an ANRU.

In the uniform case we can improve Theorem 7.2.

THEOREM 8.1. Apro- ANRU has pull-backs.

ProOOF. For any 2-sink X 7, Z<L vyin Apro- ANRU, we define the
system E = (E\,sax,A) as in the proof of Theorem 7.2. Here we use the
uniform product x in the definition of Ey in (7.4). In the same way we can
show that diagram (7.5) is a weak pull-back. So, it remains to show that the
morphism I obtained in the proof of Theorem 7.2 is unique. Suppose that we
have another morphism I’ in Apro- ANRU which makes the following diagram

commute:
\\
l/

(8.1) D
N\ E—=Xx
J

f

Yy 2>z
We must show I =1". Let I’ be represented by a system map (I’,15). To show
(L, 15) ~a (I',14), let A € A, and let W € Covy(Ey). Choose U € Covy (X))
and V € Covy(Yy) such that & x V < W. Then by il' = k = il and
jl' = h = jl, there exists u > [(\),1’(\) such that

(iAlAtl(A);tai/\li\tl’()\)u) <U,

UnIxtioyw IOt yu) < Vs
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which implies
(llxtl'(/\)w Ixtiogp) <UXV <.
This shows (I,1x) ~q (I',15). 0

Let ANR. denote the full subcategory of Top whose objects are compact
ANR’s. Then by the same argument as for Theorem 8.1 we have

COROLLARY 8.2. Every 2-sink X -2+ Z T v Apro- ANR, has a
pull-back in Apro- ANR.

9. EXPANSIONS OF PULL-BACKS IN Apro- ANR

Let X = (Xx,panv,A) and Y = (Y}, gy, M) be any ANR-systems with
limits p = (pa) : X — X and ¢ = (g,) : ¥ — Y. For any system map
(fifu) : X =Y, amap ¢ : X — Y is a limit of (f, f,,) provided for any
u € M, gup = fups). Note that each system map (f,f,) : X — Y
determines a unique limit. It is easy to see that if (f',f,) : X — Y is a
system map such that (f, f.) ~a (f', f},), and if ¢ is a limit of (f, f,.), then it

is also the limit of (f’, f/.ll,) Thus each morphism f in Apro- Top determines

a unique limit ¢ : X — Y, which is denoted by lim f.
THEOREM 9.1. Suppose that we have a pull-back in Apro- ANR

E—‘-Xx

"l lf
y—2-7

where X, Y, and Z are ANR.-systems. Then the limit of the commutative

square
L

E—X
b
YLZ

is a pull-back in Top.

PrOOF. By Lemma 7.1 and Proposition 2.7 we can assume that the
systems X, Y, and Z have the same index set, say, X = (Xx,pan,A),
Y = (Ya,on,A), and Z = (Zy,ran, ), that the morphisms f, g, 2, and
j are represented by level maps (fa), (gr), (éx), and (jx), and that there
is an associated approximate system 3 = (Zy,ex, rax,A) with the following

property:
d(z,2') <en, 2,2 € Zy = d(rax(2),man(2)) < ex
Moreover, we can assume that
Ex={(z,y) € Xo x Ya: (fa(2),92(y)) < er}
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and that syy : Ex» — E) is the map defined by sxx (z,v) = (pan (2), on (1))-
Letp=(pr): X = X,q=(¢\): Y =Y, r=(r\): Z— Z be limits (hence
ANR-resolutions). Let E = {(z,y) € X XY : ¢(z) = ¥(y)}, and define
the systems map s = (s)) : E — E by sa(x,y) = (pa(x),¢r(y)). To show
the theorem, it suffices to show that s = (s)) : E — E is an ANR-resolution
of E. To verify this fact, consider the system F = (Fy,s),,,A) where F)\ =
{(z,y) € Xo x Ya : d(fa(2), 9r(y)) < ex} and siy (2, y) = (Pax (), v (¥))-
It suffices to show that the system map s’ = (s}) : E — F consisting of the
maps sy : E — Fy : s\(z,y) = sa(z,y) is a limit. For, if it is the case then
s’ = (s)) : E — F has properties (B1) and (B2) since each F) is compact.
That will imply that s = (s)) : E — E has properties (B1) and (B2). Suppose
that ¢ = (tn) : B/ — F is a system map. We must find a unique map
v: E' — E so that t = s'y. For each e € E’ and for each A € A write t)(e) =
(ax(e), Br(e)) € Xx X Y. Then the sets {ax(e) : A € A} and {Bxr(e) : A € A}
determine points z, € X and y. € Y, respectively. The pair (z.,y.) satisfies
d(rap(ze), At (ye)) = d(fapa(ze), gran(ye)) = d(falan(e)), gr(Ba(e))) < ex
for A € A. This together with property (AI) implies 7xf(ze) = Trg(ye)
for A € A. So, ¢(xz.) = ¥(ye). Thus the pair (z.,y.) determines a point
v(e) € E. We have a map v : E' — E : e — 7(e) such that ¢t = s’y. That v
is continuous follows from the fact that the functions £/ — X : e — z. and
E' —Y : e gy, are continuous. The uniqueness of v follows from the fact
that if v’ : B/ — E is another map such that ¢ = s’/, then s\vy = s\’ for
each A € A, sov=+". O

THEOREM 9.2. For any pull-back in CH

E—=X

| b

Y——7

there is a commutative diagram in Apro- Top
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where the square
E—>X
jJ/ f
g
Y —Z
is a pull-back in Apro-ANR, andp: X — X, q:Y - Y, r: Z — Z, and
s: E — E are ANR-resolutions.

PROOF. By the argument in [7, Theorem 11] there exist systems of com-
pact polyhedra X, Y, and Z, resolutions p = (px) : X — X, qg=(q,) : Y —
Y,andr =(r,): Z — Z, system maps (f, f,): X — Z and (¢9,9,): Y — Z
whose limits are ¢ and 1), respectively. By Lemma 7.1 and Proposition 2.7 we
can assume that X, Y, and Z have the same index set A, the system maps
are level maps (fy) and (g ), and there is a commutative approximate system
3 = (Zx,ex,Taxn, ) associated with Z. Let f: X - Zandg:Y — Z
be the morphisms in Apro- ANR represented by (fx) and (gx), respectively.
Consider the pull-back in Apro- ANR:

E—‘>X

jl lf
g
Y —Z7

where E = (E), sxx, A) is the ANR-system such that

Ex = {(z,y) € Xo x Yx :d(fa(2), 92 (y)) <en}

and syx : Ex — E) is the map defined by san(z,y) = (pan (), oon (1))-
Then the system map s = (sy) : E — E defined by sx(z,y) = (pa(z), ¢r(v))
is an ANR-resolution by the same argument as in the proof of Theorem 9.1.
This proves the theorem. O
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