Ružica Marinčić, Ankica Barišić

ISSN 0350-350X GOMABN 47, 5, 398-413 Izlaganje sa skupa/Conference Paper UDK 543.849 : 543.427.2 : 658.562.012.7 : 665.7.033.55

ODREÐIVANJE SADRŽAJA TEŠKIH METALA U RABLJENIM I NERABLJENIM NAFTNIM PROIZVODIMA ED X-RAY SPEKTROMETRIJOM

Sažetak

U radu je prikazana validacija i način procjene mjerne nesigurnosti rezultata određivanja sadržaja teških metala (Cr, Ni, Cd i Pb) internom metodom na ED X-Ray spektrometru. Raspon mjerenja je od 0 do 100 mg/kg. Validacijom metode određeni su sljedeći parametri: linearnost, točnost, preciznost (ponovljivost, intermedijarna preciznost), matriks efekt, stabilnost, selektivnost, granica detekcije i granica kvantifikacije. Dobiveni rezultati validacije potvrđuju da metoda odgovara namjeni.

Mjerna nesigurnost rezultata mjerenja izračunata je na temelju prepoznatih izvora mjerne nesigurnosti (masa, kalibracija, linearnost, čistoća standarda, ponovljivost i obnovljivost) koji su prikazani Ishikawinim dijagramom, a sastavnice mjerne nesigurnosti određene su matematičkim statističkim metodama. Rezultat mjerenja prikazan je u rasponu u kojem se s određenom vjerojatnošću, odnosno uz određenu razinu povjerenja, nalazi prava vrijednost rezultata.

HEAVY METAL CONTENT DETERMINATION IN USED AND UNUSED OIL PRODUCTS WITH ED X-RAY SPECTROMETRY

Abstract

The paper presents the validation and the evaluation pattern of the measurement result uncertainty while determining the heavy metals contents (Cr, Ni, Cd and Pb) by the internal method with ED X-Ray spectrometer. The measurement range is from 0 to 100 mg/kg. After the method validation the following parameters are defined: linearity, correctness, precision (repeatedness, intermediate precision), matrix effect, stability, selectivity, detection limit and quantification limit. The validation results confirmed that the method serves its purpose.

goriva i maziva, 47, 5: 398-413, 2008.

The measurement uncertainty of the results is calculated on the basis of the recognized sources of the measurement uncertainty (mass calibration, linearity, standard cleanness, repeatedness and renewability) which are shown by the Ishikawa diagram and the measurement uncertainty components are defined by mathematical statistic methods. The results of the measurement are shown in a range with a certain probability, in other words, with a certain level of trust you can find the real value of the results.

1 Uvod

Norma HRN EN ISO /IEC 17025: 2006/ AC 2007 propisuje da akreditirani ispitni laboratorij mora za svoje mjerne procese koji utječu na mjerni ili ispitni rezultat procijeniti mjernu nesigurnost, kao i provesti validaciju meoda.

Validacija je dokumentirani prikaz procesa dokazivanja da je analitička metoda prikladna za namijenjenu svrhu. Provodi se prije primjene nove (interne) metode, nenormirane meode, normirane metode koja se upotrebljava izvan mjernog područja te kod proširenja i preinake metode. Prije provedbe validacije definirani su parametri validacije i kriteriji njihove prihvatljivosti. Odabir parametara validacije radi se prema vrsti i namjeni metode. S obzirom da je metoda za određivanje sadržaja teških metala (Cr,Ni,Cd i Pb) u rabljenim i nerabljenim naftnim proizvodima na ED X-Ray spektrometru interna metoda, validacija je provedena po svim validacijskim parametrima: linearnost, točnost, preciznost, matriks efekt, stabilnost mjernih otopina, selektivnost, granica detekcije i granica kvantifikacije. Nakon izvođenja validacijskih eksperimenata propisanih u protokolu napisano je izvješće o validaciji metode koja sadrži tablični i grafički prikaz rezultata. Validacijsko izvješće je odobreno prije početka uporabe metode.

Mjerna nesigurnost je parametar pridružen mjernom rezultatu koji označava rasipanje vrijednosti koji se smije pripisati mjernoj veličini. Temelj za procjenu mjerne nesigurnosti su već sakupljena saznanja i podaci kontrole kvalitete, validacije, usporedbenih ispitivanja i uporaba certificiranih referentnih materijala (CRM).

Razmotrene su sve sastavnice koje utječu na mjernu nesigurnost i realno su procijenjene.

2 Validacija

2.1 Protokol validacije

2.1.1 Definiranje mjerne veličine

Određuje se sadržaj teških metala (Cr, Ni, Cd i Pb) u uzorcima rabljenih i nerabljenih naftnih proizvoda prema internoj metodi na ED X-Ray spektrometru.

Uzorak se stavi u snop zraka koje su emitirane iz X-ray izvora. Energija pobuđivanja potječe iz X-ray cijevi. Mjeri se rezultanta pobuđivanja karakteristična za X-zračenje, a intenzitet se uspoređuje s rezultatima kalibracije nanesenim na grafikon za sadržaj teških metala kao masenim postocima ili mg/kg (ppm).

goriva i maziva, 47, 5 : 398-413, 2008.

2.1.2 Parametri validacije i kriteriji prihvatljivosti

Prije provedbe eksperimentalnog dijela postavljeni su parametri validacije i kriteriji prihvatljivosti (tablica 1.)

Tablica 1: Parametri validacije i kriteriji prihvatljivosti

Table1: Validation parameters and acceptability criteria

Parametar	Kriterij prihvatljivosti			
	krom	nikal	kadmij	olovo
Linearnost	k≥ 0,971	k≥ 0,977	k≥ 0,990	k≥ 0,990
Točnost		(100:	±1)%	
Preciznost	Preciznost RSD			
-ponovljivost	≤ 4	≤ 4	≤ 4	≤ 4
-interneujarna preciznost	≤ 5	≤ 5	≤ 5	≤ 5
Matriks efekt	usporedba pravca linearnosti i matriksa			
Selektivnost	informacija			
Stabilnost mjernih otopina	informacija			
Granica detekcije	informacija			
Granica kvantifikacije	informacija			

2.2 lzvješće o validaciji 2.2.1 Sažetak

Validacija metode LAB MT 18 za određivanje sadržaja teških metala u rabljenim i nerabljenim naftnim proizvodima ED X-Ray spektrometrijom napravljena je prema protokolu validacije za tu metodu.Rezultati mjerenja prikazani su tablici 2.

Tablica 2: Parametri validacije, rezultati mjerenja i kriteriji prihvatljivosti

Table 2: Validation parameters, measurement results and acceptability criteria								
Parametar		Rez	ultat			Kriterij pri	hvatljivosti	
	krom	nikal	kadmij	olovo	krom	nikal	kadmij	olovo
Linearnost		k		k≥0,971	k≥0,977	k≥0,990	k≥0,990	
	0,9715	0,9773	0,9957	0,9909				
Točnost	(100,05 ±0,03)%	(100,05 (100,08 (100,0 (100,04 ±0,03)% ±0,03)% ±0,03)% ±0,04)%			(100	±1)%		
Preciznost	RSD, %				RSI	D, %		
-ponovljivost	2,73	3,02	2,98	3,73	≤4	≤ 4	≤ 4	≤4
-intermedijarna	3,20	4,04	2,18	4,23	≤ 5	≤ 5	≤ 5	≤ 5
preciznost								
Matriks efekt			k		uspore	dba pravca l	inearnosti i r	natriksa
	0,9975	0,9972	0,9975	0,9989				
Selektivnost		odgo	ovara			inforr	nacija	
Stabilnost mjernih otopina	odgovara			inforr	nacija			
Granica detekcije	1 ppm				inforr	nacija		
Granica kvantifikacije		3 p	ppm			inforr	nacija	

400

goriva i maziva, 47, 5 : 398-413, 2008.

2.2.2 Eksperimentalni dio

2.2.2.1 Točnost

Uzorak standarda koncentracije 50 ppm izmjeri se 10 puta. Za svaki od elemenata (Cr, Cd, Ni i Pb) izračuna se iskorištenje i preciznost RSD. Rezultati su prikazani u tablici 3.

c(S21) ppm	c(Cr), ppm	c(Ni), ppm		c(Cd), ppm		c(Pb),ppm	
standard	izmjerena	iskorištenje%	izmjerena	iskorištenje%	izmjerena	iskorištenje%	izmjerena	iskorištenje %
50	50	100,00	54	100,08	48	99,96	51	100,02
50	53	100,06	55	100,1	50	100,00	51	100,02
50	52	100,04	51	100,02	50	100,00	55	100,10
50	52	100,04	54	100,08	51	100,02	52	100,04
50	54	100,08	53	100,06	49	99,98	55	100,10
50	51	100,02	55	100,10	48	99,96	50	100,00
50	52	100,04	53	100,06	50	100,00	50	100,00
50	52	100,04	53	100,06	51	100,02	50	100,00
50	55	100,10	57	100,14	53	100,06	51	100,02
50	53	100,06	55	100,10	50	100,00	53	100,06

Tablica 3:Točnost mjerenja Table 3: Measurement precision

Element	Cr	Ni	Cd	Pb
Srednje iskorištenje,%	100,05	100,08	100,00	100,04
RSD,%	0,03	0,03	0,03	0,04
Standardna devijacija	0,0286	0,0327	0,0316	0,0386

2.2.2.2 Preciznost

a) Ponovljivost mjerenja

Ponovljivost mjerenja ispita se tako da se uzorak standarda koncentracije 50 ppm izmjeri 10 puta. Za svaki od elemenata (Cr, Cd, Ni i Pb) izračuna se srednja vrijednost i RSD. Rezultati su prikazani u tablici 4.

Temeljem dobivenih rezultata razlika između rezultata mjerenja, koje provede isti djelatnik na istom uzorku, kao i više djelatnika na istom uzorku može samo u jednom slučaju od dvadeset biti veća od vrijednosti zadane u tablici 5.

goriva i maziva, 47, 5 : 398-413, 2008.

Tablica 4: Ponovljivost mjerenja Table 4: Measurement repeatedness

c(S-21),ppm	c(Cr),ppm	c(Ni),ppm	c(Cd),ppm	c(Pb),ppm
standard		izmjerena		
50	50	54	48	51
50	53	55	50	51
50	52	51	50	55
50	52	54	51	52
50	54	53	49	55
50	51	55	48	50
50	52	53	50	50
50	52	53	51	50
50	55	57	53	51
50	53	55	50	53
srednja koncentracija	52,4	54	50	51,8
STDEV	1,42984	1,63299	1,49071	1,93218
RSD,%	2,73	3,02	2,98	3,73

Tablica 5: Ponovljivost i obnovljivost mjerenja Table 5: Measurement repeatedness and renewability

Element	Koncentracijsko područje, ppm	Ponovljivost, ppm	Obnovljivost, ppm
	5 – 40	4	8
Cr	41 - 100	8	14
	5 – 40	4	8
Ni	41 – 100	8	14
	5 – 40	4	8
Cd	41 – 100	8	14
	5 – 40	4	8
Pb	41 - 100	8	14

b) Intermedijarna preciznost

Intermedijarna preciznost se odredi tako da se ponovi postupak ponovljivosti još dva puta s različitim analitičarima u vremenskim razmacima od nekoliko dana. Za svaki od elemenata (Cr, Cd, Ni i Pb) izračuna se srednja vrijednost i RSD.

goriva i maziva, 47, 5 : 398-413, 2008.

KROM

	RUŽICA	IVO	ANKICA
UZORAK		c(Cr), ppm	
1	50	56	50
2	53	53	53
3	52	53	52
4	52	54	52
5	54	54	51
6	51	51	51
7	52	55	54
8	52	56	52
9	55	55	51
10	53	55	52
c(srednja)	52,4	54,2	51,8
STDEV	1,42984	1,54919	1,13529
RSD, %	2,73	2,86	2,19

Slika 1: Intermedijarna preciznost Figure 1: Intermediate precision

C (srednja), mg/kg 52,8

Standardna devijacija 1,6897

RSD,% 3,2

2.2.2.3 Linearnost i matriks efekt

Uzorci od pet serija koncentracija standarda (60, 80, 100, 120 i 140 ppm) pripreme se u svježem i rabljenom ulju. Svaki uzorak mjeri se tri puta kao i slijepa proba. Za svaki od elemenata (Cr, Ni, Cd i Pb) izračuna se srednja vrijednost rezultata

mjerenja, grafički prikaže regresijski pravac te naznači jednadžbu regresijskog pravca, nagib, odsječak i koeficijent korelacije. Usporede se nagibi pravca iz linearnosti i matriks efekta.

goriva i maziva, 47, 5 : 398-413, 2008.

Tablica 7: Rezult	ati mjerenja l	linearnosti i	matriks efekta
Table 7: Linearity	/ and matrix	effect meas	urement results

able	7: Linearity	and matrix	effect n	neasuremen	t result
------	--------------	------------	----------	------------	----------

a) Krom	
---------	--

	c(Cr), ppm		c(Cr), ppm	
Uzorak	standard + matriks	izmjerena	standard	izmjerena
	0	0	60	61
serija 1	60	58	61	58
	60	56	60	59
	61	57	80	77
	0	0	79	74
serija 2	80	72	80	76
	79	77	100	104
	79	75	100	92
	0	0	100	97
serija 3	102	93	121	108
	100	94	122	110
	101	94	120	111
	0	0	140	119
serija 4	119	110	139	123
	119	109	140	121
	120	106		
	0	0		
serija 5	139	129		
	140	122		
	141	130		

goriva i maziva, 47, 5 : 398-413, 2008.

Tablica 8: Usporedba pravaca linearnosti i matriks efekta Table 8: Linearity and matrix effect lines comparison

	nagib	odsječak na y osi	koeficijent korelacije		
linearnost	0,7865	13,915	0,9715		
matriks	0,9091	0,92	0,9975		

2.2.2.4 Stabilnost

Stabilnost mjernih otopina standarda ispita se tako da se pripreme dvije otopine probe (50 ppm) i svaka izmjeri odmah, te 60 minuta, 2 sata, 24 sata i 48 sati nakon priprave uzorka. Dobiveni rezultati prikažu se grafički.

Tablica 9: Stabilnost otopine Table 9: Solution stability

a) Krom

	Uzorak 1	Uzorak 2
Vrijeme,min	koncentracija Cr,ppm	
0	51	52
60	49	54
120	51	51
1440	50	51
2880	50	52

Slika 3: Stabilnost otopine

Isti postupak proveden je za ostala tri elementa (Ni, Cd i Pb).

Kod svih uzoraka vidljiva je stabilnost mjernih otopina 48 sati nakon priprave uzoraka.

2.2.2.4 Selektivnost

Snime se spektri sljedećih otopina: slijepe probe i standarda. Iz dobivenog spektra se dokazuje selektivnost metode.

2.2.2.5 Granica detekcije

Uzorak slijepe probe izmjeri se 10 puta te se izračuna standardna devijacija. Nakon toga se granica detekcije izračuna prema sljedećoj formuli:

GD = 3,3σ/a

gdje je :

 σ - standardna devijacija mjerenja slijepe probe

a – nagib kalibracijskog pravca

a) Cr $GD = 3,3\sigma/a = 3,3x0,31623/0,9993 = 1,04 \text{ ppm} = 1 \text{ ppm}$ b) Ni $GD = 3,3\sigma/a = 3,3x0,31623/0,9956 = 1,04 \text{ ppm} = 1 \text{ ppm}$ c) Cd $GD = 3,3\sigma/a = 3,3x0,31623/0,9993 = 1,04 \text{ ppm} = 1 \text{ ppm}$ d) Ni $GD = 3,3\sigma/a = 3,3x0,31623/0,9925 = 1,05 \text{ ppm} = 1 \text{ ppm}$

goriva i maziva, 47, 5: 398-413, 2008.

2.2.2.6 Granica kvantifikacije

Uzorak slijepe probe izmjeri se 10 puta te se izračuna standardna devijacija. Nakon toga se granica kvantifikacije izračuna prema slijedećoj formuli:

GK = 10σ/a

gdje je:

 σ - standardna devijacija mjerenja slijepe probe

a - nagib kalibracijskog pravca

a) Cr $GK = 10\sigma/a = 10x0,31623/0,9993 = 3,16 \text{ ppm} = 3 \text{ ppm}$

b) Ni GK = 10σ/a = 10x0,31623/0,9956 = 3,17 ppm = 3 ppm

c) Cd $GK = 10\sigma/a = 10x0,31623/0,9993 = 3,16 \text{ ppm} = 3 \text{ ppm}$

d) Pb $GK = 10\sigma/a = 10x0,31623/0,9925 = 3,18 \text{ ppm} = 3 \text{ ppm}$

3 Mjerna nesigurnost

3.1 Prepoznavanje i kvantificiranje sastavnica mjerne nesigurnosti

Izvori mjerne nesigurnosti prikazani su Ishikawa dijagramom.

Slika 2: Ishikawa dijagram Figure 2: Ishikawa diagram

Kod određivanja sadržaja teških metala mogući su sljedeći izvori mjerne nesigurnosti:

a) Nesigurnost kalibracije

Na nesigurnost kalibracije utječe:

- nesigurnost vage (vrsta B) koja je korištena za odvagu standarda za pripravu kalibracijskih otopina
- nesigurnost linearnosti (metodom najmanjih kvadrata)
- b) Nesigurnost čistoće standarda
- Za pripravu kalibracijskih otopina korišten je sljedeći standard:
- Multi-Element Standard

Podaci o čistoći uzeti su s certifikata (vrsta B).

c) Nesigurnost ponovljivosti mjerenja

Određuje se eksperimentalno (vrsta A). Ova vrijednost može se direktno uzeti za računanje sastavljene standardne nesigurnosti, jer sadržava u sebi različite elemente ponovljivosti odabranog mjerenja.

3.2 Analiziranje sastavnica mjerne nesigurnosti

Sve utvrđene sastavnice mjerne nesigurnosti značajne su za mjernu nesigurnost određivanja količine teških metala, te ulaze u proračun.

3.3 Nesigurnost kalibracije

3.3.1 Nesigurnost mase

Iz tehničkih podataka vage uzet je doprinos linearnosti 1,9x10⁻⁵. Ova vrijednost predstavlja maksimalnu razliku između stvarne mase na vagi i očitanja. Doprinos linearnosti uz pretpostavku pravokutne raspodjele daje standardnu nesigurnost:

$$u(m) = 1.9 \times 10^{-5} / 2 = 9.5 \times 10^{-5} g$$

Doprinos linearnosti uračuna se dva puta (jednom za taru i jednom za bruto masu), što daje nesigurnost:

$$u(m) = \sqrt{2x(9,5x10^{-6})^2} = 1,34 \times 10^{-5} \text{ g}$$

Tablica 10: Nesigurnost odvage Table 10: Weighing uncertainity

Broj mjerenja	Odvaga, X, (g)	Standardna nesigurnost u(x), (g)	Relativna standardna nesigurnost u(x)/x
1.	0		0
2.	1,0109		1,33x10 ⁻⁵
3.	3,0123		0,44x10 ⁻⁵
4.	5,0206	1,34x10 ⁻⁵	0,27x10 ⁻⁵
5.	9,0112		0,15x10⁻⁵
6.	6,0053		0,22x10 ⁻⁵
7.	8,0132		0,17x10 ⁻⁵
8.	10,0000		0,13x10 ⁻⁵

goriva i maziva, 47, 5 : 398-413, 2008.

Nesigurnost mase izračunava se na sljedeći način:

u(K) =

$$\sqrt{\left\{\frac{u(X_1)}{X_1}\right\}^2 + \left\{\frac{u(X_2)}{X_2}\right\}^2 + \left\{\frac{u(X_3)}{X_3}\right\}^2 + \left\{\frac{u(X_4)}{X_4}\right\}^2 + \left\{\frac{u(X_5)}{X_5}\right\}^2 + \left\{\frac{u(X_6)}{X_6}\right\}^2 + \left\{\frac{u(X_7)^2}{X_7}\right\}^2 + \left\{\frac{u(X_8)}{X_8}\right\}^2 + \left\{\frac{u(X_8)}{X_8}$$

u(K) =

$$\sqrt{(0)^{2} + (1,33x10^{-5})^{2} + (0,44x10^{-5})^{2} + (0,27x10^{-5})^{2} + (0,15x10^{-5})^{2} + (0,22x10^{-5})^{2} + (0,17x10^{-5})^{2} + (0,13x10^{-5})^{2} + (0,13x10^{-5})^{$$

 $= 1,5x \ 10^{-5} = 0,000015$

u(K) = 0,000015

3.3.2 Nesigurnost linearnosti

Relativna standardna nesigurnost kalibracije određena je primjenom sljedećih izraza:

a) Zbroj kvadrata razlika srednjih i pjedinačnih vrijednosti koncentracija:

$$S_{xx} = \sum_{j=1}^{n} (c_1 - \overline{c})^2$$

b) Rezidualna standardna devijacija:

$$s = \sqrt{\frac{\sum_{j=1}^{n} (A_j - (ac_j + b))^2}{n - 2}}$$

c) Standardna nesigurnost kalibracijskog pravca:

$$u(c_{o}) = \frac{s}{a} \sqrt{\frac{1}{p} + \frac{1}{n} + \frac{(c_{o} - \bar{c})^{2}}{S_{xx}}}$$

goriva i maziva, 47, 5 : 398-413, 2008.

Tablica 11:Vrijednosti koncentracija na kalibracijskom pravcu Table 11: Concentration values on calibration line

a)	KROM

n	Koncentracija Cr u standardu (ppm)	Izmjerena koncentracija Cr (ppm)
1.	0	0
2.	5	6
3.	15	16
4.	25	24
5.	45	45
6.	60	60
7.	80	78
8.	100	102
Σ	330	331
	s.v.=41,25	s.v.=41,38

goriva i maziva, 47, 5 : 398-413, 2008.

Table 12. Elleanty anochainity baloalation data					
nagib, a	odsječak, b	c srednje(Cr)	р	n	c ₀ (Cr)
0,9993	0,1528	41,25	2	8	51
n	c _i , ppm	A _i , ppm	aci+b	(A _i -(ac _i +b)) ²	(Ci- C) ²
1.	0	0	0,1528	0,0233	1701,56
2.	5	6	5,1493	0,7236	1314,06
3.	15	16	15,1423	0,7356	689,06
4.	25	24	25,1353	1,2889	264,06
5.	45	45	45,1213	0,0147	14,06
6.	60	60	60,1108	0,0122	351,56
7.	80	78	80,0968	4,3965	1501,56
8.	100	102	100,0828	3,6756	3451,56
		Σ		10,8704	9287,48

Tablica 12: Podaci za izračun nesigurnosti linearnosti Table 12: Linearity uncertainity calculation data

S _{xx}	S	u(c ₀)	u(C ₀), C ₀
9287,48	1,3460	1,0735	0,02105

Isti postupak je proveden za ostala tri elementa (Ni, Cd i Pb).

3.4 Nesigurnost čistoće standarda

Iz proizvođačke specifikacije uzet je podatak o čistoći standarda i on iznosi \pm 0,5% za Multi-Element Standard. Pod pretpostavkom pravokutne razdiobe standardna nesigurnost standarda iznosi:

$$\mathbf{u}(\mathbf{\check{c}}) = \frac{a}{\sqrt{3}} = 0,0075/1,73 = 4,3 \times 10^{-3}$$

u(č) =4,3x10⁻³

3.4 Nesigurnost ponovljivosti mjerenja

Ponovljivost određivanja kroma određena je putem 10 mjerenja količine kroma kod istog uzorka. Rezultati mjerenja prikazani su u tablici 2.

Tablica 12: Nesigurnost ponovljivosti mjerenja

1,4298

Table 12: Measurement repeatability uncertainity Nikal, ppm Olovo, ppm Broj mjerenja Krom, ppm Kadmij, ppm Srednja vrijednost, 52,4 51,8 Standardna

1,6330

goriva i maziva, 47, 5 : 398-413, 2008.

1,9322

1,4907

devijacija s(x)

Na osnovi izračunate standardne devijacije, izračuna se standardna nesigurnost prema izrazu:

u (ponov.)= $s_{\bar{x}} = \frac{s(x)}{\sqrt{n}}$ a) KROM u (ponov.)= 1,4298 / $\sqrt{10}$ = 0,4522 b) NIKAL u (ponov.)= 1,6330/ $\sqrt{10}$ = 0,5164 c) KADMIJ u (ponov.)=1,4907/ $\sqrt{10}$ = 0,4714 d) OLOVO u (ponov.)= 1,9322/ $\sqrt{10}$ = 0,6110

3.5 Računanje sastavljene mjerne nesigurnosti

Sastavljena mjerna nesigurnost se izračuna prema izrazu:

$$u_{c}(y) = y \sqrt{\sum_{i} \left[\frac{u(x_{i})}{x_{i}}\right]^{2}}$$

gdje su $\frac{u(x_i)}{x_i}$ relativne standardne nesigurnosti.

Tablica 13: Sastavnica mjerne nesigurnosti
Table 13: Measurement uncertainity plot
a) KROM

Sastavnica	Vrijednost	Standardna	Relativna standardna
	x	nesigurnost	nesigurnost
		u (x)	u (x)/x
KALIBRACIJA, ppm	51	1,0735	0,02105
MASA, g	19,99997	0,0003	0,000015
ČISTOĆA	1,00	0,0043	0,0043
PONOVLJIVOST, ppm	52,4	0,4522	0,0090
OBNOVLJIVOST, ppm	53,2	1,7367	0,0326
KROM, ppm	51	2,04	0,040

Vrijednosti relativnih standardnih nesigurnosi uspoređene su na slici 5.

goriva i maziva, 47, 5 : 398-413, 2008.

Slika 5: Relativne standardne nesigurnosti Figure 5: Relative standard uncertainities

Mjerna nesigurnost računa se za svaku izmjerenu vrijednost Cr. Za odabranu vrijednost Cr = 51 ppm kombinirana nesigurnost iznosi:

 $u_{c}(Cr) = Cr \sqrt{[u(K)/K]^{2} + [u(\check{C})/\check{C}]^{2} + [u(M)/M]^{2} + [u(P)/P]^{2}}$ = 51 \sqrt{0,02105^{2} + 0,0043^{2} + 0,000015^{2} + 0,009^{2} + 0,0326^{2}} = 51x0,040 = =2,04 ppm $u_{c}(Cr) = 2 ppm$

Isti postupak za računanje sastavljene mjerne nesigurnosti proveden je i za ostala tri elementa (Cr,Ni i Pb)

3.7 Računanje proširene mjerne nesigurnosti

Proširena mjerna nesigurnost se izračuna množenjem sastavljene standardne nesigurnosti $u_c(y)$ i obuhvatnog faktora k. Proširena mjerna nesigurnost određivanja količine kroma računa se uz obuhvatni faktor 2 (vjerojatnost 95 %):

 $\begin{array}{l} U(Cr) = u_c(Cr) \ x \ k = 2 \ x \ 2 = 4 \ ppm \\ U(Ni) = u_c(Ni) \ x \ k = 2,2 \ x \ 2 = 4,4 \ ppm \\ U(Cd) = u_c(Cd) \ x \ k = 3 \ x \ 2 = 6 \ ppm \\ U(Pb) = u_c(Pb) \ x \ k = 2,7 \ x \ 2 = 5,4 \ ppm \\ \textbf{3.8 Iskazivanje rezultata} \\ Rezultat se izražava na sljedeći način: \\ KROM: \\ c(Cr) = 50 \pm 4 \ ppm \\ uz \ obuhvatni faktor \ k = 2 \\ NIKAL: \\ c(Ni) = 54 \pm 4,0 \ ppm \end{array}$

goriva i maziva, 47, 5 : 398-413, 2008.

uz obuhvatni faktor k = 2 KADMIJ: $c(Cd) = 47 \pm 6 \text{ ppm}$ uz obuhvatni faktor k = 2 OLOVO: $c(Pb) = 51 \pm 5 \text{ ppm}$ uz obuhvatni faktor k = 2

4 Zaključak

Prikazani rezultati validacije metode za određivanje saržaja teških metala u rabljenim i nerabljenim naftnim proizvodima ED X-Ray spektrometrijom potvrđuju da metoda odgovara namjeni.

Rezultati mjerenja prikazani su u rasponu u kojem se s određenom vjerojatnošću, odnosno uz određenu razinu povjerenja, nalazi prava vrijednost rezultata.

Literatura/References

- 1. V. Gašljević, K. Lazarić, Validacija analitičkih metoda, Hrvatsko mjeriteljsko društvo, 2004
- HRN EN ISO/IEC 17025:2006/ AC 2007 Opći zahtjevi za osposobljenost ispitnih i umjernih laboratorija
- 3. ED 2000 OXFORD Operator's Manual, Verzija:5, kolovoz 1998
- 4. CITAC/EURACHEM Guide to Quality in Analitical Chemistry, 2002

UDK	ključne riječi	key words
543.849	teški metali, određivanje u	heavy metals determination in
	organskoj tvari	organic substance
543.427.2	spektrometrija rentgenske	energy dispersion X-ray
	fluorescencije disperzijom	flourescence spectrometry (ED
	energije	X-ray)
658.562.012.7	statistički parametri validacije	measurement validation
	mjerenja	statistic parameters
665.7.033.55	naftni produkti,	petroleum products,
	sadržaj teških metala	heavy metal content

Autori/Authors

Ružica Marinčić, dipl.ing.; <u>ruzica.marincic@ina.hr</u> Ankica Barišić, dipl.ing.; <u>ankica.barisic@ina.hr</u> Maziva-Zagreb d.o.o., član INA grupe

Primljeno/Received

05.9.2007.

goriva i maziva, 47, 5 : 398-413, 2008.