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A single-amplifier, active-RC filters design procedure for common filter types, such as Butterworth and
Chebyshev, using tables with normalized filter component values, is presented. The considered filters consist
of RC ladder network in operational amplifier’s positive feedback path. Tables with normalized component
values having equal capacitors and equal resistors were presented by some authors [1, 2]. In this paper, we
presented new tables for designing filters with optimized sensitivity to passive circuit components. A consid-
erable improvement in sensitivity is achieved using the design technique called »impedance tapering«. The
presented filters are up to the 6th-order. The sensitivity problem generally limits the use of higher than 6th-
-order single-amplifier filters. Low-pass and high-pass filters design is presented.
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1 INTRODUCTION

Passive filters are usually designed using hand-
books with filter tables [3—5]. They are typically
applied for the design of passive ladder-RLC fil-
ters. Besides filter transfer function parameters for
many common filter types, handbooks usually con-
tain tables with normalized filter component val-
ues, as well [3, 4].

Active filters are commonly designed using
closed-form design equations and/or filter-design
programs [6, 7]. In a majority of applications they
are realized as cascade structures of second-order
(»biquads«) and/or third-order (»bitriplets«) sec-
tions filters, and explicit formulas for calculation
of filter components, as well as, step by step de-
sign procedures are available.

However, the high-order, single-amplifier, non-
-cascade filter designs have very often complicated
design procedures and since there exists no explic-
it formulas, numerical calculations have to be per-
formed. Those filters are referred to as canonical
or minimal-RC because they have minimum num-
ber of components. In this paper we present filter
tables with components for designing single-ampli-
fier, active-RC filters up to the 6th-order, for
Butterworth and Chebyshev approximation types.
Based on the preliminary results from previous

paper [8], extended (final) results including practi-
cal design examples as guidance for engineers are
presented. The need for design tables with normal-
ized filter component values in the form of a hand-
book is approved. Compared to the filter design ta-
bles for some common active-RC filters given in
[1, 2], the tables in this paper are produced using
an optimization procedure for the low sensitivity
to passive component tolerances.

In active-RC filter design, the most important
parameters for evaluation of a filter’s section qual-
ity are: simple realizability, repeatability, a possi-
bility of straightforward procedure of parameter
calculation, small number of components, low
power consumption, low noise performance and the
most often low filter’s magnitude sensitivities to
passive component tolerances and/or active gain
variations. The filters, designed in this paper, poss-
es minimum passive sensitivities for a given topol-
ogy. The sensitivity is reduced using the design
technique, called »impedance tapering« [9]. All cal-
culations are performed numerically, including the
calculation of filters components, as well as, opti-
mizations for filters low sensitivity. Schoeffler’s
sensitivity measure is used as a basis for compari-
son of sensitivity to component tolerances of the
various filters. Monte Carlo runs are performed as
a double check to the Butterworth and Chebyshev
filter examples.
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sented in [1] (and repeated in [2] p. 252). Tables
presented there, are calculated for some typical am-
plifier gains (β = 2.0 and 2.2) and are not optimized
for sensitivity.

2.1 Optimization of Sensitivity

In this paper we calculate component values of
the filters that are optimized for minimum sensi-
tivity to component tolerances. Component values
are obtained numerically and shown in Tables 1—2.
The low sensitivity performance is achieved by
»impedance tapering« design method (more pre-
cisely by capacitive tapering), first introduced in
[9], and applied to the LP filter structure in Fig. 1.
At the same time a value of the so-called »design
frequency« ω0=(R1C1)—1 [9] is optimized iterative-
ly to converge to the value which provides mini-
mum sensitivity filter. Therefore, in Tables 1—2 we
obtain various optimal values for R1 and the corre-
sponding values of the gain β. (Suppose we have
chosen C1=1, thus for optimal ω0, an optimal value
of R1=(ω0C1)—1 readily follows.) Optimal values for
R1 are calculated using the procedure shown in Fig.
2, which is implemented with program Mathemat-
ica [11].

It should be stressed that the capacitive-tapering
factor ρC for higher-order filters is smaller, than
that for filters of lower-order n. For example, if we
try to find solution of the 6th-order Butterworth fil-
ter with larger ρC (for example ρC≥3), it is not
possible, because the Newton’s method does not
converge. Furthermore, larger capacitive tapering
factor ρC is not permitted since the last capacitor
Cn (e.g. C6=C1/ρC

5) becomes too small and com-
parable to the parasitic capacitance of the circuit.
Luckily, in high-order filters, even the small taper-
ing factor satisfies enough our needs in degree of
desensitization (e.g. ρC =2.0 is good enough for the
filter order n = 6).

In the sequel, we briefly explain the block dia-
gram shown in Fig. 2. The procedure in Fig. 2 uses
Newton’s iterative method to calculate the compo-
nents of the high-order (i.e. 4th-, 5th- and 6th-order)
allpole low-pass filters. In addition, the filters are
capacitively tapered and numerically optimized for
low sensitivity. Optimization of 2nd- and 3rd-order
filters follows the same steps in the block diagram
shown in Fig. 2, but theirs procedures are simpler
in that the calculation of filter components can be
performed analytically.

The input data are the values of Butterworth or
Chebyshev coefficients ai (i = 0,…, n—1), chosen
values of ρC, and C1. Because of capacitive taper-
ing, the procedure calculates Ck=C1/ρC

k—1 (k = 2,…,
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2 SINGLE-AMPLIFIER, MINIMAL-RC,
ACTIVE-RC FILTER

Consider an nth-order, allpole, single-amplifier,
low-pass filter circuit with positive feedback pre-
sented in Fig. 1. The filter belongs to the type of
class-4 or Sallen and Key [2, 10]. The voltage
transfer function T(s) =V2(s) /V1(s) of the filter in
Fig. 1 is given by

(1)

where the pass-band gain K is given by
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The coefficients ai (i = 0, , n —1) as functions of
components Rk and Ck (k = 1,…, n) are presented
in Appendix I for the canonical filters up to the
6th-order. There are many different ways how those
coefficients can be calculated. In this paper, in Ap-
pendix I, we present one recursive way which is
easily programmed in any program that can, be-
sides numeric, perform symbolic calculations (e.g.
Mathematica, Matlab or MathCad).

Knowing coefficients ai in the transfer function’s
(1) denominator polynomial, we can develop a set
of nonlinear equations by equating each of the co-
efficients in the polynomial to the coefficient val-
ues of the appropriate Butterworth or Chebyshev
polynomials. Butterworth and Chebyshev polyno-
mials are readily obtained from tables [3, 6] or can
be calculated using closed-form equations. We can,
finally, numerically solve a set of nonlinear equa-
tions and calculate passive (normalized) compo-
nents Rk, Ck (k = 1,…, n) and β to build the filter
circuit in Fig. 1.

The results of such computer calculation for
equal capacitors and equal resistors cases are pre-

Fig. 1 General nth-order single-amplifier low-pass filter



n). In the first cycle the initial value of the resistor
R1 has to be defined. The resistor R1 is the design
parameter to be adjusted. We choose C1=1, then by
varying the value of R1 we indeed vary the value
of the design frequency ω0=(R1C1)—1. With the
value of R1 we solve the system of non-linear equa-
tions for the vector R2,…, Rn and β. To achieve a
solution, we start with vector of random values for
R2

0,…, Rn
0 and β0. Random initial resistors’ values

Rk
0 are within the interval <0.2, 20> and gain β

has a value in the range <1.0, 5.0>. If the proper
starting vector is chosen, the Newton’s method
will, with prescribed accuracy, converge in several
steps to the solution, i.e. to the vector R2,…, Rn
and β. If the method fails to converge, we must try
another random starting vector. If the convergence
is achieved but we have solution with negative re-
sistor values or gain β less than unity, then we,
again, choose another random starting vector. We
perform random starting vectors for maximum

1000 times. This process of finding solution is
known as random search. If we choose starting
vectors for Newton’s iterative solving method by
applying some rule, which tries to find all possible
solutions, we have exhaustive search (brute force
algorithm). In solving some problems, if there exist
several local minimums, exhaustive search tries to
find global minimum, but only for a particular type
of problems.

If we do not find all real and positive compo-
nent values R2,…, Rn and gain β≥1, we proceed
with another value of resistor R1. Finally, when we
find realizable elements we proceed to the sensi-
tivity optimization. To accomplish it we calculate
multi-parametrical statistical measure M, which is
defined in [12], with

(3)

where S2(ω) is Schoeffler’s sensitivity function de-
fined by

(4)

Function SF
xi in (4) represents relative sensitivity

of the function F (it is the transfer function mag-
nitude, i.e. F =|T ( jω)| to the parameter xi (there
are N = 2n + 2 passive filter components xi in an nth-
-order filter). S2(ω) in (3) is a function of frequen-
cy, while M is a number instead of a function, and
can be used as a goal of optimizing process. M rep-
resents area under the function S2(ω), with borders
of integration from ω1 to ω2. Disadvantage is the
dependence of number M on the selected borders
of integration ω11 and ω2. Therefore, during whole
optimization process, we choose the same pair of
ω1 and ω2. The whole above procedure is repeated
with new value for R1, until minimum value of M
is found.

For the 2nd-order filters we do not perform nu-
merical optimization. Instead we apply capacitive
tapering factors ρC in Tables 1—2 that must obey
the following constraint

(5)

The value ρmax in (5) represents an upper bound
of resistive tapering factor ρC. For equal resistors
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Fig. 2 Block-diagram for solving capacitively-tapered 4th-,
5th- and 6th-order filters and optimising design frequency ω0

for minimum sensitivity



(i.e. R1 = R2), we have minimum sensitivity of the
2nd-order filters and another form of the constraint
(5) given by

(6)

If we use maximum desensitization with ρC = 4q2
p

in (6) we obtain in Tables 1—2 »low-Q« realization
of 2nd-order filters (having unity gain, i.e. β=1)
[6]. Furthermore, it is apparent from tables that for
the 3rd-order filter we have the values of R2 and
R3 close to each other. This corresponds to the con-
clusions for the 3rd-order low-pass circuits with
minimum sensitivity derived in [9]. For higher-
than-third order filters no such rules exist for the
minimum sensitivity design; instead the numerical
optimization should be carried out.

2.2 Sensitivity Analysis

In this section we compare sensitivities of newly
designed capacitively-tapered filters to the filters
having equal capacitors and equal resistors.

A sensitivity analysis was performed to the log-
arithmic gain function α(ω) =20log|T( jω)|/dB, as-
suming the relative changes of the resistors and ca-
pacitors to be uncorrelated random variables, with
a zero-mean Gaussian distribution and 1% standard
deviation. The standard deviation σα(ω) /dB (which
is related to the Schoeffler’s sensitivities) of the
variation of the logarithmic gain Δα=8.68588
Δ|T( jω)|/|T( jω)|/dB, with respect to the passive
elements, is calculated for the optimized element
values for Butterworth filters given in Table 1, as
well as for the equal capacitors and equal resistors
filters designed using tables in [1, 2]. For all those

ρ ρC R R pq≤ =
=max

1 2
4 2⏐

filters the standard deviations curves σα(ω) are pre-
sented in Fig. 3. Observing Fig. 3 we conclude that
the capacitively impedance tapered filters have
minimum sensitivities to component tolerances of
the circuits for all filter orders. Very close results
are achieved with filter circuits, having equal re-
sistors. One possible explanation is in the slightly
tapered capacitor values, which can be seen in
Table 1. The worst sensitivity performances have
filters with equal capacitors. Although it is usually
not practical to mass produce discrete component
active-RC filters having unequal capacitors, in the
case of IC design various (tapered) capacitor val-
ues are acceptable. The sensitivity curves in Fig. 3
are repeated in Fig. 4, sorted by different designs.

Same investigations performed for Chebyshev
filter approximations lead to the same conclusions,
but they are not presented here.

It is well known that Butterworth filter compared
to a Chebyshev filter of equal order has lower pole
Qs. Since the sensitivities are related to the magni-
tudes of filter Q-factors, from the sensitivity point,
a Butterworth filter is always preferable to a
Chebyshev filter and a low-ripple Chebyshev filter
is always preferable to a Chebyshev filter with
higher ripple. Preferable filters with regard to low
sensitivity have lowest possible pole Qs. Further-
more, filters with high order n have both larger
pole Qs and larger number of components than
low-order filters and therefore much higher sensi-
tivities. The reason for high sensitivities to compo-
nent variations of high-order canonical filters is ob-
vious from filter coefficients, presented as func-
tions of components, in Appendix I. Qualitatively
this can be explained by the fact that in a canonic 
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Table 1 Normalized components of min. sensitivity LP filters using capacitive tapering: Butterworth approximation

Table 2 Normalized components of min. sensitivity LP filters using capacitive tapering: 0.5 dB Chebyshev approximation

n ρC C1 C2 C3 C4 C5 C6 R1 R2 R3 R4 R5 R6 β

2
3
4
5
6

2
3
3

2.5
2

1
1
1
1
1

0.5
0.3333
0.3333

0.4
0.5

0.1111
0.1111
0.16
0.25

0.0370
0.064
0.125

0.0256
0.0625 0.03125

1.41421
1.09
0.7
2.29
0.675

1.41421
6.01255
7.07694
2.26474
8.63542

4.11983
18.1004
8.21287
5.19291

8.13008
26.8796
8.97413

8.32969
23.3141 5.17416

1.0
1.14231
1.34647
1.5333
1.74047

n ρC C1 C2 C3 C4 C5 C6 R1 R2 R3 R4 R5 R6 β

2
3
4
5
6

2.9841
3
3

2.5
2

1
1
1
1
1

0.3351
0.3333
0.3333

0.4
0.5

0.1111
0.1111
0.16
0.25

0.0370
0.064
0.125

0.0256
0.0625 0.03125

1.40289
1.71
1.31
3.96
1.8

1.40289
6.5827
9.61917
4.86466
14.2659

3.35148
19.9327
11.4959
9.77697

7.65695
29.8471
11.7128

8.06382
23.8853 5.17416

1.0
1.31082
1.4989
1.66703
1.84611



realization all the components interact with each
other, and a change in any component will be mag-
nified through its repeated occurrence in all coeffi-
cients. The larger order n of the filter, the more
complicated and larger are the filter coefficients
and therefore the larger sensitivities. In cascade re-
alization, in contrast, the change in a component
will affect only a localized segment, i.e. only one
biquad in a cascade. Therefore, the cascade design
has lower sensitivities. But it has more amplifiers
(consumes more power) and passive components
(resistors) than single-amplifier filters.

As stated above, in the design of active-RC fil-
ters, very important quality of the filter is its low

power consumption. Thus, for low-pass filters of
reasonably low order (for example n≤6), the use
of single-amplifier filters, as in Fig. 1 is advanta-
geous over the cascaded 2nd- and 3rd-order Sallen
and Key sections [10], although the latter have
smaller sensitivities to component tolerances of the
circuit. Another advantage of canonical, single-am-
plifier filters, which are presented here, is that they
have only n capacitors and n resistors as well, and
their sensitivities are improved applying »imped-
ance tapering« technique. Finally, advantages of
single-amplifier filters lie also in the fact that there
is no need for signal level optimization procedure
which must be performed in multiple amplifier
configurations.
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Fig. 3 Schoeffler’s sensitivity of normalized Butterworth low-pass filter circuits (up to 6th-order), with components given in
Table 1 and in tables presented in [1] and [2] p. 252

Fig. 4 Schoeffler’s sensitivity of normalized Butterworth LP filter circuits in Fig. 3, sorted by type of impedance tapering



An anti-aliasing low-pass filter has to satisfy the
specifications imposed by the tolerance scheme
shown in Fig. 5. The requirements are the maxi-
mum pass-band attenuation of Ap = 0.5 dB for the
frequencies up to the fp = 20 kHz, and the minimum
stop-band attenuation of As = 10 dB for the frequen-
cies above fs = 32 kHz. The filter should have a
unity gain in the pass band (K = 1).

The specifications in Fig. 5 can readily be con-
verted to the normalized LP specifications having
normalized cut-off frequency Fs = fs /fp (or Ωs=
= ωs /ωp, where Ωs=2 πFs ). In that case we write
1 instead fp and we write Fs instead fs in Fig. 5.
In all subsequent design equations the ratio fs /fp is
then replaced by the single value Fs.

Butterworth transfer function magnitude has the
following form

3 TRANSFORMATIONS

3.1 LP-LP Transformation

Low-pass to low-pass (LP-LP) frequency trans-
formation (i.e. denormalization) defined by

(7)

can be performed by new elements calculations.
From normalized element values in Tables 1—2 we
calculate denormalized element values by applying

(8)

where index n denotes normalized components val-
ues in tables. It is an advantage of normalized com-
ponent values in that they can be used as a tem-
plate to directly construct the filter with any cut-
-off frequency. We do not consider inductances be-
cause we deal with active-RC filters. Denormaliza-
tion constants ω0 is in [rad/s] and R0 in Ω.

3.2 LP-HP Transformation

Low-pass to high-pass (LP-HP) frequency trans-
formation defined by

(9)

can be performed by new elements calculations.
From normalized LP filter components in Tables
1—2, HP filter components can be readily calculat-
ed using (RC-CR transformation)

(10)

Note, that while applying LP-HP transformation
(9) [i.e. while calculating HP filter components
using (10)]; capacitive tapering by a factor ρC at
LP filters, transforms itself into resistive tapering
factor at HP filters. The value of gain β remains
the same as in the LP prototypes.

4 DESIGN OF LOWPASS FILTERS

Suppose we build mixed-signal-processing cir-
cuitry on the chip for the hearing aids. It consists
of continuous-time to discrete-time converter (C/D)

R
R

C
C R RHP

nLP
HP nLP= = ( )−0

0 0
1, ω

s
s

→ ω0

R R R C
C

RLP nLP LP
nLP= ⋅ =0
0 0

,
ω

s
s→

ω0

which prepares the signal for the digital signal pro-
cessing circuitry. Before C/D converter we have to
prepare voice signal using an integrated low-pass
filter to suppress high frequency components and
eliminate aliasing. On the other hand the low-pass
filter has to be as simple as possible (therefore we
realize it using an active-RC filter), must have low
power consumption (it has a single amplifier), and
must be selective (it is a high order filter).

Because of relatively high filter order it must
have acceptably small sensitivity to component tol-
erance to be realizable. For those reasons we de-
cided to use the nth-order allpole low-pass filter
circuit presented in Fig. 1. Because, this filter is
rather complicated to calculate (especially for the
orders higher than 3rd, where there are no closed
form equations) the Tables 1—2 with component
values shows to be of enormous help. In the de-
sign process we will first decide which type of fil-
ter (Butterworth or Chebyshev) best suites our
needs.
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Fig. 5 The attenuation specifications for the LP filter



(11)

The filter order n for the Butterworth filter can
be readily calculated

(12)

We choose next larger integer value for n. The
cut-off frequency ω0 is given by

(13)

where the radian frequency ωp=2 π fp. The cut-off
frequency ω0 is the frequency on which the filter’s
magnitude has the 3 dB attenuation. Note that for
the calculation of the Butterworth cut-off frequen-
cy ω0, we use the lower frequency ωp, i.e. the pass-
band edge in specifications, because the suppress-
ing of the high frequency components in the anti-
aliasing filter is then guaranteed. The Table 1 pro-
vides a set of necessary component values for the
designing required Butterworth filter.

Chebyshev transfer function magnitude has the
following form

(14)

where the constant 0 < ε ≤ 1 describes the pass-
band ripple and Tn(ω) an nth-order Chebyshev poly-
nomial. The constant ε readily follows from mini-
mum pass-band attenuation (i.e. pass-band ripple)
Ap given in dB

(15)

The filter order n for the Chebyshev filter can
be calculated using

ε = −e
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(16)

The cut-off frequency ω0 in (14) is the highest
frequency on which the filter’s attenuation reaches
the maximum value in the pass-band (i.e. Ap). In
the Chebyshev case we choose the cut-off frequen-
cy to be

ω0 = ωp (17)

where the radian frequency ωp=2 πfp. Note the
similarity between (16) and the Butterworth formu-
la (12). The Table 2 provides a set of necessary
component values for the designing required
Chebyshev filter.

If the cut-off frequency in the Chebyshev filters
design is required to be the frequency at which the
magnitude reaches —3dB value (not the pass-band
ripple value Ap) then we have to calculate the value
of ω0 in (14) another way using

(18)

where

(19)

The ε value is given by (15). In this case we
also use normalized component values of the LP
low-sensitivity Chebyshev filter in Table 2. This
case will not be considered in this paper, instead
we will design Chebyshev filters having cut-off fre-
quency at the pass-band ripple value Ap /dB.

4.1 Example

Using equations (11) to (19) we can readily cal-
culate the filter order n and the cut-off frequency
ω0 for the design of the Butterworth or Chebyshev
filters. Indeed those calculations are the only that
we need. The filter design then proceeds using ta-
bles and is straightforward.

As descriptive examples we present the designs
of filters that satisfy our specifications in Fig. 5: i)
Butterworth, ii) Chebyshev with pass-band ripple
Rp = 0.2 dB and iii) Chebyshev with Rp = 0.5 dB.
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Using (12) and (16) we calculate required filter
order n. Thus we have for the three possible real-
izations the following filter orders and cut-off fre-
quencies: i) Butterworth n = 5, ω0 =155084 rad/s;
ii) Chebyshev n = 4, ω0 =125664 rad/s; and iii)
Chebyshev n = 3, ω0 =125664 rad/s. Note that the
order n of the Chebyshev filters is smaller than the
order of the Butterworth filter. Also note that the
Chebyshev filter with higher ripple requires lower
filter order. Consequently, in what follows we real-
ize the Butterworth filter and the Chebyshev filter
with 0.5 dB ripple.

Using normalized predefined component values
from above design tables, we proceed with the de-
normalization procedure. To calculate filter compo-
nents we need to choose denormalizing resistor R0
value and the denormalization frequency ω0.
Generally speaking ω0 and R0 are free constants.
But, in our case, the frequency ω0 is already known
and follow from filter specifications (e.g. it is
ω0 =155084 rad/s for the Butterworth filter exam-
ple). The resistor value R0 could be chosen to ob-
tain, for example, desired total capacitance value
CTOT. The latter constraint arises because we in-
tend to realize the filter circuit on the chip, thus
we are limited with maximum allowable capaci-
tance still realizable on the chip.

Suppose that we want to obtain a total capaci-
tance CTOT = 300 pF, we have to calculate denor-
malization resistance R0. For the filters with ta-
pered capacitors by a factor ρC of the order n the
total capacitance equals

(20)

For the 5th-order Butterworth filter from Table 1
and using (20) we obtain normalized value
CTOT = C1.1.6496 and therefore maximum value for
capacitor C1 should be C1=300 pF/1.6496=
=181.862 pF. Starting from this we calculate mini-
mum denormalization resistance R0

(21)

We can choose for example reference resistor
R0 = 36 kΩ thus we have R0≥R0min. We calculate
reference capacitor value C0=1/(ω0 R0)=179.114 pF
and according to (8) the circuit capacitor is then
C =C0.CnLP and the circuit resistor is R = R0.RnLP,

R
C0

0 1

1 1
155084 181 86

35 4561

min .
.

= =
⋅

=

=
ω pF

kΩ

C C C CTOT i
i

n
C

i

i

n
C

n

C
= = ⋅ = ⋅ −

−=

−

=

− −

−∑ ∑
1

1
0

1
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ρ
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where CnLP and RnLP represent normalized values
from Tables 1—2. The fifth capacitor C5 has a value
of C5=C0.C5nLP =4.5853 pF. This is very small
value and it is dangerously near to the order of the
parasitic capacitance in the circuit. We choose
RG = 10 kΩ and calculate

(22)

Figure 6a shows the normalized network with
the reference values ω0 = 155084 rad/s and
R0 = 36 kΩ (all normalized values follow directly
from the 5th row in Table 1). Figure 6b shows the
denormalized network with resistor values in kΩ
and capacitors in pF. A simple first-order check for
the correctness of these results is to verify that
a0=(R1R2R3R4R5C1C2C3C4C5)—1.

Now we can continue with the next example of
the 3rd-order Cheby-0.5 dB filter. Using the same
design steps as above we choose R0 = 39 kΩ. This
provides that the total capacitance is less than 300
pF. The reference capacitor value is C0 = 1/(ω0 R0) =
= 204.044 pF.

We choose RG = 10 kΩ and calculate RF = 3.1082
kΩ. Note that the third capacitor C3 has a value of
C3 = 22.67 pF, which is, in this case, quite larger
than the parasitic capacitance in the integrated cir-
cuit.

R RF G= −( ) =β 1 5 333. kΩ

Fig. 6 Butterworth LP filters (n=5). a) Normalized
elements. b) Denormalized elements



Figure 7a shows the normalized network with
the reference values ω0 =125664 rad/s and R0=39
kΩ, whereas Figure 7b shows the denormalized
network.

In what follows for both denormalized filters
shown in Fig. 6b and Fig. 7b, magnitudes are
shown in Fig. 8 to demonstrate their functionality
and the satisfaction of filter specifications. Notice
that magnitudes in Fig. 8 have unity pass-band gain

(K=1, i.e. 0 dB). The realization of the desired
pass-band gain value K will be presented in the
section 4.2, below. As a double check of filter sen-
sitivities, Monte Carlo runs (using PSPICE simula-
tion) are performed and shown in Fig. 9.

Note that Chebyshev filter although has 0.5 dB
ripple in the pass-band and larger pole Q factors,
shows lower sensitivity than the other realization,
a higher order Butterworth filter. This is because
lower filter order has substantially lower sensitivi-
ty, especially when filters are realized using single
opamp circuit as in Fig. 1. Therefore our choice
will be the Chebyshev filter realization.

Recall that the filters presented in design tables
above are capacitively tapered and optimized for
low sensitivity.

4.2 The Gain Factor K

The DC forward gain K of the filter transfer
function will generally not coincide with the am-
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Fig. 7 Chebyshev-05 dB LP filters (n=3). a) Normalized
elements. b) Denormalized elements

Fig. 9 MC runs (a) Butterworth (n=5) and (b) Chebyshev
0.5 dB (n=3) filters

Fig. 8 Butterworth and Chebyshev LP filters transfer
function magnitudes



5 DESIGN OF HIGHPASS FILTERS

In this section we present the design of high-
-pass (HP) filters starting from given specifications
and using the same tables as in the low-pass filter
(LP) case presented above. The filters are designed
in the same straightforward way and final filter cir-
cuits are optimal in the sense that they have mini-
mum sensitivity to passive components variations
of the circuit, and low power consumption.

Consider an example of HP filter which satisfies
the specifications shown in Fig. 11. The specifica-
tion requires the maximum pass-band attenuation of
Ap = 0.5 dB for the frequencies above fp = 32 kHz
and the minimum stop-band attenuation of
As =10 dB for the frequencies below fs = 20 kHz.
The filter should have a unity gain in the pass band
(K = 1).

plifier gain β, required to obtain filter transfer func-
tion parameters. The gain factor K may be speci-
fied by the filter designer, but the amplifier gain is
determined by the values for β given in design ta-
bles. Recall that all values in above tables includ-
ing β are obtained using optimization procedure for
low sensitivity filter. Thus, the value of β cannot
be freely chosen; it depends on the design equa-
tions for the filter, whereas the overall DC filter
gain K may very likely be required to have a dif-
ferent value. Fortunately, there are various schemes
for the decoupling of K and β [9], one of which
will be presented in what follows. In terms of our
filter, this implies that

(23)

If the desired value of α is less than unity, i.e.
β > K (and because β≥1), then a resistive voltage
divider can be inserted at the input of the network,
as shown in Fig. 10. The gain decoupling was ap-
plied to the 3rd-order Chebyshev filter with 0.5 dB
shown in Fig. 7b. In this case input resistor R1 was
substituted by voltage divider (by factor α) con-
sisting of resistors R′1 and R″1. We have

(24)

i.e. R′1=R1/α and R″1=R1/(1— α). Since α is, in this
case, less than unity, R″1 is always positive. In our
example to realize K = 1 we have α = K/β =
=0.7629, and R′1=R1/α=87.419 kΩ; R″1=281.251
kΩ.

α
β

= K

α =
′′

′ + ′′
=

′ ′′
′ + ′′

R
R R

R
R R

R R
1

1 1
1

1 1

1 1
and

The input of the LP filter with K and β decou-
pled is shown in Fig. 10 when K < β. The decou-
pling for K > β will not be shown in this paper and
is presented in [9].
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Fig. 10 Final Chebyshev LP filter circuit with unity gain in
pass-bad (K=1). (Rs in kΩ and Cs in pF)

Fig. 11 The attenuation specifications for the HP filter

When we include specifications values into (12)
and (16) we readily calculate required filter order
n. Recall that the HP specifications can be trans-
formed to the normalized LP specifications with
the normalized cut-off frequency Fs = fp /fs. In both
LP and HP filter examples we obtain the same or-
ders n because both specifications have the same
requirements, i.e. we have the same frequency Fs.

In what follows we are going to design a HP fil-
ter of the 3rd-order with Chebyshev approximation
0.5 dB ripple, which is dual to the filter circuit in
Fig. 7b.

To design HP filter we should calculate capaci-
tors values as reciprocals of resistors values in
Tables 1—2 and vice versa, resistors values are re-
ciprocals of capacitors values (RC-CR transforma-
tion), which is accomplished by (10). In (10) the
denormalization of components values is perform-
ed, as well. The denormalization is performed to
the cut-off frequency fp =32 kHz or ω0=2π
fp =201061.9 rad/s. To properly select the denor-



Note that in (26) RnHP=1/CnLP and CnHP =1/RnLP.
Fig. 12a shows the normalized network with the
ω0=201061.9 rad/s and R0 =18 kΩ, whereas the de-
normalized network is shown in Fig. 12b. It is ob-
vious from Fig. 12a that the circuit is resistively
tapered by the factor 3 (as in the LP case, where
the capacitors are scaled by the factor ρC = 3). The
resistors RG and RF in the amplifier feedback real-
ize the same gain β as in the LP case.

To realize the gain K = 1 we substitute an input
capacitor C1 by voltage divider (by factor α) con-
sisting of capacitors C′1 and C″1. We have

(27)

i.e. C′1=C1/(1—α) and C″1=C1/α. In our example we
have α=K/β=0.7629, thus the input capacitor C1

α =
′

′ + ′′
= ′ + ′′C

C C
C C C1

1 1
1 1 1and
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malization resistance R0 we must be able to realize
capacitors on the chip.

Therefore we calculate (with CTOT = 300 pF)

(25)

We choose reference resistor value R0 =18 kΩ
and this provides reference capacitor value C0=
= 1/(ω0R0)=276.311 pF. The circuit capacitor is
then C = C0 . CnHP and the circuit resistor is R =
= R0 . RnHP, where index n denotes normalized val-
ues. Thus we have the following values for com-
ponents in HP filter

(26)

R
R

C
R R

R R

C
R

HP
nLp

nHP

HP HP

HP
nLp

1
0

1
0 1

2 3

1
1

18

54 162
1

= = ⋅ =

= =

=

k

k k

Ω

Ω Ω; ;

ωω0 0
0 1

2 3
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C C

C C

nHP

HP HP

= ⋅ =

= =

.
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pF;

pF; pF

R
C

C
C

in

TOT
0

0 1 0

1

1 03508
201062 300

17160

min

.

= = =

=
⋅

=

∑
ω ω

pF
Ω

Fig. 13 Chebyshev HP filter transfer function magnitude

Fig. 14 MC runs of Chebyshev HP filter
Fig. 12 Chebyshev HP filters. a) Normalized elements. b)

Denormalized elements (Rs in kΩ and Cs in pF)



is split into C′1=681.45 pF and C″1=211.81 pF (C′1
is connected to the input signal generator). Corres-
ponding magnitudes and MC runs are shown in
Fig. 13 and Fig. 14, respectively. The obtained HP
filter circuit in Fig. 12b satisfies the specifications
in Fig. 11.

Comparing MC runs in Fig. 14 (for the HP 0.5
dB Chebyshev filter) to those in Fig. 9b for its dual
counterpart LP filter (Fig. 7b), both satisfying the
same LP prototype specifications, we can conclude
that both of these filters have identical sensitivi-
ties. This is because they are designed starting from
the same optimized component values in the sec-
ond row (for n = 3) in Table 2.

6 CONCLUSIONS

A procedure for the design of allpole low-sensi-
tivity, low-power, active-RC filters using tables
with predefined normalized filter component val-
ues for some common filter types (Butterworth and
Chebyshev 0.5 dB) is presented. The filter uses
only one operational amplifier, and a minimum
number of passive components. The amplifier it-
self ensures realization of conjugate-complex filter
poles, and low output impedance. For reasons re-
lated to the filter topology, the application of the
capacitive impedance tapering has improved the
sensitivity of the low-pass filters’ magnitude to
component tolerances [9]. The proposed design is
universal and straightforward by using design ta-
bles; thus there is no need for numeric calculations.
It can be extended to the design of single-amplifi-
er, low-sensitivity high-pass filters, as well. Beca-
use, the high-pass filters are dual to the low-pass
filters, resistive tapering is applied to reduce the
sensitivity of the high-pass filter.

Furthermore, the reduction in power and com-
ponent count achieved with the single-amplifier LP
filters is obtained at a price: a cascade of imped-
ance-tapered second-order and/or third-order sec-
tions has lower sensitivity than impedance-tapered
single-amplifier filter. Thus the decision on which
way to go is typically one of tradeoffs: low power
and component count versus low sensitivity. In our
example, of hearing aid circuit realization, we pre-
ferred former solution having low power and low
component count and acceptably low sensitivity.

APPENDIX I: COEFFICIENTS OF T(s)

Consider the nth-order allpole low-pass filter cir-
cuit with positive feedback presented in Fig. A.1.

Note the descending notation of Rn, Cn to R1, C1
from the driving source to the amplifier input. This
reverse order notation is convenient to develop re-
cursive formulas for determining transfer function
coefficients d1 to dn in eq. (A.2) of the nth-order
polynomial D′n(s) as functions of resistors Ri, ca-
pacitors Ci and gain β.

Recursive formulas follow from characteristics
of the continuants. The continuants are used to
solve ladder-networks, and they can be calculated
recursively. The filter in Fig. A.1 has a ladder net-
work in the amplifier’s positive feedback loop with
gain β, where gain β = 1+RF/RG represents the gain
in the class-4 filter circuit. The transfer function of
the nth-order filter as presented in the Fig. A.1 has
the form given by

(A.1)

As shown in [1] and [2] p. 252, the nth-order de-
nominator polynomial in transfer function (A.1),
i.e.

(A.2)

can be calculated from polynomials of n—1 and
n—2 order:

(A.3)

and

(A.4)

using

(A.5)

where δ1j = 0, for j≠1; and δ1j = 1, for j=1 where
1≤ j≤n. Note that b0=c0=d0=1. Note also that,
for the start of the recursive process polynomials
D′0=1 and D′1=R1C1s+1.

To perform the symbolic calculations (to calcu-
late coefficients in terms of components) we use
symbolic calculation program Mathematica. At the
end of recursive process we change to the ascend-
ing notation, i.e. we substitute Rn→R1, Cn→C1,
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Rn—1→R2, Cn—1→C2,…, R1→Rn, C1→Cn, resulting
in the filter circuit with notation shown in Fig. 1.
Consequently, we perform multiplication of nomi-
nator and denominator by the same factor

(A.6a)

(A.6b)

We obtain the form of the transfer function of
the nth-order filter given by (note the unity coeffi-
cient with the highest, i.e. nth power of s)

(A.7)

The transfer function (A.7) has the same form
as the transfer function (1). In what follows we
present the transfer function’s coefficients up to
reasonable (6th) order obtained by the recursive
procedure shown above. Those coefficients corre-
spond to the filter circuit with ascending notation
shown in Fig. 1, and are used in this paper for all
numerical calculations carried out by Mathematica.
It can be seen that increasing the filter order n, co-
efficients become even more complicated, and
therefore the canonical high-order filter’s sensitivi-
ty rapidly increases.

2nd Order
a1= (C1 R1 + C2 R1 + C2 R2 — C1 R1 β) / (C1

C2 R1 R2)
a0= 1 / (C1 C2 R1 R2)

3rd Order
a2= (C1 C2 R1 R2 + C1 C3 R1 R2 + C1 C3 R1

R3 + C2 C3 R1 R3 + C2 C3 R2 R3 — C1 C2
R1 R2 β) / (C1 C2 C3 R1 R2 R3)

a
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j nj

j

n
= ≤ ≤, 0

N s
N s

d
a D s

D s
dn n

( ) =
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n
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=
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−
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1
1

1 0� �

a1= (C1 R1 + C2 R1 + C3 R1 + C2 R2 + C3 R2
+ C3 R3 — C2 R1 β — C2 R2 β) / (C1 C2 C3
R1 R2 R3)

a0= 1 / (C1 C2 C3 R1 R2 R3)

4th Order
a3= (C2 C3 C4 (R1 + R2) R3 R4 + C1 R1 (C3 C4

(R2 + R3) R4 + C2 R2 (C4 (R3 + R4) + C3
(R3 — R3 β)))) / (C1 C2 C3 C4 R1 R2 R3 R4)

a2= (C1 C2 R1 R2 + C4 (C3 (R1 + R2 + R3) R4
+ C2 (R1 + R2) (R3 + R4) + C1 R1 (R2 + R3
+ R4)) — C3 (C2 (R1 + R2) R3 + C1 R1 (R2
+ R3)) (—1 + β)) / (C1 C2 C3 C4 R1 R2 R3
R4)

a1= (C1 R1 + C2 R1 + C2 R2 + C4 (R1 + R2 +
R3 + R4) — C3 (R1 + R2 + R3) (—1 + β) — C1
R1 β) / (C1 C2 C3 C4 R1 R2 R3 R4)

a0= 1 / (C1 C2 C3 C4 R1 R2 R3 R4)

5th Order
a4= (C2 C3 C4 C5 (R1 + R2) R3 R4 R5 + C1 R1

(C3 C4 C5 (R2 + R3) R4 R5 + C2 R2 (C4 C5
(R3 + R4) R5 + C3 R3 (C5 (R4 + R5) + C4
(R4 — R4 β))))) / (C1 C2 C3 C4 C5 R1 R2 R3
R4 R5)

a3= (C1 C2 C3 R1 R2 R3 + C5 (C4 (C3 (R1 + R2
+ R3) R4 + C2 (R1 + R2) (R3 + R4) + C1 R1
(R2 + R3 + R4)) R5 + C3 (C2 (R1 + R2) R3
+ C1 R1 (R2 + R3)) (R4 + R5) + C1 C2 R1
R2 (R3 + R4 + R5)) — C4 (C2 C3 (R1 + R2)
R3 R4 + C1 R1 (C3 (R2 + R3) R4 + C2 R2
(R3 + R4))) (—1 + β)) / (C1 C2 C3 C4 C5 R1
R2 R3 R4 R5)

a2= (C1 C2 R1 R2 + C1 C3 R1 R2 + C1 C3 R1
R3 + C2 C3 R1 R3 + C2 C3 R2 R3 + C5 (C4
(R1 + R2 + R3 + R4) R5 + C3 (R1 + R2 +
R3) (R4 + R5) + C2 R2 (R3 + R4 + R5) + R1
(C1 R2 + (C1 + C2) (R3 + R4 + R5))) — C4
(C3 (R1 + R2 + R3) R4 + C2 (R1 + R2) (R3
+ R4) + C1 R1 (R2 + R3 + R4)) (—1 + β) —
C1 C2 R1 R2 β) / (C1 C2 C3 C4 C5 R1 R2
R3 R4 R5)

a1= (C1 R1 + C2 R1 + C3 R1 + C2 R2 + C3 R2
+ C3 R3 + C5 (R1 + R2 + R3 + R4 + R5) —
C4 (R1 + R2 + R3 + R4) (—1 + β) — C2 (R1
+ R2) β) / (C1 C2 C3 C4 C5 R1 R2 R3 R4
R5)

a0= 1 / (C1 C2 C3 C4 C5 R1 R2 R3 R4 R5)

6th Order
a5= (C2 C3 C4 C5 C6 (R1 + R2) R3 R4 R5 R6 +

C1 R1 (C3 C4 C5 C6 (R2 + R3) R4 R5 R6 +
C2 R2 (C4 C5 C6 (R3 + R4) R5 R6 + C3 R3
(C5 C6 (R4 + R5) R6 + C4 R4 (C6 (R5 + R6)
+ C5 (R5 — R5 β)))))) / (C1 C2 C3 C4 C5 C6
R1 R2 R3 R4 R5 R6)
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Fig. A1 General nth-order single-amplifier low-pass filter
with reverse notation



a4= (C1 C2 C3 C4 R1 R2 R3 R4 + C6 (C5 (C4
(C3 (R1 + R2 + R3) R4 + C2 (R1 + R2) (R3
+ R4) + C1 R1 (R2 + R3 + R4)) R5 + C3 (C2
(R1 + R2) R3 + C1 R1 (R2 + R3)) (R4 + R5)
+ C1 C2 R1 R2 (R3 + R4 + R5)) R6 + C4
(C2 C3 (R1 + R2) R3 R4 + C1 R1 (C3 (R2 +
R3) R4 + C2 R2 (R3 + R4))) (R5 + R6) + C1
C2 C3 R1 R2 R3 (R4 + R5 + R6)) — C5 (C2
C3 C4 (R1 + R2) R3 R4 R5 + C1 R1 (C3 C4
(R2 + R3) R4 R5 + C2 R2 (C4 (R3 + R4) R5
+ C3 R3 (R4 + R5)))) (—1 + β)) / (C1 C2 C3
C4 C5 C6 R1 R2 R3 R4 R5 R6)

a3= (C1 C2 C3 R1 R2 R3 + C1 C2 C4 R1 R2 R3
+ C1 C2 C4 R1 R2 R4 + C1 C3 C4 R1 R2
R4 + C1 C3 C4 R1 R3 R4 + C2 C3 C4 R1
R3 R4 + C2 C3 C4 R2 R3 R4 + C6 (C5 (C4
(R1 + R2 + R3 + R4) R5 + C3 (R1 + R2 +
R3) (R4 + R5) + C2 R2 (R3 + R4 + R5) + R1
(C1 R2 + (C1 + C2) (R3 + R4 + R5))) R6 +
C4 (C3 (R1 + R2 + R3) R4 + C2 (R1 + R2)
(R3 + R4) + C1 R1 (R2 + R3 + R4)) (R5 +
R6) + C2 C3 R2 R3 (R4 + R5 + R6) + R1
(C3 (C2 R3 + C1 (R2 + R3)) (R4 + R5 + R6)
+ C1 C2 R2 (R3 + R4 + R5 + R6))) — C5 (C4
(C3 (R1 + R2 + R3) R4 + C2 (R1 + R2) (R3
+ R4) + C1 R1 (R2 + R3 + R4)) R5 + C3 (C2
(R1 + R2) R3 + C1 R1 (R2 + R3)) (R4 + R5)
+ C1 C2 R1 R2 (R3 + R4 + R5)) (—1 + β) —
C1 C2 C3 R1 R2 R3 β) / (C1 C2 C3 C4 C5
C6 R1 R2 R3 R4 R5 R6)

a2= (C1 C2 R1 R2 + C1 C3 R1 R2 + C1 C4 R1
R2 + C1 C3 R1 R3 + C2 C3 R1 R3 + C1 C4
R1 R3 + C2 C4 R1 R3 + C2 C3 R2 R3 + C2
C4 R2 R3 + C1 C4 R1 R4 + C2 C4 R1 R4 +
C3 C4 R1 R4 + C2 C4 R2 R4 + C3 C4 R2
R4 + C3 C4 R3 R4 + C6 (C2 R2 R3 + C2 R2
R4 + C3 R2 R4 + C3 R3 R4 + C2 R2 R5 +
C3 R2 R5 + C3 R3 R5 + C2 R2 R6 + C3 R2
R6 + C3 R3 R6 + C5 (R1 + R2 + R3 + R4 +
R5) R6 + C4 (R1 + R2 + R3 + R4) (R5 + R6)
+ R1 (C1 R2 + C3 (R4 + R5 + R6) + (C1 +
C2) (R3 + R4 + R5 + R6))) — C5 (C4 (R1 +
R2 + R3 + R4) R5 + C3 (R1 + R2 + R3) (R4
+ R5) + C2 R2 (R3 + R4 + R5) + R1 (C1 R2
+ (C1 + C2) (R3 + R4 + R5))) (—1 + β) — C3
(C2 (R1 + R2) R3 + C1 R1 (R2 + R3)) β) /
(C1 C2 C3 C4 C5 C6 R1 R2 R3 R4 R5 R6)

a1= (C1 R1 + C2 R1 + C3 R1 + C4 R1 + C2 R2
+ C3 R2 + C4 R2 + C3 R3 + C4 R3 + C4 R4

+ C6 (R1 + R2 + R3 + R4 + R5 + R6) — C5
(R1 + R2 + R3 + R4 + R5) (—1 + β) — (C1
R1 + C3 (R1 + R2 + R3)) β) / (C1 C2 C3 C4
C5 C6 R1 R2 R3 R4 R5 R6)

a0= 1 / (C1 C2 C3 C4 C5 C6 R1 R2 R3 R4 R5
R6)
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Projektiranje aktivnih RC filtara niske osjetljivosti s jednim poja~alom pomo}u tablica. Prikazan je
postupak projektiranja aktivnih RC filtara s jednim poja~alom pomo}u tablica s normaliziranim filtarskim
komponentama za poznate tipove aproksimacija kao {to su Butterworth i Chebyshev. Filtri su gra|eni od RC
ljestvi~aste mre`e u pozitivnoj povratnoj vezi poja~ala. Tablice s normaliziranim vrijednostima elemenata s
jednakim kapacitetima i s jednakim otporima su ve} objavljene od strane raznih autora [1, 2]. U ovom radu,
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prikazujemo nove tablice za projektiranje filtara koji imaju optimalnu osjetljivost na varijacije pasivnih kom-
ponenata. Zna~ajno smanjenje osjetljivosti posti`e se posebnom tehnikom projektiranja »pomo}u skaliranja
impedancija«. Prikazani filtri su do uklju~uju}i {estog reda. Problem osjetljivosti ne dopu{ta da red promatra-
nih filtara bude ve}i od {estog reda. Prikazano je projektiranje niskopropusnih i visokopropusnih tipova fil-
tara.

Klju~ne rije~i: aktivni RC filtri, minimalni RC filtri, mala potro{nja, niska osjetljivost, normalizirane vrijed-
nosti komponenata


