TOČNOST KLASIFIKACIJE SATELITSKE SNIMKE VISOKE PROSTORNE REZOLUCIJE IKONOS ZA POTREBE ŠUMARSTVA

ACCURACY OF HIGH SPATIAL RESOLUTION SATELLITE IMAGES CLASSIFICATION FOR FORESTRY NEEDS

Ante SELETKOVIĆ*, Renata PERNAR*, Anamarija JAZBEC*, Mario ANČIĆ*

SAŽETAK: Osnovni cilj ovog rada je istražiti, usporediti i pronaći najbolji način interpretacije IKONOS satelitske snimke visoke rezolucije, koji će biti jednostavan i prihvatljiv za operativnu primjenu. Glavni materijal za izradu ovoga rada bila je satelitska snimka istraživanog područja visoke prostorne rezolucije IKONOS. Provedene su vizualna i digitalna interpretacija satelitske snimke te su ocijenjene točnosti klasifikacija. Vizualna interpretacija provedena je na izrađenom kolorkompozitu s odabrana tri spektralna kanala (4, 3, 2), dok je digitalna interpretacija provedena kroz šest različitih algoritama. Za svaki algoritam nadgledane klasifikacije i za vizualnu interpretaciju, izračunati su parametri točnosti same klasifikacije i Kappa statistika. Najbolji rezultati svih provedenih interpretacija (klasifikacija), dobiveni su vizualnom interpretacijom, odnosno tom interpretacijom dobiveni su rezultati koji najbolje odgovaraju stanju na terenu (terenska izmjera, podaci iz Osnove gospodarenja). Provedenim metodama nadgledane klasifikacije satelitske snimke IKONOS utvrđeno je da se najtočnijom metodom za operativnu primjenu pokazala klasifikacija pomoću prepoznavanja značajki (Feature extraction) s modulom prepoznavanja prirodnih oblika (natural features), gdje se neklasificirana područja pridružuju najsličnijoj klasi.

Ključne riječi: satelitska snimka IKONOS, vizualna i digitalna interpretacija, točnost klasifikacije, Kappa statistika, indeksi točnosti, Spačva.

UVOD - Introduction

Satelitske snimke kao izvor informacija svakako imaju sve veće značenje i primjenu u šumarstvu. Podaci na satelitskim snimkama mogu se dobiti na dva načina: vizualnom i digitalnom interpretacijom. Izbor načina interpretacije ovisi o postavljenom cilju, odnosno mogućnosti dobivanja dovoljno kvalitetnih informacija za potrebe određenog zadatka.

Dosadašnja istraživanja, na satelitskim snimkama s različitih satelita, bazirana su uglavnom na mogućnosti kartiranja načina korištenja zemljišta vizualnom (Fink & Niemz 1980, Girard & Girard 1980, Jakob 1980, Hočevar 1985, Lantieri 1990, Gilbert 1993, Bird et all 2000) i digitalnom interpretacijom satelitskih snimaka (Banovec i dr. 1985, Chiao & Chow 1988, Skidmore and Turner 1988, Moore and Bauer 1990, Bolstad and Lillesand 1992, Schneider idr. 1993, Bronsveld i dr 1994, Kušan & Lampek 1994, Hall i dr. 2006, Wulder i dr. 2003, Wulder 2004, R. Gooss en s 2004). Istraživale su se i mogućnosti primjene satelitskih snimaka za procjenu taksacijskih veličina (Franklin 2003) i volumena sastojina (Hall i dr. 1991, Franklin i dr 1995, Gerylo i dr. 2002, Mäkelä i dr. 2004). Početkom nove ere daljinskih istraživanja (krajem 90-tih godina 20. stoljeća), lansiranjem nove generacije satelita visoke rezolucije (IKO-NOS), znanstvenici istražuju njihovu primjenu i mogućnost uporabe za praćenje prirodnih bogatstava.

Dr. sc. Ante Seletković, izv. prof. dr. sc. Renata Pernar, izv. prof. dr. sc. Anamarija Jazbec, Mario Ančić, dipl. ing., Zavod za izmjeru i uređivanje šuma, Šumarski fakultet Sveučilišta u Zagrebu, Svetošimunska 25, Zagreb, e-mail: aseletkovic@sumfak.hr

Znanstvena istraživanja vezana uz IKONOS satelitske snimke uglavnom su bila usmjerena na radiometrijsku i geometrijsku točnost, preciznost, (Davis i Wang 2002, Jacobsen 2002, Toutin 2003, Cook i dr. 2001, Helder 2003, Zanoni et al 2003) te automatskom otkrivanju oblika (značajki), prepoznavanju i obnavljanju. Također se istraživala uporabljivost satelitske snimke IKONOS za interpretaciju, kartiranje i fotogrametriju (Dial, 2003).

Spektralnu analizu i klasifikaciju IKONOS satelitskih snimaka za procjenu šumske pokrovnosti i kartiranje načina korištenja zemljišta istraživali su Plantier i dr. 2006, proučavajući dvije metode nadgledane – nadzirane klasifikacije, (Minimum Distance and Maximum Likelihood). Kao najbolju metodu klasifikacije ističu Maximum likelihood, s ukupnom preciznošću klasifikacije više od 60 %.

Analizirala se i efektivnost, učinkovitost IKONOS snimaka za kartiranje pokrovnosti zemljišta, na 1 m PAN i 4 m multispektralnim snimkama, koristeći parallelepiped supervised classification algoritam sa sedam odabranih klasa pokrovnosti. Najbolja preciznost klasifikacije iznosila je 83 % (Davis 2002).

Potencijal i ograničenost IKONOS satelitske snimke pri kartiranju pokrova i korištenja zemljišta mjerila 1:5000, istražuje Ghaleb i dr. (2000) koristeći se vizualnom interpretacijom pankromatskih IKONOS snimaka metarske prostorne rezolucije. Vizualna interpretacija provedena je sa 88,5 % preciznošću klasifikacije.

Goetz i dr. (2003) zaključuju da je primjena IKO-NOS satelitskih snimaka od velike pomoći pri praćenju

MATERIJAL I METODE - Material and methods

Osnovni cilj ovoga rada je istražiti, usporediti i pronaći najbolji način interpretacije IKONOS satelitske snimke visoke rezolucije, koji će biti jednostavan i prihvatljiv za operativnu primjenu.

Glavni materijal za izradu ovoga rada bila je satelitska snimka istraživanog područja visoke prostorne rezolucije IKONOS. Prema definiranom području obuhvaća, snimanje je obavljeno 18. listopada 2006. godine. Iz navedenog snimanja isporučena je IKONOS satelitska snimka područja Spačvanskog bazena, te je obuhvaćen središnji dio šumskog kompleksa Spačva, povr-

Vizualna interpretacija –Visual interpretation

Vizualna interpretacija provedena je na čitavoj površini satelitske snimke. Sam proces vizualne interpretacije odvijao se na izrađenom kolorkompozitu, s odabrana tri spektralna kanala. Kombinacijom kanala 4, 3, 2, dobivena je snimka najsličnija klasičnim ICK aerosnimkama. Upravo ta kombinacija kanala izabrana je zbog mogućnosti jasnog razlikovanja tipova vegetacii upravljanju prirodnim resursima, parkovima, vlažnim staništima i drugim zaštićenim površinama, za procjenu djelovanja prirodnih katastrofa ili kompletnu zaštitnu mjeru u podru?jima s velikom opasnošću od katastrofe (požar, poplava), te koristeći *decision tree classifier* metodu procjenjuju pokrovnost zemljišta šumom, drvećem s preciznošću klasifikacije od 97,3 %.

Kristof i dr. (2002.), za potrebe Mađarskog ministarstva obrazovanja provode istraživanje o uporabi satelitskih snimaka visoke rezolucije u šumarstvu i kartiranje staništa na IKONOS satelitskim snimkama, i zaključuju da snimci sa visokom prostornom i radiometrijskom razlučivosti daju dobre mogućnosti i rezultate kod vizualne interpretacije, te da se komparacijom vizualne i digitalne interpretacije uspješno nadopunjuju šumske karte.

Nasuprot tomu, u šumarstvu Hrvatske, dosadašnja istraživanja provodila su se na satelitskim snimkama malih prostornih rezolucija. Najčešća primjena takvih satelitskih snimaka odnosila se na kartiranje vegetacijskog pokrova, procjenu stanja šuma i novije za potrebe nacionalne inventure šuma, te je potvrđeno da se za navedene potrebe mogu s pouzdanošću koristiti multispektralne satelitske snimke LANDSAT (30 x 30 m), IRS (23 x 23 m), ASTER (15 x 15 m) i SPOT (10 x 10 m).

Upravo iz tih razloga, te praćenjem rezultata istraživanja u Svijetu, nametnula se ideja o istraživanju mogućnosti primjene satelitskih snimaka visoke rezolucije (IKONOS) za potrebe šumarstva Hrvatske.

šine 132 km² u 5 spektralnih kanala: PAN (1 x 1 m) i 4 MS Bundle (4 x 4 m), kroz četiri gospodarska jedinice: Kragujna, Slavir, Vrbanjske šume, Otočke šume (slika 1). Cjelokupna obrada satelitske snimke za potrebe istraživanja napravljena je pomoću programskog paketa ERDAS IMAGINE 9.1.

Ortorektifikacija satelitske snimke IKONOS provedena je pomoću digitalnog modela reljefa i Hrvatske osnovne karte (HOK 1:5000), te digitalnog ortofota (DOF 1:5000). izrađenog na temelju infracrvenih kolornih (ICK) aerosnimaka područja Spačve.

je, fiziološkog stanja, dobnih razreda, itd. Na tako izrađenom kolorkompozitu pažljivo su izlučeni stratumi (poligoni) prema vidljivim razlikama u slikovnim pojedinostima šumskih sastojina, kao što su: vrsta drveća, omjer smjese, sklopljenost sastojina, veličina krošnje,

stupanj oštećenosti, itd. (slika 2).

Parametri koji neposredno pomažu pri prepoznavanju željenog sadržaja odnose se na: boju, mjerilo, sjenu, teksturu, oblik, položaj objekta u prostoru i dr. Prilikom interpretacije nije se vodilo računa o uočljivim, po čovjeku uspostavljenim granicama, ako su se krošnje uzduž tih granica doticale (prosjeke), nego samo u slučajevima kada su bile prosječene na veću širinu (ceste, kanali, vodotoci).

Vizualnom interpretacijom pomoću softverskog paketa ArcGis 9.2 izdvojeno je ukupno 1286 poligona, neovisno o rezultatima digitalnih interpretacija. Određivanje klasa utvrđeno je pregledom i usporedbom terenskih podataka i podataka iz Osnova gospodarenja za istraživano područje.

Nakon provedene vizualne interpretacije pristupilo se digitalnoj interpretaciji snimke.

0.8 1.6

3.2

Slika 1. Područje istraživanja Figure 1 Investigation area

Digitalna interpretacija – Digital interpretation

Na temelju razlučenih klasa dobivenih terenskom izmjerom na pokusnim plohama i usporedbom podataka iz Osnova gospodarenja za gospodarske jedinice obuhvaćene snimkom, izdvojeni su uzorci za nadgledanu klasifikaciju. Najprije je određen uzorak različitog uređajnog i dobnog razreda. Najveći površinski udio snimljenog područja pokriva uređajni razred hrasta lužnjaka kroz sedam dobnih razreda. U usporedbi s njim, drugi značajniji uređajni razred predstavlja poljski jasen. Pojednostavljeno, svaki uređajni razred razvrstan je i prema dobnom razredu (npr. uređajni razred hrasta lužnjaka (1101) prvi dobni razred, uređajni razred hrasta lužnjaka drugi dobni razred, itd.). Isti postupak proveden je i za uređajni razred poljskog jasena (1112). Namjera je bila, da se uvidi preciznost nadgledane klasifikacije pri razlikovanju uređajnih razreda, te mogućnosti razlikovanja dobnih unutar istih uređajnih razreda (slika 3).

Slika 3. Primjer uzoraka dobnih i uređajnih razreda za nadgledanu klasifikaciju. *Figure 3 Supervised classification samples (age and management class)*

Nadgledana klasifikacija provedena je različitim algoritmima unutar opcija softverskog paketa ERDAS Imagine 9.1. Jedan od korištenih algoritama je *Maximum likelihood* s različitim metodama ocjene uzoraka. U prvoj varijanti, korišten je algoritam *Maximum likelihood* s određivanjem težina uzoraka (*use probabili*- *tie*), a u drugoj algoritam *Maximum likelihood s* paralelpiped neparametarskim pravilom i određivanjem težina uzoraka.

Također je provedena i klasifikacija temeljena na prepoznavanju značajki (*feature analyst*), koja koristi spektralne i prostorne podatke za identifikaciju sličnih

Tablica 1.Matrica pogreškeTable 1Error matrix

Referentni podaci – Reference Data					
Klasificirano – Classified Data	Neklasificirano – Unclassified	d1u1101	d2u1101	d3u1101	
Neklasificirano – Unclassified	0	0	0	0	
d1u1101	0	48	0	0	
d2u1101	0	5	17	0	
d3u1101	0	0	0	3	
d4u1101	0	3	0	0	
d5u1101	0	0	1	0	
d6u1101	0	0	0	0	
d7u1101	0	1	0	0	
d1u1112	0	0	0	0	
d2u1112	0	0	0	0	
d3u1112	0	0	0	0	
d4u1112	0	0	0	0	
d5u1112	0	0	0	0	
d6u1112	0	0	1	2	
d7u1112	0	0	0	0	
Ukupno kolona – Column Total	0	57	19	5	

značajki, a prema dosadašnjim istraživanjima pokazala je bolje rezultate s obzirom na prostornu rezoluciju. Klasifikacija pomoću *feature analyst* modula provedena je na dva načina. Prvi način bilo je prepoznavanje prirodnih oblika (*Natural Feature*) prema dvije metode: pridruživanje po zadanom algoritmu (*Wall to wall clasification*), gdje se svaki piksel svrstava u zadanu klasu i metoda gdje se neklasificirano pridružuje najsličnijoj klasi. Spomenute dvije metode korištene su i za drugi način klasifikacije pomoću *feature analyst* modula prema prepoznavanju oblika pokrovnosti zemljišta (*Land cover feature*).

Za svaki algoritam nadgledane klasifikacije i za vizualnu interpretaciju, izračunati su parametri točnosti same klasifikacije i Kappa statistika.

Za utvrđivanje točnosti klasifikacije korišteni su referentni podaci s terena, koji su uspoređivani s rezultatima pojedinih metoda klasifikacije satelitske snimke. Takvim načinom usporedbe nastala je matrica pogreške, koja predstavlja podlogu provjere točnosti.

Matrica pogreške sastoji se od stupaca i redova. Redovi predstavljaju vrijednosti klasifikacije, a stupci podatke s terena. Dijagonalna linija matrice pogreške predstavlja broj piksela koji su ispravno klasificirani (tablica 1). Iz matrice pogreške izvedena su tri indeksa točnosti: ukupni, proizvodni i korisnički. Posljednja dva odnose se na svaku klasu pojedinačno. Indeks ukupne točnosti dobije se dijeljenjem svih ispravno klasificiranih piksela, s ukupnim brojem piksela u matrici. Indeks proizvodne točnosti dobije se dijeljenjem broja ispravno klasificiranih piksela koji pripadaju nekoj klasi sa zbrojem vrijednosti u stupcu te iste klase. Indeks korisničke točnosti dobije se dijeljenjem ukupnog broja ispravno klasificiranih piksela koji pripadaju nekoj klasi sa zbrojem vrijednosti u redovima te iste klase.

Budući da većina softvera za klasifikaciju satelitskih snimaka ima ugrađene algoritme za procjene točnosti, u ovom slučaju odabrana je Congaltonova metoda koja radi sa referentnim točkama. Congaltonovom metodom za sve metode procjena točnosti klasifikacija korišteno je 300 referentnih točaka.

Osim već spomenutih indeksa, iz matrice pogreške izračunati su parametri *Kappa* statistike, koja omogućuje generalizaciju podataka. Koeficijent Kappa statistike dobar je pokazatelj odabira ujednačenosti dviju ili više metoda, uzimajući u obzir njihovu slučajnu pojavnost.

REZULTATI I RASPRAVA – Results and discussion Rezultati vizualne interpretacije – *Results of visual interpretation*

Slika 4. Rezultat vizualne interpretacije *Figure 4 Result of visual interpretation*

DR: 7 - UR: 1112

Na satelitskoj snimci delineirano je 1286 poligona, koji su na temelju vizualne interpretacije svrstani u 14 klasa (slika 4). Klase su definirane prema uređajnim i dobnim razredima. Za svaku interpretiranu klasu izračunate su površine (tablica 2). Najveći dio interpretirane snimke izdvojen je prema uređajnom razredu hrasta lužnjaka, a odnosi se na sastojine šestog i sedmog dobnog razreda. Poligoni koji su izdvojeni prema uređajnom razredu poljskog jasena također su površinski najzastupljeniji u šestom i sedmom dobnom razredu.

Tablica 2. Površine klasa izdvojenih vizualnom interpretacijom

Table 2Class area derived by visual interpretation

Dobni i uređajni razred	Površina
Age and management class	Area (ha)
d1u1101	1317,51
d2u1101	826,50
d3u1101	989,79
d4u1101	288,98
d5u1101	599,41
d6u1101	5551,78
d7u1101	1195,63
d1u1112	46,04
d2u1112	113,94
d3u1112	93,14
d4u1112	14,83
d5u1112	6,03
d6u1112	871,93
d7u1112	829,61

Ocjena točnosti vizualne interpretacije satelitske snimke provedena je na temelju matrice pogrešaka, gdje je za uzorkovanje softverski generirano 300 referentnih točaka (Congaltonova metoda). U konkretnom slučaju u izdvojene klase (uređajni-dobni razred), "upalo" je 279 referentnih točaka. Izvedena su tri indeksa točnosti: ukupni, proizvodni i korisnički, čije su vrijednosti prikazane u tablici 3. točnost vizualne interpretacije za sve klase iznosi 74,91 %, odnosno 209 referentnih točaka je ispravno klasificirano.

Iz matrice pogrešaka izračunati su parametri Kappa statistike za svaku interpretiranu klasu i ukupno (Tablica 4). Ukupni koeficijent Kappa statistike (0,70) ukazuje nam da je potvrđen dobar odabir interpretiranih klasa u odnosu na očekivano stanje (teren). U tablici je vidljivo da za 1. i 4. dobni razred unutar uređajnog razreda poljskog jasena nema razlike u vizualnoj interpretaciji i stanja na terenu. Također je vidljivo da je za 1. i 6. dobni razred hrasta lužnjaka potvrđena dobra interpretacija klasa s *Kappa* koeficijentom 0,87 i 0,86.

Tablica 3.	Ocjena točnosti vizualne interpretacije
Table 3	Visual interpretation accuracy

		Klasifi	icirano	Proizvodna	Korisnička
Naziv klase	Referentne točke	Ukupno	Ispravno	toči	nost
Class Name	Reference Totals	Classified Totals	Number Correct	Producers	Users
				Accuracy	Accuracy
Neklasificirano	0	0	0		
Unclassified	0	0	0		
d1u1101	57	60	54	94.74 %	90.00 %
d2u1101	19	24	19	100.00 %	79.17 %
d3u1101	5	7	5	100.00 %	71.43 %
d4u1101	4	7	1	25.00 %	14.29 %
d5u1101	16	14	11	68.75 %	78.57 %
d6u1101	82	83	75	91.46 %	90.36 %
d7u1101	20	16	11	55.00 %	68.75 %
d1u1112	11	2	2	18.18 %	100.00 %
d2u1112	19	21	11	57.89 %	52.38 %
d3u1112	12	12	5	41.67 %	41.67 %
d4u1112	6	2	2	33.33 %	100.00 %
d5u1112	11	0	0		
d6u1112	14	28	13	92.86 %	46.43 %
d7u1112	3	3	0	0.00 %	0.00 %
Ukupno - Totals	279	279	209		
Ukupna točnost klasifikacije = $74.01.0$					
Overall Classification Accuracy (4.21.70)					

Tablica 4. Parametri Kappa statistike za vizualnu interpretacijuTable 4Visual interpretation parameters for Kappa statisticUkupni koeficijent Kappa statistike = 0.7022Overall Kappa Statistics = 0.7022

Naziv klase – Class Name	Kappa koeficijent – Kappa coefficient
Neklasificirano – Unclassified	0.0000
d1u1101	0.8743
d2u1101	0.7764
d3u1101	0.7091
d4u1101	0.1304
d5u1101	0.7727
d6u1101	0.8635
d7u1101	0.6634
d1u1112	1.0000
d2u1112	0.4890
d3u1112	0.3904
d4u1112	1.0000
d5u1112	0.0000
d6u1112	0.4360
d7u1112	-0.0109

Rezultati digitalne interpretacije - Results of digital interpretation

Tablica 5. Rezultati svih provedenih algoritama digitalne (nadgledane) klasifikacijeTable 5Digital interpretation results

Algoritmi digitalne interpretacije		Ukupna točnost klasifikacije	Ukupni koeficijent Kappa statistike	
Algorithm of digital interpretation		Overall Classification Accuracy	Overall Kappa Statistics	
Metoda Maximum likelihood s paralelpiped				
nepar	ametarskim pravilom i	56.63 %	0.4807	
određ	ivanjem težina uzoraka			
Maxi	mum likelihood paralelpiped			
Meto	da <i>Maximum likelihood</i> s	56 63 %	0.4804	
određ	ivanjem težina uzoraka	30.03 /0		
Maxii	num likelihood use probabilitie			
	Prepoznavanje prirodnih oblika	Ukupna točnost klasifikacije	Ukupni koeficijent Kappa statistike	
	Natural Feature	Overall Classification Accuracy	Overall Kappa Statistics	
ио	1. Pridruživanje po zadanom algoritmu	63 08 %	0 5744	
acti	Wall to wall clasification	03.00 /0	0.5744	
2. neklasificirano pridružuje				
najsličnijoj klasi		72.76 %	0.6786	
Unclassified areas are assigned				
-F	to the most similar class			
ijki	Prepoznavanje oblika	Ukupna točnost klasifikacije	Ukupni koeficijent Kappa statistike	
ıača	pokrovnosti zemljišta	Overall Classification Accuracy	Overall Kappa Statistics	
u zr	Land cover feature			
anj	1. Pridruživanje po zadanom algoritmu	55.56 %	0.5010	
nav	Wall to wall clasification			
zoda	2. neklasificirano pridružuje			
2 najsličnijoj klasi		52 69 %	0 4705	
	Unclassified areas are assigned	32.07 /0	V.T/V3	
	to the most similar class			

Najtočnijom metodom digitalne interpretacije, pokazala se klasifikacija pomoću prepoznavanja značajki (*Feature extraction*) s modulom prepoznavanja prirodnih oblika (*natural features*), gdje se neklasificirana područja pridružuju najsličnijoj klasi (tablica 5). Površinski najzastupljenije klase izdvojene na temelju opisane metode su šesti i treći dobni razred unutar uređajnog razreda hrasta lužnjaka, te sedmi i šesti dobni razred za poljski jasen (tablica 6). Ukupna točnost klasifikacije iznosi 72,76 % (tablica 7).

Slika 5. Rezultat klasifikacije metodom prepoznavanje prirodnih oblika gdje se neklasificirano pridružuje najsličnijoj klasi Figure 5 Results of classification for feature extraction classification with natural features recognition module, in which the unclassified areas are assigned to the most similar class.

- Tablica 6. Površine klasa dobivene metodom prepoznavanja prirodnih oblika gdje se neklasificirano pridružuje najsličnijoj klasi
- Table 6Area of class for feature extraction classification
with natural features recognition module, in
which the unclassified areas are assigned to the
most similar class.

Dobni i uređajni razred	Površina
Age and management class	Area (ha)
d1u1101	1300,33
d2u1101	762,04
d3u1101	1884,45
d4u1101	904,64
d5u1101	496,66
d6u1101	3127,38
d7u1101	1452,16
d1u1112	95,80
d2u1112	109,68
d3u1112	168,73
d4u1112	69,22
d5u1112	152,87
d6u1112	986,45
d7u1112	1220,77

		Klasif	icirano	Proizvodna	Korisnička
Naziv klase	Referentne točke	Ukupno	Ispravno		točnost
Class Name	Reference Totals	Classified Totals	Number Correct	Producers	Users
				Accuracy	Accuracy
Neklasificirano	0	0	0		
Unclassified	0	0	0		
d1u1101	57	60	49	85.96 %	81.67 %
d2u1101	19	25	17	89.47 %	68.00 %
d3u1101	5	9	3	60.00 %	33.33 %
d4u1101	4	7	2	50.00 %	28.57 %
d5u1101	16	2	1	6.25 %	50.00 %
d6u1101	82	79	79	96.34 %	100.00 %
d7u1101	20	24	20	100.00 %	83.33 %
d1u1112	11	5	3	27.27 %	60.00 %
d2u1112	19	18	12	63.16 %	66.67 %
d3u1112	12	7	4	33.33 %	57.14 %
d4u1112	6	6	1	16.67 %	16.67 %
d5u1112	11	8	4	36.36 %	50.00 %
d6u1112	14	20	7	50.00 %	35.00 %
d7u1112	3	9	1	33.33 %	11.11 %
Ukupno - Totals	279	279	203		
Ukupna točnost kla	asifikacije = 72.7	16 %			
Overall Classificat	tion Accuracy	0 /0			

Tablica 7. Ocjena točnosti metode prepoznavanja prirodnih oblika, gdje se neklasificirano pridružuje najsličnijoj klasiTable 7Classification Accuracy for feature extraction classification with natural features recognition module,
in which the unclassified areas are assigned to the most similar class.

Ukupno i za svaku izdvojenu klasu izračunati su parametri Kappa statistike (tablica 8). Ukupni Kappa koeficijent od 0,68 svrstava ovu klasifikaciju u kategoriju dobrog odabira interpretiranih klasa prema stvarnom stanju (teren). Od izračunatih Kappa koeficijenata za pojedinu klasu potrebno je izdvojiti vrijednosti za šesti (1,00), sedmi (0,82) i prvi (0,77) dobni razred hrasta lužnjaka, gdje možemo utvrditi da za šesti dobni razred nema razlike između interpretacije i stanja na terenu.

- Tablica 8. Parametri Kappa statistike za metodu prepoznavanja prirodnih oblika gdje se neklasificirano pridružuje najsličnijoj klasi
- Table 8Parameters of Kappa statistic for feature extraction classification with
natural features recognition module, in which the unclassified areas
are assigned to the most similar class.

Ukupni koeficijent Kappa statistike =	0.6786
Overall Kappa Statistics = 0.6786	

Naziv klase – Class Name	Kappa koeficijent – Kappa coefficient
Neklasificirano – Unclassified	0.0000
d1u1101	0.7696
d2u1101	0.6566
d3u1101	0.3212
d4u1101	0.2753
d5u1101	0.4696
d6u1101	1.0000
d7u1101	0.8205
d1u1112	0.5836
d2u1112	0.6423
d3u1112	0.5522
d4u1112	0.1484
d5u1112	0.4796
d6u1112	0.3157
d7u1112	0.1014

ZAKLJUČAK - Conclusion

Cilj ovog rada bio je istražiti, usporediti i pronaći najbolji način interpretacije IKONOS satelitske snimke visoke rezolucije, koji će biti jednostavan i prihvatljiv za operativnu primjenu.

Najbolji rezultati svih provedenih interpretacija (klasifikacija), dobiveni su vizualnom interpretacijom, odnosno tom interpretacijom dobiveni su rezultati koji najbolje odgovaraju stanju na terenu (terenska izmjera, podaci iz Osnove gospodarenja). Ovime smo zapravo i potvrdili činjenice koje u svojim istraživanjima navode Mas i Ramirez (1996), a odnose se na tvrdnje da osim što je najraširenija, metoda vizualne interpretacije postiže i najtočnije i najpreciznije rezultate, ponajprije zahvaljujući ljudskoj sposobnosti identificiranja objekata/pojava od interesa. S druge strane, sam proces

LITERATURA - References

- Banovec, T., M. Hlavaty, T. Kralj, M. Miklič, A. Tretjak, 1985: Pokušaj ocene iskorištavanja tla područja Savinjske doline satelitskom snimkom. U Tretjak i dr. - Upotreba digitalno, satelitsko prikupljenih podataka u SR Sloveniji, Zavod SR Slovenije za statistiko, Ljubljana, 25-48.
- Bird, A. C., J. C. Taylor, T. R. Brewers, 2000: Landscape Patterns and Landscape Change; Remote sensing and Landscape Ecology, vol. 21, 13-14, pp. 2719-2736.
- Bolstad, V. P., T. M. Lillesand, 1992: Improved classification of forest vegetation in Northern Wisconsin through a rule-based combination of soils, terrain and Landsat Thematic Mapper data, Forest Science 38 (1992) (1), pp. 5–20.
- Bronsveld, K., S. Chutirattapan, B. Pattanakanok, R. Suwanwerkamtorn & P. Trakooldit, 1994: The use of local knowledge in land use/cover mapping from satelite images. ITC Journal, Broj 4, 349-358.
- Chiao, K., C. Chow, 1988: Comparison among selected Landsat-5 TM dana for forestry surveys, International archives of photogrammetry, Vol. XXVII, Part B7, 77-89.
- Congalton, R. G., K. Green, 1999: Assessing the accuracy of remotely sensed data: Principles and practices, Lewis Publishers, Boca Raton, Florida.
- Cook, M. K., B. A. Peterson, G. Dial, F. Gerlach, K. Hutchins, R. Kudola, H. S. Bowen, 2001: IKONOS Technical Performance Assessment, Proceedings of SPIE Vol. 4381-10, 16-20 April 2001, Orlando, Florida.
- Davis, C. H., X. Wang, 2002: Urban land cover classification from high resolution multi-spec-

relativno dugo traje, jer se svaki dio snimke zasebno analizira, pa ovisno o veličini područja koje je potrebno klasificirati, može znatno povećati vrijeme i troškove obrade. Budući da je digitalna interpretacija iznimno pogodna za obradu većih područja, posebice kada su potrebni brzi rezultati uz relativno niske troškove, u ovom istraživanju provedena je i digitalna interpretacija s nekoliko metoda klasifikacije.

Provedenim metodama nadgledane klasifikacije satelitske snimke IKONOS utvrđeno je da se najtočnijom metodom za operativnu primjenu, pokazala klasifikacija pomoću prepoznavanja značajki (Feature extrac*tion*) s modulom prepoznavanja prirodnih oblika (*natu*ral features), gdje se neklasificirana područja pridružuju najsličnijoj klasi.

tral IKONOS imagery. Geoscience and Remote Sensing Symposium, 2002. IGARSS '02. 2002 IEEE International, Volume: 2, 1204–1206.

- Dial, G., H. Bowen, F. Gerlach, J. Grodecki, R. Oleszczuk, 2003: IKONOS satellite imagery, and products. Remote Sensing of Environment 88 (2003), pp. 23-36.
- Fink, W., K. Niemz, 1980: Eine Strategie der rechnergestützen Landnutzungsklassifizierung. International archives of photogrammetry, Vol. XXIII, Part B7, 291–301.
- Franklin, S. E., R. J. Hall, G. S. Ghitter, 1995: Satellite remote sensing of spruce understories in deciduous and mixedwood stands. pp. 239-247 in Proc. Resource Technology '94 Symposium, Decision Support 2001 - Sept 12-16, 1994, Toronto.
- Franklin, S. E., R. J. Hall, L. Smith, G. R. Gery-10, 2003. Discrimination of conifer height, age, and crown closure classes using Landsat-5 TM imagery near Fort Simpson, Northwest Territories. Int. J. Remote Sensing 24(9): 1823–1834.
- Gerylo, G. R., R. J. Hall, S. E. Franklin, L. Smith, 2002. Empirical relations between Landsat TM spectral response and forest stands near Fort Simpson, Northwest Territories, Canada. Can. J. Remote Sensing 28(1): 68-79.
- Ghaleb, F., R. B. Kheir, National Council for Scientific Research Remote Sensing Center, Beirut, Lebanon: Effectiveness of using very high resolution imagery (IKONOS) for land use mapping, preuzeto sa web stranice: http://www.gisdevelopment.net/technology/ip/techip
- Gilbert, D., J. P. Lilles, 1993: Spot satellite image treatment and visual interpretation for forestry and land use mapping: report of the training

course on remote sensing. Rome (ITA); Port-Vila: FAO; ORSTOM, 1993, 157 p.

- Girard, C. M., M. C. Girard, 1980: Analyse, description et classement de paysagesruraux á partir de données Landsat. International archives of photogrammetry, Vol. XXIII, Part B7, 345–354.
- Goetz, S. J., R. K Wright, A. J. Smith, E. Zinecker, E. Schaub, 2003: IKONOS imagery for resource management: Tree cover, impervious surfaces, and riparian bufer analyses
- Goossens, R., E. D, Haluin, G. Larnoe, 2004: Satellite image interpretation (SPOT) for the survey of the ecological infrastructure in a small scaled landscape (Kempenland, Belgium). Landscape Ecology Volume 5, Number 3, May, 1991, 175–182.
- Hall, R. J., D.R. Peddle, D. L. Klita, 2000: Mapping conifer understory within Boreal mixedwoods from Landsat TM satellite images. For. Chron. 76(6): 75–90.
- Hall, R. J., R. V. Dams, L. N. Lyseng, 1991: Forest cutover mapping from SPOT satellite data. Int. J. Remote Sensing 12(11): 2193–2204.
- Helder, D., M. Coan, K. Patrick and P. Gaska, 2003: IKONOS geometric characterization. Remote Sensing of Environment 88 (2003), pp. 68–78.
- Hočevar, M., 1985: Upotreba satelitskih snimaka u šumarstvu. U Tretjak i dr. – Upotreba digitalno, satelitsko prikupljenih podataka u SR Sloveniji, Zavod SR Slovenije za statistiko, Ljubljana, 59–62.
- Jacobsen, K., 2002: Mapping with IKONOS images. In: EARSeL Symposium "Geoinformation for European-wideIntegration", Prague, Czech Republic, pp. 149–156.
- Jakob, J. A., 1980: Landnutzung und Parzellineirungmuster auf Landsat Bildern – eine Hilfe zur Bodenregionalisierung norddeutscher Landschaften. International archives of photogrammetry, Vol. XXIII, Part B7, 477–486.
- Kristof, D., E. Csato, D. Ritter, 2002: Application of high-resolution satellite images in forestry and habitat mapping-evaluation of ikonos images through a Hungarian case study. Symposium on Geospatial Theory, Processing and Applications, ISPRS, Ottawa.
- K ušan, V., I. Lampek, 1994: Prilog istraživanju povećanja interpretabilnosti Landsat TM snimke za potrebe kartiranja korištenja zemljišta. Bilten Savjeta za daljinska istraživanja i fotointerpretaciju br. 13 (1994), str 41–51.

- Lantieri, D., J. F. Dallemand, R. Biscaia, S. Sohn, R. O. Potter, 1990: Erosion Mapping Using High – Resolution Satellite Data and Geographic Information System. FAO Remote Sensing Centre Series, No. 56, FAO, Rome, 150 p.
- Mäkelä, H, A. Pekkarinen, 2004: Estimation of forest stand volumes by Landsat TM imagery and stand-level field-inventory data. Forest Ecology and Management, Volume 196, Issues 2–3, 26 July 2004, Pages 245–255.
- Mas, J. F., I. Ramírez, 1996: Comparison of land use classifications obtained by visual interpretation and digital processing, ITC Journal, 1996–3/4, pp. 278–283.
- Moore, M. M., M. E. Bauer, 1990: Classification of forest vegetation in north-central Minnesota using LANDSAT multispectral scanner and thematic mapper data, Forest Sci. 36 (1990), pp. 330–342.
- Plantier, T., M. Loureiro, P. Marques, M. Caetano, 2006: Spectral analyses and classification of ikonos images for forest cover characterisation. Proceedings of the 2nd Workshop of the EARSeL SIG on Land Use and Land Cover, Bonn.
- S c h n e i d e r, Th., B. K o c h, U. A m m e r, 1993: Beeinflussung des Fernerkundungssignals im Sichtbaren und Nahen Infrarotbeobachtungen anhand des Vergleichs von Spektroradiometer Daten mit Landsat TM und Dedalus ATM daten. Zbornik referata simpozija: Aplikacia dialkoveho preiskumu zeme v lesnictve, Zvolen, 60–66.
- Skidmore, A. K. & B. J. Turner, 1988: Forest mapping accuracies are improved usin a supervised nonparametric classifier with SPOT data. Photogrammetric Engineering and Remote Sensing, Vol. 54, Broj 10, 1415–1421.
- Toutin, T., P. Cheng, 2000: Demystification of IKO-NOS. Earth Observation Magazine, 9(7): 17–21.
- Wulder, M. A., J. Dechka, M. Gillis, J. Luther, R. J. Hall, A. Beaudoin, S. E. Franklin, 2003: Operational mapping of the land cover of the forested area of Canada with Landsat data: EOSD land cover program. The Forestry Chronicle 79(6): 1075–1083.
- Wulder, M. A., R. J. Hall, N. Coops, S.E. Franklin, 2004: High spatial resolution remotely sensed data for ecosystem characterization. Bioscience 54(6): 511–521.
- Zanoni, V., T. Stanley, R. Ryan, M. Pagnutti, B. Baldridge, S. Roylance, G. Snyder, G. Lee, 2003: The Joint Agency Commercial Imagery Evaluation (JACIE) team: Overview

and IKONOS joint characterization approach. Remote Sensing of Environment, 88, 17–22.

**** Osnove gospodarenja: Gj Kragujna

- Gj Otočke šume Gj Slavir
- Gj Vrbanjske šume

SUMMARY: Satellite images as a source of information are becoming more significant and more often used in Croatian forestry. Data in satellite images can be obtained in two ways – by visual and digital interpretation. Choice of adequate interpretation is dependant on set goals or, more precisely, on getting enough quality information needed for certain task. Main objective of this paper was to examine, compare and find the best way to interpret IKO-NOS high spatial resolution satellite images, that would be simple and acceptable for operational purposes. Research was conducted in Spačva forest basin area, where largest integral pedunculate oak (Quercus robur L) forest is situated. Interest array was defined with 1 IKONOS satellite image scene (11.3 x 11.3 km) and it covers the central part of Spačva forest complex, with four forest management units: Kragujna, Otočke šume, Slavir, Vrbanjske šume. The above mentioned shooting produced IKONOS satellite image of the Spačva basin area, 132 km2 large surface, in 5 spectral channels: PAN (1 x 1 m) and 4 MS Bundle (4 x 4 m).

Visual interpretation was conducted on the created colorcomposit with three chosen spectral channels (4, 3, 2), while digital interpretation was conducted through six different algorithms, on the IKONOS satellite image. For each algorithm of the supervised classification, as well as the visual interpretation, Kappa statistics and accuracy parameters of the classification were calculated. Reference data from field research was compared to results from different satellite image classification methods to determine the level of accuracy for each classification. From these comparisons, the error matrix, which represents the base for accuracy verification, was created. Three accuracy indexes were derived from the error matrix: total, producers and users index. Last two refer to each class individually. Apart from the mentioned indexes, error matrix was also used for calculating the parameters of Kappa statistics, which enabled data generalization.

Of all the conducted interpretations (classifications), visual interpretation produced best results – results obtained this way were the closest to the actual situation in the field (field research, data from forest management plans). Conducted methods of the IKONOS satellite image supervised classification determined that the most accurate method for operational application was the feature extraction classification with natural features recognition module, in which the unclassified areas are assigned to the most similar class. This research also confirmed the facts stated by Mas and Ramirez (1996) in their studies, concerning the claims that, besides being the most used, visual interpretation method also produced the most accurate results, primarily due to the human ability to identify objects/events of interest. On the other hand, process itself lasts relatively long, because each part of the image is analysed separately, which can significantly increase the time and the costs of the analysis.

Keywords: IKONOS satellite image, visual and digital interpretation, classification accuracy, Kappa statistics, accuracy index, Spačva.