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While many professionals with a background in agricultural and bio-resource sciences work with models,
only few have been exposed to systems and control theory. The purpose of this paper is to elucidate a selec-
tion of methods from systems theory that can be beneficial to quantitative agricultural science.

The state space representation of a dynamical system is the corner stone in the mainstream of systems
theory. It is not well known in agro-modelling that linearization followed by evaluation of eigenvalues and
eigenvectors of the system matrix is useful to obtain dominant time constants and dominant directions in
state space, and offers opportunities for science-based model reduction. The continuous state space descrip-
tion is also useful in deriving truly equivalent discrete time models, and clearly shows that parameters ob-
tained with discrete models must be interpreted with care when transferred to another model code environ-
ment. Sensitivity analysis of dynamic models reveals that sensitivity is time and input dependent. Identifiability
and sensitivity are essential notions in the design of informative experiments, and the idea of persistent exci-
tation, leading to dynamic experiments rather than the usual static experiments can be very beneficial.

A special branch of systems theory is control theory. Obviously, control plays an important part in agricul-
tural and bio-systems engineering, but it is argued that also agronomists can profit from notions from the
world of control, even if practical control options are restricted to alleviating growth limiting conditions,
rather than true crop control. The most important is the idea of reducing uncertainty via feed-back.

On the other hand, the systems and control community is challenged to do more to address the problems
of real life, such as spatial variability, measurement delays, lacking data,  environmental stochasticity, param-
eter variability, unavoidable model uncertainty, discrete phenomena, variable system structures, the interaction
of technical ad living systems, and, indeed, the study of the functioning of life itself.

Key words: systems theory, agronomics, state space modelling, linearization, sensitivity analysis, uncertainty,
control theory

1 INTRODUCTION

Webster’s New International Directory describes
a system as »an aggregation or assemblage of ob-
jects joined in regular interaction or interdepend-
ence; a set of units combined by nature or art to
form an integral organic or organized whole; an or-
derly working totality ...«. So, we may say that a
system is characterized by individual parts, units
or things, which work together as an entity, a
whole, to serve a certain purpose. According to
Wikipedia (http://en.wikipedia.org), systems theory
goes back to the biologist von Bartalanffy, who in
the 1930s noticed striking similarities in the func-
tioning of systems from various scientific disci-
plines. Systems theory as a discipline emerged in
the years directly after World War II. It aims at
providing a generalized framework by which one
can analyze and describe any group of objects that

work in concert to produce some result. It is based
on the isomorphy of concepts, laws and models
(http://isss.org).

A significant branch in systems theory deals with
the study of dynamical systems, i.e. systems where
relevant variables are varying in time. In fact, stat-
ic systems can be seen as a special case. Within
the domain of systems theory, control theory forms
a subset that deals with the science to make a sys-
tem behave in a specified way.

Although — interestingly enough — the history of
system theory originates from biology, its material-
ization in recent years as a discipline with a strong
mathematical orientation seems to have enlarged
the gap with the main stream of activities in the
life sciences, to which agricultural and food sci-
ence belongs. A brief literature survey on the com-
bination of selected elements from systems theory
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results might be relevant to researchers and mod-
ellers in the agricultural sciences. The second part
discusses potential reasons for the lack of penetra-
tion of systems theory, thus providing a mirror to
the systems and control community, which hope-
fully will help to bridge the gap. A similar paper
about control theory and management of ecosys-
tems has triggered the idea for this paper [8].

2 APPLYING SYSTEMS THEORY

Whereas the advancement of systems theory
hinges on the further development of generalised
concepts, it is the application of it to a specific dis-
cipline that makes it of interest to that discipline.
In the application of systems theory to a specific
discipline, roughly the following activities can be
distinguished:
a) Modelling
b) Analysis
c) Synthesis.

2.1 Modelling

A model is a simplified representation of reality,
that encapsulates the significant aspects of the real
system for the intended purpose. In the behaviour-
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and agricultural sciences reveals that there is little
interaction between these fields. Table 1 summa-
rizes the number of papers found with the
Scopus™ system (http://www.scopus.com) using
the designated areas indicated in the table. The no-
tions in the left column appearing in title, abstract
or keywords were combined with agriculture or
agronomy, and with horticulture as search words
for all fields in the publication records, leading to
the figures indicated in the table. Manual inspec-
tion of the references revealed that specific sys-
tems and control terminology entries, such as »sys-
tem identification«, were in majority related to en-
gineering, and of these many were dealing with
control engineering, which, of course, has found
some application. It appears that in the non-engi-
neering agricultural science area little use is made
of systems and control theory, despite the wide use
of modelling and simulation. Among the most ap-
plied techniques are sensitivity analysis and param-
eter estimation. These topics have some basis in
statistics that has always played a major role in
agriculture, but even then it is not sure that ele-
ments from dynamic systems theory are fully ex-
ploited.

The purpose of this paper is two-fold. The first
part briefly summarizes important results from sys-
tems and control theory, with the idea that these

Table 1 Cross sections of systems notions with agriculture and horticulture in literature in Scopus™ over the years
1996 — 2007

Search term Agriculture or
agronomy Horticulture Remarks

Notion

Modelling 12 575 546

Simulation 10 788 476

System Theory 57 4

System Dynamics 119 5

Linearisation 48 0

Similarity Transform 0 0

Identifiability 10 1 almost all related to water

Parameter Estimation 856 34

System Identification 24 4

Sensitivity Analysis 1 471 66 87 reviews

Uncertainty Analysis 260 4

Control Theory 51 5 all engineering

Control System 555 40

NB. Control as search term gives almost 60 000 hits in conjunction with agriculture; this is due to the colloquial use of the
term related to manipulation and experimentation.



al view of Willems [11] a (mathematical) model is
seen as a pair (U, B), where U is a set represent-
ing the universum, and B a subset of U represent-
ing the possible outcomes, called the behaviour. In
this way, a model is seen as a mathematical for-
malism, often in the form of mathematical equa-
tions, to restrict the space of possible outcomes.
Models are obtained either by first principles mod-
elling or by system identification methods. In the
first principle approach models are  set up by as-
sembling concepts, conservation principles and
»laws« known from previous experience. The out-
come of this process is a model structure. Next,
parameter estimation is used to derive parameters
that were not known in advance, by comparison
with observation data. The system identification ap-
proach starts from available data, and tries to de-
duce both structure and parameters from these data.
The set of possible structures can be limited by
prior knowledge.

Once a model is available, it must be put to the
test by checking its performance on a set of inde-
pendent data, not used before. This process is
known as model validation. In the philosophy of
Popper the task of science is to steadily try to falsi-
fy the model, hence detecting shortcomings and
lacks in knowledge. In engineering, a model that
has not (yet) been falsified is useful, as long as the
application remains within the validity domain. In
passing, it should be noticed that the assessment of
the validity domain is not trivial. The least one
could say is that the new application should not
have new structural elements — thus violating the
system boundaries —, and that the amplitude and fre-
quency spectrum of the new inputs are comparable
to those for which the model was originally built.

2.2 Analysis

In the analysis stage the purpose is to derive
general properties of the system by analysing prop-
erties of its model. This encompasses, among other
things, stability analysis, sensitivity analysis, time
scale analysis, response analysis, and notions like
observability, controllability, reachability, not dis-
cussed further here. In the analysis stage the full
arsenal of linear system theory is available, which
can also be applied locally to non-linear system
models by linearization, whereas non-linear meth-
ods are currently emerging.

2.3 Synthesis

In the synthesis stage, the systems model is used
for the intended purpose. This can pertain to the

design of new or improved systems, to the man-
agement and handling of a system, to remedy cer-
tain unwanted properties of the system, or to de-
sign a control system to force a particular desir-
able system behaviour. In the latter case, the sys-
tem plus its controller constitutes a system again,
and is thus amenable to analysis and synthesis
using the same tools indicated above. However, we
now have control over certain parts of the system
by design, which allows us to seek for the most
suitable solutions or to solutions that are optimal
in some sense. Hence, system optimisation is an-
other component of systems theory, and, indeed,
dynamic optimisation is one of the most powerful
techniques that deserves to find wide application.

In the sequel, I will briefly discuss some results
from systems theory that I found to be particularly
useful, and therefore, in my opinion, deserve to be
more widely known in the food and agricultural
scientific community. The discussion is mainly
dealing with dynamical models, i.e. models that de-
scribe behaviour as functions of time.

3 A SELECTION OF METHODS AND TOOLS

3.1 State Space

In systems and control theory the dominant mod-
elling paradigm is the celebrated state space ap-
proach. In this approach a clear distinction is made
between signals that act as independent forces (in-
puts u(t)), signals that are of interest and can be
observed or calculated (outputs y(t)) and variables
that represent the state of the system x(t), such that
knowledge of the current state plus information of
future inputs is enough to be able to compute the
future evolution of the output. The states thus en-
compass the memory of what happened in the past,
so that having the current state no information
about the past is needed any more. Mathematically,
a continuous time state space model is represented
by

(1)

where the dimensions of the vectors u, x and y are
nu, nx and ny, respectively, and the vector p is a np
dimensional constant parameter vector. In a num-
ber of publications the parameter p is allowed to
be time varying as well. We prefer to see such pa-
rameters as just a set of additional input signals.
The function f represents nx equations to describe
the rate of change of x, and the function g is a ny

�x t f x t u t p

y t g x t u t p

( ) ( ), ( ),

( ) ( ), ( ),

= ( )
= ( )
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dimensional function, sometimes referred to as
read-out function.

A discrete time model representation in state
space form is given by

(2)

where tk is a sample instant, and tk+1= tk + T with T
the sampling interval.

3.2 Time Scales

An important characteristic of a dynamical sys-
tem are the time constants of the system. The time
constants are related to the response of the system
states to a disturbance, as explained below.

Linearization. In general, system (1) is non-lin-
ear. The state equation (1a) is called linear if ∂f/∂x
and ∂f/∂u are not a function of x and u; if not, the
system is non-linear. A non-linear system can be
converted into a linear system locally by lineariz-
ing around the actual trajectory point (xo(t),uo(t)).
This is done by Taylor series expansion of f:

(3)

Here, ∂f/∂x = A is a nx × nx Jacobian matrix, with
on row i the vector [∂fi/∂x1, ∂fi/∂x2, …, ∂fi/∂xnx],
and similarly for the nx × nu dimensional matrix
∂f/∂x = B. The abbreviation h.o.t. encompasses high-
er order terms that are ignored, which is allowed
in regions close to the linearization point. Defining
the deviation variables ∼x = x — xo and ∼u = u — uo, and
substituting (3) into (1a) leads to the linearized
state equation

(4)

The superscript o reminds us to the fact that the
matrices A and B depend upon the local point; it
is shorthand for A(xo(t), uo(t), p). Also note that
the elements of these matrices depend upon the
original parameters, and are therefore mutually cor-
related.

As this notation is a bit awkward, in the sequel
we simply write
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(5)

and remember the special meaning of x, u, and A,
B. In particular, note that if the original inputs and
state are on their nominal values, the new u and x
are zero.

Similarity transform and time constants. Now we
look at the evolvement of x (the deviated state)
after a small perturbation of the state away from
zero, in the absence of input deviations, i.e the so-
lution of the autonomous system

(6)

Intuitively, this should give information about
the »speed« of the components of the system. An
eigenvalue of the matrix A is a scalar λ such that

(7)

The vector v for which this holds is called an
eigenvector of A. There are nx eigenvalues and as-
sociated eigenvectors. If we form a diagonal ma-
trix Λ with the eigenvalues on the diagonals and
zero’s elsewhere, and a matrix V where each col-
umn is an eigenvector of A, then we can write

(8)

provided that the inverse of V exists. (In the case
of non-distinct eigenvalues, V is singular. In that
case one has to resort to the more generic singular
value decomposition). The crucial role of the eigen-
values and eigenvectors in characterising the dy-
namics can be seen by introducing new states by
linear combination of the old states according to

(9)

Substituting (8) into (6) gives

(10)

and we can see that the individual elements of the
transformed state z behave independently of each
other, as solutions of (10) have the form

(11)

It is clear that the »speed« of the response de-
pends upon the eigenvalues, which underlines the
important role of the eigenvalues. If the eigenval-
ues are complex numbers, there are oscillations in

z t z ti i o i( ) = ( ), exp λ

� � �x V V x V x V x z z= → = → =− − −Λ Λ Λ1 1 1

z V x= −1

AV V A V V= → = −Λ Λ 1

Av v= λ

�x Ax x xo= ( ) =0

�x x= +A Bu
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the response. In addition, we can see that system
returns to the zero state only if the real part of the
all eigenvalues are strictly negative. The time con-
stants of the system are defined as

(12)

Eigenvalues and eigenvectors are easily obtained
by mathematical packages such as Matlab, and sev-
eral simulation packages, e.g. SIMULINK, have fa-
cilities to obtain the linearized model automatical-
ly.

Relevance to practice. What is the relevance of
all this for the modeller of agricultural systems?
We briefly list them here:
1 Knowing the time constants helps to determine

the necessary detail of the input signals. In par-
ticular, if the system is slow, it does not make
much sense to use high frequent input data.

2 Knowing the various time constants helps to de-
sign sampling programs for model calibration, i.e
the decision of the required sample interval. This
can save a lot of money.

3 If the time constants are wide apart, the system
is called »stiff« and numerical simulation be-
comes slow.

4 If the system is stiff, it may be desirable to re-
duce the equations by assuming that the fast parts
are reaching equilibrium in infinitely short time.
These parts then become algebraic equations, and
the order of the system is reduced. If the alge-
braic equations can be solved explicitly, simula-
tion of a reduced model is faster than for the full
model.

5 Knowing how the eigenvalues evolve along the
trajectory of a non-linear model gives insight in
possible instability regions. This is particular rel-
evant in systems with inherent or constructed
feed-back.

Example

Consider the greenhouse system with no heating
input, given by

where the states Tg, Tm are the greenhouse air tem-
perature and solid materials temperature, respec-
tively, the inputs Te and I are the outside tempera-

�
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τ
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i
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ture and the solar radiation, respectively. The heat
capacities of the greenhouse air is Cg = 6000 J m—2

K—1, of the solid materials Cm = 16 000 J m—2 K—1,
and the overall heat transfer coefficient between air
and environment is Uge = 12 W m—2 K—1, and be-
tween air and solid materials Umg= 25 W m—2 K—1.
With steady nominal inputs Iss = 100 W m—2 and
Te,ss = 10 °C the steady state temperatures are
Tg,ss = 18.3 °C, Tm,ss = 22.3 °C.

The eigenvalues of the greenhouse system ma-
trix are easily found to be —0,0073 and —0,0004
(s—1) so that the time constants are 137 and 2336 s.
The associated (decoupled) transformed variables
are

z1 = — 0.86533⋅Tg + 0.62829⋅Tm, and
z2 = — 0.28094⋅Tg + —1.0318⋅Tm

We see that z2 is largely dominated by Tm, and
its dynamics is therefore representative for the dy-
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namics of Tm. The behaviour of the other state is
more complicated and will show clear interaction
with Tg. The top figure shows the decoupled be-
haviour of z, expressed as deviations from steady
state, after a disturbance of the solid material tem-
perature of 1 °C. The bottom figure, showing the
original states, supports the statements above.

This illustrates among other things:
— the system is stiff, thus a stiff solver is the best

choice for simulations
— in order to accurately know the behaviour of the

greenhouse temperature, the sampling interval
must not be longer than a minute or so,

— at longer time scales the greenhouse air tempera-
ture may be considered to be in pseudo-equilib-
rium, i.e. immediately coupled to the solid mate-
rial temperature. In such reduced model, the sam-
pling interval for calibration can be much longer
(half an hour for instance)

* * *

3.3 Discrete Time Modelling

In agronomics, it is very customary to use dis-
crete time models to describe, for instance, field
crop growth. Such models typically produce output
on a daily basis. Discrete time models have an in-
tuitive attractive appeal, as they simply state that
what we have tomorrow is what we have today
plus the gain (positive or negative) of today. As no
integration is involved, computer code also runs
fast. The use of discrete time models for continu-
ous systems is, however, not without certain risks
if the underlying principles are only remotely un-
derstood.

Let us consider, for the sake of the argument,
again the linear dynamic system (5). Starting from
initial condition x(0)=x0, the solution in time is
given, formally, by

(13)

The matrix eAt is called the state transition ma-
trix, and can be obtained by evaluating the series

(14)

From (13) it can be seen that the solution con-
sists of an autonomous part and a part that depends
upon the input signal over the interval from t0 to t.

e At
A t A tAt = + + + +1
2 3

2 2 3 3
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t
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τ

τ

τ

τ τd

Equation (13) can be used to derive the equiva-
lent linear discrete time model. Let tk+1= tk + T,
where T is the sample interval, and define xk = x(tk),
we can then write

(15)

Compare this with the popular Euler approxima-
tion of the solution of (5), being

(16)

and it is immediately clear that the two solutions
are not identical. We see that in order to get rid of
the integral in (15) to arrive anywhere near (16),
an assumption is required about the inter-sample
behaviour of the input. Working this out in the
scalar case .x = ax+bu, with u piece-wise constant,
i.e. u(t) = uk tk≤ t < tk+1, we obtain from (15) the
exact discrete time equivalent model for this input

(17)

to which the Euler approximation (16) still is not
equivalent, although the solutions become close if.

Of course, all this is well known, and it is the
very reason why more advanced numerical integra-
tion methods than Euler have been developed and
are widely available in simulation packages. Also,
when the system is linear, the conversion from con-
tinuous time to discrete time and vice-versa is eas-
ily done, e.g. in Matlab, provided the user speci-
fies the inter-sample behaviour by selecting from a
set of standard approximations. The point is, that
in agronomical practice (and, indeed, in many other
fields as well) the discrete time models are usually
not set up starting from the continuous model, but
rather by directly formulating it as a discrete
model. This implies that parameters obtained in the
discrete time setting, being dependent upon the
chosen sample interval, may be biased when ob-
tained from experiments with another sampling
time, and similarly will depend upon the trustwor-
thiness of the assumed inter-sample behaviour. Sure
enough, in the non-linear case, the situation may
be even more tricky.

Example

Let lettuce growth be modeled by the linear ex-
ponential growth model dW/dt = kgW, where W is
the plant biomass expressed in g dry weight. As-

x x e x bu
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sume kg= 0.09 d—1. Let measured values be W=
=1g[dw] on day 20 and W=1.094 g[dw] on day 21.
Then, according to the Euler approximation kgΔt≈
≈ΔW/ W one finds kg= 0.094 d—1, which is about
4 % higher than the true value. Taking a longer in-
terval with the same method makes things worse:
W(23)=1.310 g[dw] and kg

estim = 0.103 d—1, i.e. 14%
too high. Unthoughtful use of the continuous
growth rate estimate in a discrete time model of
the type W(t+1)= W(t) + kgW(t)Δ t leads to
W(21) =1.09, which is 0.004 units too low. This
error does not occur if in the discrete time model
the discrete time parameter estimate is used. In that
case, it is essential to stick to the chosen time in-
terval.

* * *

3.4 Sensitivity Analysis

Sensitivity analysis is useful in various stages of
modelling. Sensitivity to model parameters is used
to detect to which parameters the model outcome
is most sensitive. Once found, these parameters are
candidates for calibration or further experimenta-
tion. Knowing the sensitivity to input signals is
often also useful, to determine the required accura-
cy of the input sequence, and to guide manage-
ment, design and control.

A popular and seemingly straight forward way
of performing a parameter sensitivity analysis is by
varying the parameters and checking the results in
simulation. This technique can be awkward when
the number of parameters is large. A more elegant
method is local sensitivity analysis, using the
model equations [15].

Let in the system description (1) p0 be a nomi-
nal parameter vector, then the sensitivity function
of the associated nominal state trajectory to varia-
tions in parameters is defined by

(18)

Note that sij is a function of time and, in gener-
al, has physical units. By differentiating (1) with
respect to each parameter, and interchanging the
sequence of differentiation, the following linear
sensitivity system can be derived

(19)

where

�S t A t p S t M t p( ) = ( ) ( ) + ( ); ;0 0

s t
x t p
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i n
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p
( ) =
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…
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is the matrix of sensitivity functions, and

(21)

The matrix A is the Jacobian matrix already en-
countered in (4). The derivation of (19) is possible
under the condition that f is continuous in x and p,
and has continuous partial derivatives with respect
to x and p on the interval [t0, t]. The parameter
sensitivity at t = 0 is the zero matrix.

The interesting feature is that the sensitivity sys-
tem can be solved in parallel to the original model,
and will then yield nx × np (local) sensitivity trajec-
tories at once. These patterns can be used not only
to detect sensitive parameters, but also for experi-
mental design by selecting observation time points
where sensitivity is large.

Examples of application to a lettuce model are
given in Van Henten and Van Straten [16] and Van
Straten et al. [17].

It has to be said that the method above is local
in nature, and only holds for small parameter per-
turbations. It can therefore provide a first impres-
sion of the sensitivities, which can then be used to
probe further using the numerical method men-
tioned in the beginning of this section, but now for
the sensitive parameters only. The local method
also relies on the existence of the differentials in
Eqn. (21). Often, non-differentiability can be avoid-
ed by rephrasing the model. In crop growth mod-
els, for instance, the temperature dependency is
often expressed as a trapezoidal function of the
temperature, leaving the derivative undefined at the
vertices, whereas it is just as easy — and probably
more close to reality as well — to use a continuous
function.

The method can be expanded to models with a
mix of ordinary differential equations and algebra-
ic equations Caracotsios and Stewart [3] This is
relevant as there are many instances where vari-
ables are related to each other via very fast equi-
librium reactions. The problem is tackled by cast-
ing it in the descriptor form

S t
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∂



In passing we notice that (22) can be cast in the
standard state space form only if E is invertible,
which is not always the case. This is a rare exam-
ple of an instance where the standard state space
description is not applicable.

Example

The method above was applied to the greenhouse
example. The top figure shows the external inputs
to the greenhouse (temperature and half-sine wave
radiation), the middle figure the resulting green-
house temperatures, and the bottom figure the sen-
sitivities of the temperatures to a one percent
change in the heat capacity parameters of the solid
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(22)

where E is a nx × nx matrix of constants, often, but
not always, represented by

(23)

with Is the s × s identity matrix. If s <nx there are
algebraic relations in the system, which constitutes
a challenge to standard simulation packages, if they
have no explicit solutions.

Ex t f x t u t p� ( ) = ( ) ( )( ), ,

E
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= − − − − − −
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materials (Cm). The most informative data points
for calibration of the model are a few hours after
sunrise and a few hours before sunset, while mid-
day and night temperatures are non-informative. It
appears that for the estimation of the transfer coef-
ficients midday is the most informative period (not
shown).

* * *

3.5 Identification, Parameter Estimation and
Experimental Design

Calibration of dynamical models is usually done
by adjusting the parameters so as to minimise the
difference between model output and observed out-
puts in some sense. Usually, the outputs are ob-
served at specific sampling instants, leading to a
set of measurements yobs(tk), or simply yobs,k.
k =1,…, N. A popular criterion to be minimised is
the quadratic objective function

(24)

where yk(p) represents the model output vector at
tk., and the ny×ny matrix Q is a matrix that allows
the weighting of multiple outputs (with possibly
different units) against each other. It may be time
dependent. A convenient weighting is to use the re-
ciprocal of the standard error of the observations,
while it is usually assumed that the observations
are mutually not correlated, which sets the off-di-
agonal elements equal to zero. In the single output
the criterion is just the sum of squares.

Usually, numerical procedures are used to find
the minimum. Some methods use the gradients of
J to the parameters p which involves once again,
among other things, the calculation of the Jacobian
matrix already encountered in the linearization and
the sensitivity analysis. The relation with sensitivi-
ty analysis is by no means accidental. Loosely
speaking, a steep gradient of the objective function
towards the parameters points in the direction of
the most sensitive parameters, and this is the natu-
ral direction to go on the way to the bottom of the
valley, whereas, conversely, the objective function
surface is rather flat in the direction of insensitive
parameters, meaning that the system output hardly
changes when those parameters are changed.

In practice, search methods have difficulty in
finding the minimum if there are many insensitive
parameters. Therefore, it makes sense to remove
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the insensitive parameters from the calibration set.
Moreover, parameter estimates are often correlat-
ed, meaning that simultaneous change of two pa-
rameters hardly results in changes in objective
function. In the case of two parameters, one can
draw contour lines with equal sum of squares,
which in the neighbourhood of the minimum take
the form of ellipses. Correlation between parame-
ter estimates is indicated when the contour ellipse
becomes oblong.

The curvature of the sum of squares surface is
related to the Fisher information matrix, which in
the sampled data case is given by

(25)

An estimate of the co-variance of the parameter es-
timates is given by the approximate relation

(26)

The axes of the ellipses are in the direction of
the eigenvectors of F, and the length is proportion-
al to the inverse of the square root of the associat-
ed eigenvalues. The ratio of the largest and small-
est eigenvalue is the condition number, and from
the above it should now be clear that when this
ratio is large, there are strong correlations in the
estimation.

This knowledge is applied in slightly modified
form by Ioslovich et al. [6] to select parameters
that are candidates for calibration in the case of a
nitrate in lettuce model. It can also be used to de-
sign experiments, where the purpose is to make the
ellipses more round by suitable choice of experi-
mental conditions [19].

Note that the Fisher information matrix can be
computed along with the sensitivity system. An
idea developed by Stigter and Keesman [14] is to
derive a feed-back law intended to choose input
time trajectories such that the parameter sensitivity
and hence the ability to estimate the parameters
from data is maximised.

Example

The procedure above was applied to the green-
house example. It is assumed that only measure-
ment data of the greenhouse air temperature are
available, with a fixed sampling interval of 10 s.
Calculating the inverse of the Fisher information
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matrix, and expressing this in the form of a corre-
lation matrix, i.e.

yields

The strong (negative) correlation between the es-
timates indicates that independent estimation of all
4 parameters is almost impossible. The inverse of
the Fisher information matrix is equal to the co-
variance of the estimates when the standard error
of the measurements is 1 °C, and will be quadrati-
cally lower with lower measurement error. They
also become lower when the sampling interval is
made shorter.

The coefficients of variation of the estimates are
69 %, 14 %, 28 %, 25 %, respectively. It shows that
Cg can be determined less well than Cm from
greenhouse temperature measurements alone. Note
that this depends upon the dynamics in the input
signal (at steady state Cg and Cm cannot be deter-
mined at all).

The condition number of the Fisher matrix (ratio
of highest to lowest eigenvalues) is about 1011,
which is another indication that estimation with
these input of all four parameters from just air tem-
perature is not feasible.

* * *

3.6 Control and Optimization

This paper is not the proper place to open up
the whole wealth of methods available in control
theory. These are obviously of significant interest
to engineers. The principles of feed-back to coun-
teract the effects of uncertainty are, however, of
general scope, and are certainly often used in man-
agement of live stock and open field farming as
well. So, a basic understanding of the effects of
the choice of measurement variables, sampling,
time-delay, feed-back gain on performance and sta-
bility of the managed or controlled system is not
just important for engineers alone. In fact, in biol-
ogy, the feed-back methods of living systems are
wonderful examples on how nature has solved con-
trol problems, and it is quite conceivable that the
study of these ingenious mechanisms can also form
a source of inspiration for engineers.
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A very powerful methodology to achieve rele-
vant controllers and management strategies lies in
dynamic optimisation and optimal control. The key
point of dynamic optimisation is to find control
input trajectories or strategies that generate a sys-
tem behaviour that is optimal according to a user
defined goal function, possibly subject to user de-
fined or physical constraints. Some relevant refer-
ences here are Bryson [2] and Stengel [13].

3.7 Data driven models

Most of what was written before seemed to be
relevant to system models represented by differen-
tial or difference equations in state space derived
from physical principles. However, if necessary
such models can be converted to higher order dif-
ferential equations in input-output form, which in
the single-input — single input (SISO) case reads

(27)

although there can be intricacies related to the dif-
ferentiability not discussed here (see [11] for more
details and precise mathematical definitions of the
delineation of inputs and outputs in the domain of
manifest variables).

A special case of these are the linear discrete
time autoregressive moving average models
(ARMA) of the form (in the SISO case)

(28)

This form or similar is obtained when data driv-
en methods are used to arrive at a systems model,
e.g. with the system identification toolbox of Mat-
lab.

It is straight forward to find a state space reali-
sation of such an model, and if found, all the meth-
ods above apply. (We are not talking about the
problem of finding state space representations in
special forms, such as controller canonical or ob-
server canonical forms; this is the topic of realisa-
tion theory). In passing it should be noted that the
non-linear version of (28) can be written as
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with N a non-linear function mapping independent
inputs to dependent outputs. An artificial neural
network could be chosen for N. Hence, systems
theory methods can be applied equally well to this
class of data driven models [10, 4, 12].

4 UNCERTAINTY

In the development above, the suggestion was
that the model is an exact representation of the sys-
tem. It is, however, clear that in reality there will
always be uncertainties. Let us discuss the follow-
ing sources of uncertainty:
a) Uncertainty in the model parameters.
b) Uncertainty in the model structure.
c) Uncertain input sequences, e.g. the weather.

Uncertainty in model parameters arises due to
measurement errors in the (output and input) data
used to develop the model; this may also pertain
to parameter values published in the literature. In
the procedure to estimate parameters from data
usually an idea about the co-variance of the esti-
mates is obtained. The space enclosed in hyper-
-contours of equal sum of squares can be viewed
as a confidence region, but it is not known what
confidence percentage should be adhered to those
in the non-linear-in-the-parameters case [5, 9]. In
model prediction, Monte Carlo analysis can be used
to map the parameter uncertainty to the space of
model outcomes, i.e. we do not just get a single
trajectory, but rather a family of trajectories.

An alternative to tackle parameter uncertainty
comes in mind when it appears that the sequence
of residual errors between data and model  is cor-
related with itself or with the input data [7, 4]. If
this happens it is tempting to try to model this by
considering the parameters to be time-varying. In
fact, in that case a data-based sub-model is added
to the original model. Recursive estimation tech-
niques can be used to generate time dependent pa-
rameter trajectories. In the prediction mode, this
trajectories can then be modelled as a stochastic
process, and subsequently been simulated using
Monte Carlo simulation. This is quite different
from the constant but uncertain parameter case be-
fore, as the model now essentially becomes a sto-
chastic model, which, in theory, requires special
techniques for simulation and analysis.

Time varying parameters, in my view, are in fact
an example of structural errors, and instead of data-
based modelling, an attempt can be made to clari-
fy underlying structures in an iterative model build-
ing process. This, however, can be time consum-

ing, but is, on the long run, the most rewarding
step because it provides insight that can be used
again and again, and hence contributes to the ad-
vancement of science. Another way of tackling
these structural uncertainties is to have various
models, and calculate possible future behaviours
by all models in parallel. This seems to be the
dominant approach in global warming studies.

Uncertain future input sequences can be tackled
if stochastic distributions are known, by using
Monte Carlo studies. Scenario studies arise when
the uncertainty in future inputs is related to uncer-
tainty in the development of society due to poli-
cies or autonomous phenomena.

5 BARRIERS TO ADOPTION

The above, though just a selection from the
plethora of methods in systems and control, has
hopefully shown the potential. What, then, could
stop its wider dissemination? In my view, the rea-
sons can be grouped into two main categories: (i)
ignorance and lack of education, (ii) specific fun-
damental difficulties associated to systems in the
field of food and agriculture.

As to the first point, it is clear that the mathe-
matical skills needed to apply systems and control
theory are not normally taught in agro-biology ori-
ented curricula. However, this discrepancy can be
remedied by special courses on the level of PhD
students, as has been shown in our experience with
the two-weeks PhD course »The Art of Modelling«
over the past years in Wageningen. Moreover, bio-
-informatics, theoretical biology, agricultural and
bio-systems engineering, hydrology, and theoretical
ecology hinge largely on advanced mathematical
skills, which may have a positive effect upon the
more traditional agricultural sciences. Moreover,
the increasing availability of simulation and analy-
sis tools lowers the threshold, and there is, in fact,
really no excuse not to use them.

Issues in the second group are:
a) non-linearity. Most real life systems are non-lin-

ear
b) switching structures and time varying system di-

mensions. An example is the event that a plant
suddenly starts to form fruits

c) time varying structures due to adaptation and
self-organisation

d) spatial heterogeneity
e) wide range of scales in time and space; the issue

of interconnectivity, tearing and zooming, as
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well as emerging properties of complex networks
of individual units.

All of these problems are being addressed in the
systems and control community, but have not had
wide enough appeal to practitioners so far. In the
modelling area, catastrophe theory analysis of at-
tractors is quite well developed. In the control com-
munity there are several developments in non-lin-
ear control theory using Lie algebra concepts, cur-
rently mainly of interest to specialists. Switching
and time varying structures are being studied in hy-
brid systems theory, e.g. [1]. Unlike in the linear
world, there are, however, very few widely appli-
cable tools available.

Models for systems with a spatial dimension can
be forced in the state space form by spatial dis-
cretization, although direct segmentation of the
space into compartments does not necessarily lead
to efficient or accurate numerical algorithms. In
contrast, finite element methods are more suitable,
but they are not in state space form. There is a
tremendous development in what has become
known as Computational Fluid Dynamics (CFD),
but the link with classical systems theory seems to
be missing, and the straight forward use of CFD
model for feedback control is rare.

Adaptation, self-organisation and emerging prop-
erties have given rise to what is called the »holis-
tic approach«, in contrast to the »reductionistic ap-
proach« of classical physics. However, in the end,
the holistic approach leads to models of interlinked
systems as well, that can be studied very well by
systems theory methods. It is interesting to note
that by assuming that a plant or micro-organism
has some internal objective, optimal control theory
can be applied to explain emerging behaviour. The
model then contains switches or other heuristic
mechanisms that are manipulated via the internal
control law, thus avoiding the need for precise
mechanistic modelling of such internal processes.
An example is Velten and Richter [18].

Interestingly enough, on the cellular and molec-
ular level one currently sees the emerging area of
what has become known as »systems biology«,
which in its ideal appearance would just be a merg-
er of systems theory, molecular biology and com-
puter science, and as such could be an example for
other bio-systems areas of research.

6 CONCLUSION

In this paper a number of useful techniques from
systems theory have been presented. Overall, these

techniques are well known to engineers. The point
we were trying to make is that in our view it is es-
sential that also non engineers, in fact everybody,
who is working with models in agronomy and other
agricultural, horticultural or even ecological fields,
should be informed about the existence of these
methods, and should have been exposed to them at
some stage of his professional training.

At the same time it is clear that some special
properties of agricultural systems have only mar-
ginally been addressed by the systems and control
community. Much work is going on, but currently
there is a lack of practical translation of findings
from non-linear systems theory, hybrid systems the-
ory, non-linear control and optimisation, in a form
that is suitable for the practitioner. There is a nice
task ahead of us.
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^ime mogu teorije sustava i automatskog vo|enja pomo}i agronomskoj znanosti. Iako mnogi profe-
sionalci s podru~ja agrotehnike i bio-znanosti rade s modelima, tek je ne{to malo onih koji su izlo`eni upora-
bi teorije sustava i automatskog vo|enja. Namjena je ovog rada ra{~i{}avanje izbora metoda s podru~ja teori-
je sustava koji mogu biti od koristi kvantitativnoj agronomskoj znanosti.

Predstavljanje dinami~kih sustava prostorom stanja temeljno je usmjerenje teorije sustava. U agro-modeli-
ma je slabo poznato da je linearizacija, koju slijedi evaluacija svojstvenih vrijednosti i svojstvenih vektora
matrice sustava, korisna pri dobivanju dominantnih vremenskih konstanti i dominantnih usmjeravanja u pros-
toru stanja te pri nu|enju mogu}nosti znanstveno zasnovanog pojednostavljenja modela. Opis kontinuiranog
prostora stanja tako|er je koristan u dobivanju stvarno ekvivalentnih diskretno-vremenskih modela te jasno
pokazuje da se dobiveni parametri diskretnih modela moraju pa`ljivo interpretirati kada se prenose u okoli{ s
drugim kodnim modelom. Analiza osjetljivosti dinami~kih sustava otkriva da je osjetljivost ovisna o vremenu
i ulazima. Mogu}nost identifikacije i osjetljivost bitni su pojmovi u projektiranju informativnih pokusa, a ide-
ja trajne pobude koja vodi dinami~kim pokusima a ne uobi~ajenim stati~kim pokusima mo`e biti vrlo koris-
na.

Posebna grana sustavske teorije jest teorija automatskog vo|enja. O~igledno, vo|enje igra va`nu ulogu u
agronomskom i bio-sustavskom in`enjerstvu, ali se nagla{ava da agronomi mogu profitirati iz pojmova svije-
ta automatike, ~ak i ako je automatizacijska ina~ica  ograni~ena na olak{avanje uvjeta ograni~enja rasta, a ne
i pravog vo|enja usjeva. Najva`nija je ideja da se uporabom povratne veze smanji neodre|enost.

S druge strane zajednica je sustavskih in`enjera i automati~ara izazvana da se vi{e posveti stvarnim pro-
blemima `ivota poput prostorne promjenjivosti, mjernih ka{njenja, nedostataka podataka, stohasti~nosti okoli{a,
varijabilnosti parametara, nezaobilazne neodre|enosti modela, fenomena diskretizacije, varijabilnosti sus-
tavskih struktura, me|udjelovanja tehni~kih i `ivih sustava, i napose studiju funkcioniranja `ivota kao takvog.

Klju~ne rije~i: teorija sustava, agronomija, modeli prostora stanja, linearizacija, analiza osjetljivosti, teorija
vo|enja
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