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In this paper the regulator and filter algebraic Riccati equations, corresponding to the steady state optimal
control and filtering of weakly coupled linear discrete stochastic systems, are solved in terms of reduced-
-order sub problems by using the eigenvector approach. The eigenvector method outperforms iterative meth-
ods (fixed point iterations, Newton method) of solutions to reduced-order sub problems in case of higher

level of coupling between subsystems.
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1 INTRODUCTION

The work in this paper is influenced by the work
done in the theory of weakly coupled systems. The
theory of weakly coupled control systems has at-
tracted a lot of attention in the control literature
[1, 2, 3, 4]. In [3] a transformation was introduced
for decomposition of the weakly coupled algebraic
Riccati equation, which is based on the closed-loop
decomposition technique. The algebraic equations
comprising the transformation have the form of
general nonsymmetric nonsquare Riccati equations.
These equations can be efficiently solved by itera-
tive methods (fixed point iterations, Newton
method) for a small value of coupling between sub-
systems [2]. For a larger value of coupling between
subsystems, iterative methods could diverge and
the desired transformation could not be found. In
[5], the transformation was used in order to decom-
pose corresponding algebraic Riccati equations of
the optimal regulator and Kalman filter of weakly
coupled linear discrete stochastic systems. The
eigenvector approach to the solution of optimal
control of continues-time singularly perturbed and
weakly coupled systems was introduced in [10],
[11]. This work extends previous ideas to the prob-
lem of optimal control and filtering of weakly cou-
pled linear discrete-time stochastic systems.
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2 DECOMPOSITION OF THE
LINEAR-QUADRATIC CONTROL PROBLEMS

Consider a linear time-invariant discrete system
x(k+1)=Ax(x)+ Bu(k) (1)

with the quadratic performance criterion
1 oo
J==3 [x(k)TQx(k)+u(k)TRu(k)J Q)
2 k=0

The weakly coupled structure of (1) and (2) im-
plies the following partitions

xi(k) (k)
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where x;, x, are vectors of subsystem state vari-
ables of appropriate dimensions (n;, 1), u;, u, are
vectors of control inputs (m;, m,), and ¢ is a small
coupling parameter. A, B are system constant ma-
trices, O and R are constant weighting matrices.
In addition, it is assumed that 4; and A4 are non-
singular.

The well known solution to the above optimal
control problem is given by

u(k)=—R'BTA(k+1) =
Z_(R+BTP}'B)_1 BTPrAx(k) (4)
u(k)=-Fx(k)

where A(k) is a costate variable and P, is the posi-
tive-semidefinite stabilizing solution of the discrete
Riccati equation given by

-1
P=0+A"Pa-A"P,B(R+B"PB) B'PA(5)

Partitioning the state vector x, the corresponding
costate vector A and interchanging second and third
rows, the Hamiltonian form can be written as [3]

x (k+1) Ay S edy €Sy, x (k)
Wk+1)|_| O A\ 0y edy, || Ai(K)
xp(k+1) || e, €Sy Ay Sap || %2(k)
D] 60y, edh, 0y A, F2(F)
()
or

Vk+1)| |eT3, Ta ||V (k)
with obvious meanings of vectors U(k), V(k) and
matrices Ty,, 1o, T3, T4y

The system (9) can be block diagonalized by the
means of the following nonsingular similarity trans-
formation matrices [3]

n(k+1)| |1 —eH | I O T, el | I 0|1 eH | n(k)
L(kﬂ)}{o I }LL I}LTy Ty, H—SL ]MO I}[E(k)} (10)

or

n(k+1)] [1-¢?H,1, —¢H, |:Tlr str} ! eH, [n(k)} .
E(k+1)| | &L, I |eB T4 || -eL, 1-€*L.H, | &) (1

The solution to this equation exists under the
standard stabilizability-detectibility assumption im-
posed on the triple (4, B, Q).

The Hamiltonian form of the optimal control
problem is given by [9]

x(k+1) | fx(k)
[i(kﬂ)}_HLl(k)} (©)
where
A+BR'BT4To -BRT'BT4T
H= r r (7
-4 To A

The Hamiltonian form represents the closed-loop
solution to the optimal control problem, where
A(k)=P, x(k).
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and the relationship between old and new coordi-
nates is then given by

{U(k)}_ [-¢*H I, —¢H, {n(k)}_T [n(k)}
I HOI G
(12)

The transformation leads to two completely de-
coupled subsystems

n(k+1)=(7;, &’ T, L, )0 (k)

E(k+1)=(Tyy +87L, T3, )5 (k)

n(k){"l(k)} s(k){"&l(k)} (14)

(13)

where

1 (k) & (k)
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and L, and H, satisfying

2
LTy ~TapL, + T3~ L. T5, L, =0

H, (T4, + 1,5, ) - (15)

2
_(Tlr -¢ TZrLr)Hr -1, =0

The first equation has a form of the asymmet-
ric nonsquare Riccati equation, while the second is
a Sylvester type linear equation. The solution of
the above equations will be discussed later in the

paper.
The rearrangement of variables in (8) is done by

the means of a similarity transformation E of the
form

x(k) | [{m 0 0 0 | x(k)
ll(k) _ 0 0 [}’ll 0 Xz(k) _
k)| |0 Lp 0 0| k)|
Ay (k) 0 0 0 1I,|l4(k)
xp (k)
| xa(k)
) 16
Ay (k)

The relationship between original and new coor-
dinates is given by

m x1 (k) x1 (k)
§u| L, | X2(k)| | xa(k)|
m |0 T e |7 e |
&, Ay (k) Ay (k)
x1 (k)
_ le H2r x2(k)
_|:H3r H4r:| Al(k) (17)
Ay (k)

Since A=P,x, where P, satisfies the discrete al-
gebraic Riccati equations (5), it follows

m (k+1) xy (k)
|:Ci (k+1):|:(nlr+n2rpr)|:x; (k):|
xl(kq (18)

{’72(’”1)
x) (k)

Cz(k+1)i|:(n3rpr+n4r)|:

AUTOMATIKA 49(2008) 3—4, 135-142

The decupled subsystems (13) also represent the
closed-loop solution of the optimal control prob-
lem in the new coordinates. Based on this fact the
equations (13) can be written as

|:771(k+1):|=|:a1r a2r:||:771(k):|
ny(k+1)| a3 a4, || m2(k)
[§1<k+l>Hblr bzr}[a(k)} ()
Ey(k+1)| b3 by || &2 (K)
WQ(k):Pranl(k)"EZ(k):Prbgl(k)
{772 (k)}:|:Pra 0 :||:771(k)}
&y (k) 0 Py | &1(k)

and P, and Pj satisfy nonsymetric Riccati equa-
tions of the form

where

or

(20)

Braty —a4Frq — a3 + Pyay Py =0 1)
Bypby = bg Py = b3 + Bpby Py =0
leading to
m (k+1)=(a +ayPrg ) (k) )
E1(k+1)= (b +b2Fp ) &1 (K)

It follows from (18) and (20)
P, O -
{ Sa Pb}=(n3+H4Pr)(H1+H2P},) (23)
.

This equation can be solved for P, giving

—1
P. =([P”’ 0 }Hz—H4J .
0 A rb
.[nr[P”‘ 0 }HI)
0 A rb

which gives the solution of the global discrete
Riccati equation (5) in terms of reduced order con-
tinues time nonsymmetric Riccati equations (21)
and decupling transformation matrix (12). In order
to realize the above presented decomposition pro-
cedure, it is necessary to solve continues-time non-

square and nonsymmetric Riccati equations (15)
and (21).

(24)
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3 DECOMPOSITION OF THE OPTIMAL
FILTERING PROBLEM

Let the linear discrete-time invariant stochastic
system be given by

|:.X71 (k+1):| :|: Al 8A2j||:xl (k)i|+
X (k+1) €A3 A4 X2(k)

Gl & G2 Wi
+
& G3 G4 %)

with corresponding measurements
[yl(k)}:[ G Scz}{xl(k)}[vl(k)} 26)
(k)] [eC Cy || xp(k)| [va(k)
where x; are state vectors, w; and v; are independ-
ent zero-mean white Gaussian processes with in-
tensities W and V, and y; are system measurements.
A;, Gy, C; are constant system matrices (i=1, 2, 3,

4). The well known optimal Kalman filter is given
by

(25)

x(k+1)=A%(k)+ K (y(k)-Cx(k))  (27)
or in the closed-loop form as
X(k+1)=(A-KC)x(k)+ Ky (k) (28)
where
Y| C C
4= 82,C= 1 82’
8A3 A4 8C3 C4
|:K] €K2:| (29)
K =
8K3 K4

The Kalman gain is given by

T 71 B
K =AP,C (V+CPfC ) V= | 60
2
where Pris the positive-semidefinite stabilizing so-
lution of the discrete-time algebraic Riccati equa-
tion given by
_ T
Pr=AP;A" -
T r\7! T r GD
—AP,CT (V+CPCT ) cPpA” + GG
with
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o Il I L 32

B 8G3 G4 ’ B 0 W2 ( )

Using the decomposition procedure given in the
previous section and the duality property between
the optimal regulator and optimal filter, will result
in the decomposition of the global filter to the

completely decupled reduced order subsystem fil-
ters both driven by system measurements.

By duality between the optimal filter and regu-
lator, the filter Riccati equation (31) can be solved
by using the same decomposition method present-
ed in the previous section with

A AT, 0-ewGT, BT, a3
BR™'BT > cTyvIc

which leads to the Hamiltonian state-costate filter
closed-loop form

xl(k+1)
ll(k-l-l) _
X2(k+1) B
/12(k+1)
_Zlf Slf SZZf 6§2f_ xl(k) (34)
_ O Ay €Oy edyiy | A1)
8A3f 8S3f A4f S4f X2 (k)
_8Q3f EZITZf oy Z2T2f_ Ao (k)

Partitioning the state vector x, the corresponding
costate vector A and interchanging second and third
rows, the Hamiltonian form can be written as

{U(kﬂ)}:{m erﬂ{v(m

V) | eBy Ty V(k)} G

As it was shown in the previous section, this
system can be diagonalized by the means of the
similarity transformation given by

U(k)| |1-e*HpLy —eH |[n(k)]
Vk)| | eLs I|&k) ]

| m(k)
‘Tf{ak)}

and Ly and Hy satisty

(36)
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2
Llef—T4fo +T3f—8 Lszfo =0
2
Hy(Typ+°LsTsp )~

~(Tip-&ToyLy ) Hp =Ty =0

(37

The transformation leads to two decoupled sub
systems

n(k+1)=_m(k+1)

- pe )=
_alf a2f
_a3f a4f

}[m(k)}
2 (k)
& (k+1)

& (k+l)} - (T4f +82LfT2f) -

LY, be}[fl(k)}
C|bar bay || &2 (k)

no (k)= Ppm (k)& (k) =Ppéi (k)
[’72 (k)} [Pfa }{’71 (k)}
&, (k) 0 &1 (k)

and Py, and Py, satisfy nonsymetric Riccati equa-
tions of the form

E(k+1)=
(33)

where

or
0

Pp,

(39)

Prayy —ag Py —ayp+ Pray pPr, =0 40)
Ppbip —bapPp —byr+ Ppby p Py, =0
leading to
n(k+1)= (alf +ay rPgy )771 (k)

(41)
1 (k+1) :(blf +b2fbe)§1 (k)

The overall transformation between the new and
original coordinates is given by

m xp (k) xp (k)
E | o @) [x(k)| [Thy Ty
|~ T o TN {Hsf H4J
& Ay (k) Ay (k)
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Since /1=Pf x, where Py satisfies the discrete al-
gebraic Riccati equations (31), it follows

k+1 x1 (k x (k
s ELYRL A AR
my(k+1)| x1 (k)
L_z(kﬂ)}—(ny Pr+Hay )L@(k)}

3)

It follows from (43) and (39)

0

P -1
{ ‘5“ pﬂj =(Iay + My Py ) (I + Ty Py )

(44)

This equation can be solved for Py giving
Py, O
_||
s _H 0 PfJHZf s

Py, 0
fa
e

which gives the solution of the filter global dis-
crete Riccati equation (31).

—1

(45)

Applying the transformation (43) to the Kalman
filter equation (28) leads to

Fl (k+1)
£ (k+1)

(k)

T . X
}Q (4-KC)2 {51(*‘?)} )

+Q T Ky (k)

or

) T,
i (k+1)=(a r +ay Pr) i (k)+Kyy(k)

) . @7
Ey(k+1)=(biy+az Pp) (k) + Ky (k)
x1 (k)
xp (k)
Iy (k) @
Ay (k)
139



Optimal Control and Filtering of Weakly Coupled Linear Discrete-Time...

N. Prljaca, Z. Gajic

which completely decomposes the global Kalman
filter into two reduced order subfilters, that can be
implemented independently. Again, as it was the
case in the previous section, in order to realize the
above presented decomposition procedure it is nec-
essary to solve continues-time nonsquare and non-
symetric Riccati equations (37) and (40).

4 LQG CONTROL PROBLEM
The well known linear quadratic Gaussian con-

trol problem is defined as follows. Given the lin-
ear discrete-time stochastic system

{xl(kﬂ)}:{/ll eAz_[xl(k)}r
o k41)|"leds Ay || x (k)
+|:Bl 832:|_u1(k):|+
eBy By || uy (k)
+[G1 SGZ_[WI}[YI(]C)}:
eGy Gy ||wy ||y (k)
K ecz[xl(mHvl(kq )
eC3 Cy || x2(k)| [ va(k)

with performance criterion

J=%E{ > «(6) Ox(k)+u(k)” Ru(k)} (49)

k=0

Find the control low which minimizes the crite-
rion. The optimal control law is given by [8]
u(k)=-Fx(k) (50)

where F is found according to the section II with
the optimal filter

#(k+1)= (4~ KC) (k) + Ky (k) + Bu(k) (51)

which is decomposed into reduced order filters ac-
cording to the section III as

R i,
m ("‘”)Z(“lf +“2}'Pfa) m (k)+

-+ Kfy(k)+cblu(k)
Ey(k+1)= Y +“2_,“be]T mk)+ 62
+ sz(k) + @2”(!()
where
140

Fl (x)}z
X5 (k)

5 THE EIGENVECTOR SOLUTION TO
NONSYMETRIC ALGEBRAIC RICCATI
EQUATION

e o
1

The eigenvector method for solving the algebra-
ic symmetric and square, nonsymmetric and non-
square Riccati equations has received considerable
attention in the literature [8, 9]. Without loss of
generality, let us consider the algebraic square and
nonsymmetric Riccati equation (ARE) given by

AX+XB+C+XDX =0 (54)
where matrices 4, B, C, D are of appropriate di-
mensions (nxn) and X is the sought solution of
dimension (n x n).

Let the matrix R be associated with the ARE

el

The matrix R can be diagonalized by the matrix
M consisting of eigenvectors of the matrix R as
follows. Calculate all 2n eigenvalus of R, A;=a;+jb;
and all corresponding eigenvectors v;=x;+jy;.
Arrange in the (2n x2n) matrix M all real eigen-
vectors (x;) and for each complex-conjugate pair
use consecutively the real and imaginary parts of
one eigenvector only (x;, ;). There are many ways
to form matrix M.

Then, it follows that

(55)

M™'RM =A,RM = MA =
A O
=[ M, Mz]{o AJ

where M, contains the first n columns and M, con-
tains the remaining »n columns of M. A; and A, are
diagonal or block diagonal matrices.

(56)

The equation (56) may be rewritten as

RMlelAl’RMZ :M2A2 (57)
By partitioning M; as
My,
M, = (58)
My,

AUTOMATIKA 49(2008) 3-4, 135-142
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we get from (57)

BMH +DM21 =M11A1,
59
—CMy | =AMy = My A (59)

Rearranging the last two equations and using
the substitution

-1
X =My My, (60)

leads to

AX+XB+C+XDX =0 (61)
which proves that X is a solution to (54). Since the
matrix M can be formed in many ways it follows
that all solutions to (54) have the form

Xi = M1 My, (62)

Let the spectrum of R be S={1;,...4,,} or
S:SIUSZ, where Slz{ll,.../ln} and Szz{j,n.;_l,...,
A} If corresponding eigenvalues of eigenvectors
used to form M are S;={A4,...4,} and to form M,
are $5={A,+1,...,42,,}, then eigenvalues of (B+DX)
are S; and eigenvalues of —(4+DJX) are S, [9]. This
is easily justified by transforming the matrix R as

follows
I 0B DI[I 0
-X I||-C -4|lXx 0|

[B+DX D
_[ 0 —(A+XD)}

(63)

Further, the matrix R can be put in the block di-
agonal form by using another transformation ma-

trix
I -Y|[B+DX D 1Y)
{o 1}[ 0 —(A+XD)}[O 1}‘

B+DX 0 (64)
| 0  —(4+XxD)
where Y satisfies the Sylvester equation
(B+DX)Y+Y(A+XD)+D=0 (65)

6 EXAMPLE

Consider the system with problem matrices
given by (e=1)
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[0.8674 —0.3024 0.4092 0.2066
~0.9509 —0.2256 0.3904 0.0966
0.9218 0.5582 —0.3639 —0.3696
|~0.3360 -0.1248 0.1511 0.3564
[0.0190 0.0030

0.1800 0.0578

0.0152 0.0190

|—0.1641 0.1810

1100

0011
0=0.11,R=1,,W =1,V =1,

C=

The obtained solutions for LQG problem accord-
ing to the presented methodology (note that itera-
tive methods in this case do not converge) are sum-
marized as follows

391.0855 —-50.8930 96.3664 49.4185
-50.8930 8.3975 -14.4404 -7.3477

"] 96.3664 -14.4404 26.0110 13.2175
49.4185 -7.3477 13.2175 6.8589
1.7500 -0.9361 0.7142 -0.4013
-0.9361 0.6377 -0.4928 0.2313

L 0.7142 -0.4928 04316 -0.2111

-0.4013 0.2313

) ~0.1339 -1.05317.
NEk+D =1 6604 0.1458 | O+

-0.2111 0.1718

02742 03128 [0.0799 —0.0984
+{41.4997 —0.1243]y )+ 01798 0.0495 }‘ ,
. 0.1849 -0.1127],
sik+1)= {0.0289 02919 |54

0.0066 —0.0114 [0.1479 -0.0104
+{—0.0053. 0.0185 }y(k))’_—o.ws? 0.1899 ]“(k)

~5.7198 5.5950 .

u(k):[6.2312 —6.6806] kit

~11.0231 -5.76177.
" 12,5405 6.5756

7 CONCLUSION

In this paper the algebraic Riccati equation de-
composition and eigenvector method have been
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used in order to solve the optimal control and fil-
tering of the discrete linear weakly coupled sto-
chastic system. This approach can be used in case
of higher level of coupling between the subsys-
tems. Beside providing reduction and parallelism
in on-line computation of control and filtering
tasks, it gives new insights into the optimal con-
trol and filtering of weakly coupled systems.
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Primjena svojstvenih vektora pri optimalnom upravljanju i filtriranju slabo spregnutih linearnih
stohastic¢kih sustava. U ¢lanku je opisan postupak rjesavanja regulatorskih i filtriraju¢ih Riccatijevih jednadzbi
koje se dobiju prilikom definiranja ravnoteznog rjeSenja problema optimalnog upravljanja i filtriranja slabo
spregnutih linearnih diskretnih stohastickih sustava. Postupak je zasnovan na primjeni svojstvenih vektora u
rjeSavanju podproblema nizeg reda. Takav postupak pokazuje bolje znacajke u odnosu na iterativne postupke
(iteracije u fiksnoj aritmetici, Newtonovi postupci) u rjesavanju podproblema nizeg reda u slucaju kada su

podsustavi jace spregnuti.

Kljuéne rijeci: optimalno upravljanje i filtriranje, slabo spregnuti sustavi, blokovsko dijagonaliziranje, raspre-

zanje
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