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Abstract. We present two classical conjectures concerning the
characterization of manifolds: the Bing Borsuk conjecture asserts that
every n-dimensional homogeneous ANR is a topological n-manifold, whe-
reas the Busemann conjecture asserts that every n-dimensional G-space
is a topological n-manifold. The key object in both cases are so-called
generalized manifolds, i.e. ENR homology manifolds. We look at the
history from the early beginnings to the present day. We also list several
open problems and related conjectures.
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1. Introduction

In this paper we will survey two famous conjectures, their relationship to each other,
as well as their relationship to other famous unsolved problems. The first, and most
general, is the Bing-Borsuk conjecture [18] which states that any n-dimensional ho-
mogeneous ENR space is an n-manifold. The 3-dimensional Bing-Borsuk conjecture
implies the celebrated Poincaré conjecture, recently proven by Perel’man [90]. Given
the complexity of the proof of the Poincaré conjecture, it is understandable why in
particular, the 3-dimensional Bing-Borsuk conjecture remains unsolved.

The Busemann conjecture [38]-[40] is a special case of the Bing-Borsuk conjec-
ture and it states that Busemann G-spaces are manifolds. Busemann G-spaces are
well known to be homogeneous. Therefore the truth of the Bing-Borsuk conjec-
ture immediately implies the truth of the Busemann conjecture. The Busemann
conjecture has been proven for G-spaces of dimensions ≤ 4 (see [39],[79],[118]).
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Three other famous conjectures related to the Busemann conjecture are the
Moore conjecture and two de Groot conjectures. The Moore conjecture [52], [126] is
to determine whether or not all resolvable generalized manifolds are codimension one
manifold factors. Small metric balls in Busemann G-spaces are known to be cones
over their boundaries, and hence have a local product structure with respect to their
boundaries which are known to be generalized (n − 1)-manifolds. An affirmative
answer to the Moore conjecture together with the resolvability of Busemann G-
spaces implies an affirmative answer to the Busemann conjecture.

The de Groot conjectures [63] are to determine whether or not all absolute cones
are balls (resp. whether or not all absolute suspensions are spheres). Small metric
balls in Busemann G-spaces are also absolute cones. It has recently been proven
that absolute cones are n-cells in dimensions n ≤ 4, but there are counter-examples
in higher dimensions [69]. The solution to the n = 4 case relies upon the Poincaré
conjecture. Unfortunately, this result does not provide a solution to the Busemann
conjecture in dimension n ≥ 5.

The purpose of this paper is to survey the work that has been done on these
manifold recognition problems. In Section 2 we will delineate important properties
that are known to be satisfied by manifolds. In Section 3 we will provide an overview
of progress that has been made towards resolving the Bing-Borsuk conjecture. In
Section 4 we will do the same for the Busemann conjecture. In Section 5 we will
discuss three related problems: the Moore conjecture and two de Groot conjectures.
In Sections 6 and 7 we will provide a list of relevant problems that remain unsolved.

2. Manifolds and manifold properties

An n-manifold is a separable metric space such that each point has a neighborhood
homeomorphic to the Euclidean n-space R

n. Although this is a simple definition to
state, applying the definition to verify that a space is a manifold can be a difficult
task. Thus it is desirable to find alternate methods of detecting manifolds. In
this section we describe the properties and characteristics known to be possed by
manifolds. The question is which property or combination of properties are sufficient
to imply that a space is a manifold (see [41],[101],[104]).

A topological spaceX is said to be homogeneous if for any two points x1, x2 ∈ X ,
there is a homeomorphism ofX onto itself taking x1 to x2. It is a classical result that
closed (i.e. connected compact without boundary) manifolds are homogeneous. It
is the Bing-Borsuk conjecture that asks whether a homogeneous space is necessarily
a manifold [18].

A topological space X is said to have the invariance of domain property if for
every pair of homeomorphic subsets U, V ⊂ X , U is open if and only if V is open.
Brouwer [25],[26] proved a century ago that every topological n-manifold has the
invariance of domain property. Unfortunately, the invariance of domain property is
not sufficient by itself to characterize manifolds (see e.g. [60],[121],[122],[123]).

An n-dimensional compact metric space X is called an n-dimensional Cantor
manifold if whenever X can be expressed as the union X = X1 ∪X2 of its proper
closed subsets, then dim(X1∩X2) ≥ n−1. Urysohn [119],[120], who introduced this
notion in 1925, proved that every topological n-manifold is a Cantor n-manifold.
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More fundamental results were established by Aleksandrov [1] in 1928. Krupski [80]
proved in 1993 a more general result, namely, that every generalized n-manifold is
a Cantor n-manifold.

A metric space (X, ρ) is said to have the disjoint (k,m)-cells property (k,m ∈ N)
if for each pair of maps f : Bk → X and g : Bm → X and every ε > 0 there exist
maps f ′ : Bk → X and g′ : Bm → X such that

ρ(f, f ′) < ε, dist(g, g′) < ε and f ′(Bk) ∩ g′(Bm) = ∅.

It is well known that topological manifolds of dimension n have the disjoint (k,m)-
cells property for k + m + 1 ≤ n (see [108]). The disjoint (2, 2)-cells property is
often referred to the disjoint disks property and plays a key role in characterizing
manifolds of dimension n ≥ 5.

A space X is said to be locally k-connected, LCk (k ≥ 0), if for every point
x ∈ X and every neighborhood U ⊂ X of x, there exists a neighborhood V ⊂ U of
x such that the inclusion-induced homeomorphisms πi≤k(V ) → πi≤k(U) are trivial.
Clearly, locally contractible spaces, such as manifolds and polyhedra, are locally k
connected for all k.

Let Y be a metric space. Then Y is said to be an absolute neighborhood retract
(ANR) provided for every closed embedding e : Y → Z of Y into a metric space Z,
there is an open neighborhood U of the image e(Y ) which retracts to e(Y ). That
is, there is a continuous surjection r : U → e(Y ) with r(x) = x for all x ∈ e(Y ). It
is a classical result that finite-dimensional spaces that are ANR’s are characterized
as the locally contractible separable metric spaces [19]. A Euclidean neighborhood
retract (ENR) is a finite-dimensional, locally compact, locally contractible subset
X of the Euclidean n-space R

n. It follows immediately from local contractibility
that every topological manifold is an ENR (hence an ANR).

An n-dimensional (n ∈ N) locally compact Hausdorff space X is called a Z-
homology n-manifold (n-hmZ) if for every point x ∈ X and all k ∈ N, Hk(X,X \
{x};Z) ∼= Hk(Rn,Rn \ {0};Z). Trivially, every topological manifold is a homology
manifold. An n-dimensional topological space X is called a generalized n-manifold
(n ∈ N) if X is an ENR Z-homology n-manifold. It follows that every topological n-
manifold is a generalized n-manifold. Every generalized (n ≤ 2)-manifold is known
to be a topological n-manifold [126]. On the other hand, for every n ≥ 3 there exist
totally singular generalized n-manifolds X , i.e. X is not locally Euclidean at any
point (see [41], [52], [101], [104]).

A natural way in which a generalized manifold may arise is as the image of a cell-
like map defined on a manifold. A proper onto map f :M → X is said to be cell-like
if for every point x ∈ X the point-inverse f−1(x) contracts in any neighborhood of
itself (i.e., f−1(x) has the shape of a point)[81]. A space X that is the proper image
of a cell-like map is said to be resolvable. Trivially, every topological manifold is
resolvable.

The following classical result attests to the crucial importance of cell-like maps
in geometric topology (it was proved for n ≤ 2 by Wilder [126], for n = 3 by
Armentrout [4], for n = 4 by Quinn [96], and for n ≥ 5 by Siebenmann [111]):

Theorem 2.1 [Cell-like Approximation Theorem]. For every ε > 0, every
n ∈ N, and every cell-like map f : Mn → Nn between topological n-manifolds Mn
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and Nn, there exists a homeomorphism h : Mn → Nn such that d(f(x), h(x)) < ε
for every x ∈Mn.

The fact that not all resolvable generalized manifolds are manifolds has been
known since the mid 1950’s, when Bing [16],[17] constructed his famous Dogbone
space as the cell-like image of a map defined on R

3. Generalized manifolds have been
a subject of intense studies since 1960’s [104]. In the mid 1970’s Cannon recognized
that the disjoint (2, 2)-cells property, often referred to as the disjoint disks property
(DDP), plays a key role in characterizing manifolds of dimension n ≥ 5. Recall that
a metric space X is said to have the disjoint disks property (DDP) if for every ε > 0
and every pair of maps f, g : B2 → X there exist ε-approximations f ′, g′ : B2 → X
with disjoint images f ′(B2) ∩ g′(B2) = ∅.

Cannon [43] utilized the DDP property to solve the celebrated Double suspension
problem [41], [82], [101] which asks if the double suspension Σ2(Hn) of an arbitrary
homology n-sphereHn, n ≥ 3, is the (n+2)-sphere Sn+2. In 1978, Edwards [61] [62]
generalized Cannon’s results by proving the famous Cell-like approximation theorem
(for a detailed proof for n = 5 see [54] and for n ≥ 6 see [52]), and at the same
time also gave an affirmative answer of the high-dimensional case of the Manifold
Recognition Problem (which asks if every resolvable generalized (n ≥ 3)-manifold
with the ”appropriate amount of general position” is a topological n-manifold [41],
[42], [48], [51], [101]-[104]):

Theorem 2.2 [Edwards]. For n ≥ 5, topological n-manifolds are precisely the
n-dimensional resolvable spaces with the disjoint disks property.

An analogous result for 3-manifolds was proved in the early 1980’s by Daverman
and Repovš [56],[57] (whereas only partial results are known in dimension 4, see
[15], [56]). A metric space X is said to have the Spherical simplicial approximation
property (SSAP) if for each µ : S2 → X and each ε > 0, there exist a map ψ :
S2 → X and a finite topological 2–complex Kψ ⊂ X such that: (1) d(ψ, µ) < ε; (2)
ψ(S2) ⊂ Kψ; and (3) X\Kψ is 1–FLG in X . (The 1–FLG condition is known to
characterize timely embedded 2–complexes Kψ in 3–manifolds M3, see [92]).

Theorem 2.3 [Daverman-Repovš]. Topological 3-manifolds are precisely the
3-dimensional resolvable spaces with the simplicial spherical approximation prop-
erty.

It had been a long time a question as to whether all generalized manifolds are
resolvable - this was the famous Resolution conjecture [32]-[36], [41], [44]-[47] [75],
[88], [101]-[104]:

Conjecture 2.4 [Generalized Manifolds Resolution conjecture]. Every
generalized (n ≥ 3)-manifold has a resolution.

In dimension 3, the Generalized Manifolds Resolution conjecture 2.4 implies the
Poincaré conjecture [101] and only special cases are known [23], [24], [33], [34], [48],
[58], [100], [102], [105], [115]-[117]. In higher dimensions the Generalized Manifolds
Resolution conjecture 2.4 turns out to be false. By the results of Bryant et al. [30]
from 1996 which provide the construction (together with the work of Pedersen et al.
[93] from 2003 which provided some key details on the surgery exact sequence used
in the original construction), it is now known that there exist non-resolvable gener-
alized n-manifolds, for every n ≥ 6. In 2007 Bryant et al. [31] further strengthened
their result to the following DDP Theorem:
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Theorem 2.5 [Bryant-Ferry-Mio-Weinberger]. There exist non-resolvable
generalized n-manifolds with the disjoint disks property, for every n ≥ 7.

Hence, generalized manifolds may possess nice general position properties. More-
over, Krupski has shown that all generalized manifolds are Cantor manifolds (see
Proposition 1.7 of [80]). Thus, the majority of properties listed above are known
to be insufficient by themselves to characterize manifolds. Homogeneity is the re-
maining single candidate. Is this property strong enough to characterize manifolds?
Are there other combinations of these properties that characterize manifolds which
have not yet been discovered? [104]

3. The Bing-Borsuk conjecture

Bing and Borsuk [18] proved in 1965 that for n < 3 every n-dimensional homoge-
neous ANR is a topological n-manifold. They also conjectured that this holds in
all dimensions:

Conjecture 3.1 [Bing-Borsuk conjecture]. Every n-dimensional, n ∈ N,
homogeneous ANR is a topological n-manifold.

Jakobsche [77] proved in 1978 that in dimension n = 3 the Bing-Borsuk con-
jecture 3.1 implies the Poincaré conjecture (see also [78]). Given the difficulty of
the proof of the Poincaré conjecture [90], it is understandable why the Bing-Borsuk
conjecture 3.1 remains unsolved.

3.1. Partial results

Although there is much work to be done before the Bing-Borsuk conjecture 3.1 is
be solved, there are several partial results. In 1970 Bredon [21],[22] showed the
following:

Theorem 3.2 [Bredon]. If X is an n-dimensional homogeneous ENR (n ∈ N)
and for some (and, hence all) points x ∈ X, the groups Hk(X,X − {x};Z) are
finitely generated, then X is a Z-homology n-manifold.

This theorem was reproved by Bryant [27] in 1987 with a more geometric argu-
ment. In 1976 Lysko [83] showed:

Theorem 3.3 [Lysko]. Let X be a connected finite-dimensional homogeneous
ANR-space. Then X is a Cantor manifold and it possesses the invariance of the
domain property.

In 1985 Seidel [110] proved a similar result in the case of locally compact, locally
homogeneous separable ANR’s.

Next, we quote the following result by Krupski [80] from 1993:
Theorem 3.4 [Krupski]. Let X be a homogeneous locally compact space.

Then: (1) If X is an ANR of dimension > 2, then X has the disjoint (0, 2)-cells
property. (2) If dim X = n > 0, X has the disjoint (0, n− 1)-cells property and X
is an LCn−1-space, then local homologies satisfy Hk(X,X−{x}) = 0 for k < n and
Hn(X,X − {x}) �= 0.

A topological space Y is said to be acyclic in dimension n ∈ N if Ȟ
n
(Y ;Z) = 0.

In 2003 Yokoi [124] established the following algebraic property of n-dimensional
homogeneous ANR’s which is also possessed by topological n-manifolds:
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Theorem 3.5 [Yokoi]. Let X be an n-dimensional homogeneous ANR con-
tinuum which is cyclic in dimension n. Then no compact subset of X, acyclic in
dimension n− 1, separates X.

These partial results, demonstrating that homogeneity implies several of the
other manifold properties, indicate why the Bing-Borsuk conjecture 3.1 could be
true.

3.2. A special case

In 1996 Repovš et al. [107] (see [106] for a very geometric proof of the 2-dimensional
case) proved the following result which in some sense can be considered as a smooth
version of the Bing-Borsuk conjecture 3.1. Recall that a subset K ⊂ R

n is said to
be C1–homogeneous if for every pair of points x, y ∈ K there exist neighborhoods
Ox, Oy ⊂ R

n of x and y, respectively, and a C1–diffeomorphism

h : (Ox, Ox ∩K,x) → (Oy, Oy ∩K, y),

i.e. h and h−1 have continuous first derivatives.
Theorem 3.6 [Repovš-Skopenkov-Ščepin]. Let K be a locally compact (pos-

sibly nonclosed) subset of R
n. Then K is C1-homogeneous if and only if K is a

C1–submanifold of R
n.

This theorem clearly does not work for arbitrary homeomorphisms, a counterex-
ample is the Antoine Necklace [3] - a wild Cantor set in R

3 which is clearly homoge-
neously (but not C1-homogeneously) embedded in R

3. In fact, Theorem 3.6 does not
even work for Lipschitz homeomorphisms, i.e. the maps for which d(f(x), f(y)) <
λ d(x, y), for all x, y ∈ X . Namely, Malešič and Repovš [84] proved in 1999 that
there exists a Lipschitz homogeneous wild Cantor set in R

3. Their result was later
strengthened by Garity et al. [68]:

Theorem 3.7 [Garity-Repovš-Željko]. There exist uncountably many rigid
Lipschitz homogeneous wild Cantor sets in R

3.

3.3. Alternate statement

Daverman and Husch [55] were able to determine an equivalent conjecture to the
Bing-Borsuk conjecture. In order to state this conjecture, recall that a surjective
map p : E → B between locally compact, separable metric ANR’s E and B is said
to be an approximate fibration if p has the approximate homotopy lifting property
for every space X . Equivalently, whenever h : X × I → B and H : X × {0} → E
are maps such that p ◦H = h | X × {0} and ε is a cover of B, h extends to a map
H : X × I → E such that h and p ◦H are ε-close. The alternate statement of the
Bing-Borsuk conjecture 3.1 is given as follows [28],[55],[85],[125]:

Conjecture 3.8 [Alternate statement of the Bing-Borsuk conjecture].
Suppose that X is nicely embedded in R

m+n, for some m ≥ 3, so that X has a
mapping cylinder neighborhood N = Cφ of a map φ : ∂N → X, with mapping
cylinder projection π : N → X. Then π : N → X is an approximate fibration.
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3.4. Modified Bing-Borsuk conjecture

Recall that for n ≥ 6, Bryant et al. [30] proved in 1996 that there exist non-
resolvable generalized n-manifolds, for every n ≥ 6. Based on earlier work by Quinn
[97], these nonresolvable generalized manifolds must be totally singular, i.e., have
no points with Euclidean neighborhoods (we may assume these examples are con-
nected). Moreover, in 2007 Bryant et al. [31] strengthened their result to show that
there exist nonresolvable generalized n-manifolds with the disjoint disks property,
for every n ≥ 7. Based on these results the following conjecture was proposed:

Conjecture 3.9 [Bryant-Ferry-Mio-Weinberger]. Every generalized n-
manifold (n ≥ 7) satisfying the disjoint disks property, is homogeneous.

Note that if conjecture 3.9 is true, then the Bing-Borsuk conjecture 3.1 is false for
n ≥ 7. In 2002 Bryant [28] suggested the following modified Bing-Borsuk conjecture:

Conjecture 3.10 [Modified Bing-Borsuk conjecture]. Every homogeneous
(n ≥ 3)-dimensional ENR is a generalized n-manifold.

A further modification was posed by Quinn [98] at the 2003 Oberwolfach work-
shop on exotic homology manifolds. It is based on a perturbation of the homogeneity
property itself. A space X is homologically arc-homogeneous provided that for every
path α : [0, 1] → X , the inclusion induced map

H∗(X × 0, X × 0− (α(0), 0)) → H∗(X × I,X × I − Γ(α))

is an isomorphism, where Γ(α) denotes the graph of α. The following is the conjec-
ture proposed by Quinn [98] which was proved in 2006 by Bryant [29].

Theorem 3.11 [Bryant]. Every n-dimensional homologically arc-homogeneous
ENR is a generalized n-manifold.

This is arguably the strongest result so far relating to the Bing-Borsuk conjec-
ture 3.1.

4. The Busemann conjecture

The Busemann conjecture is also a manifold recognition problem, and is in fact a
special case of the Bing-Borsuk conjecture 3.1. Beginning in 1942, Herbert Buse-
mann [38],[39] developed the notion of a G-space as a way of putting a Riemannian
like geometry on a metric space (and also in an attempt to obtain a ”synthetic
description” of Finsler’s spaces [65]). A Busemann G-space is a metric space that
satisfies four basic axioms on a metric space. These axioms imply the existence
of geodesics, local uniqueness of geodesics, and local extension properties. These
axioms also infer homogeneity and a cone structure for small metric balls. In 1943,
Busemann [39] proved:

Theorem 4.1 [Busemann]. Busemann G-spaces of dimension n = 1, 2 are
manifolds.

Busemann then proposed the following conjecture [40]:
Conjecture 4.2 [Busemann conjecture]. Every n-dimensional G-space (n ∈

N) is a topological n-manifold.
When Busemann [40] proposed conjecture 4.2 in 1955, he predicted: Although

this (the Busemann conjecture) is probably true for any G-space, the proof, if the
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conjecture is correct, seems quite inaccessible in the present state of topology. As
we shall see, this prediction proved true.

4.1. Definitions

We now formally define Busemann G-spaces and state several of the classical prop-
erties of Busemann G-spaces.

Definition 4.3. Let (X, d) be a metric space. X is said to be a Busemann
G-space provided it satisfies the following Axioms of Busemann:

(i) Menger Convexity: Given distinct points x, y ∈ X, there is a point z ∈
X − {x, y} so that d(x, z) + d(z, y) = d(x, y).

(ii) Finite Compactness: Every d-bounded infinite set has accumulation points.
(iii) Local Extendibility: To every w ∈ X, there is a positive radius ρw, such

that for any pair of distinct x, y ∈ B(w, ρw), there is z ∈ int B(w, ρw)−{x, y} such
that d(x, y) + d(y, z) = d(x, z).

(iv) Uniqueness of the Extension: Given distinct x, y ∈ X, if there are points
z1, z2 ∈ X for which both

d(x, y) + d(y, zi) = d(x, zi) for i = 1, 2,

and
d(y, z1) = d(y, z2)

hold, then z1 = z2.
From these basic properties, a rich structure on a G-space can be derived. If

(X, d) is a G-space and x ∈ X , then (X, d) satisfies the following properties:

• Complete Inner Metric: (X, d) is a complete inner metric space which is locally
compact.

• Existence of Geodesics: Any two points in X are joined by a geodesic segment.

• Local Uniqueness of Joins: There is a positive radius rx such that any two
points y, z ∈ Brx(x) in the closed ball are joined by a unique segment in X .

• Local Cones: There is a positive radius εx for which the closed metric ball
Bεx(x) is homeomorphic to the cone over its boundary. That is, Bεx ∼=
∆(Sεx(x)) where Sεx(x) denotes the metric sphere about x.

• Homogeneity: Every G-space is homogeneous. Moreover, homogeneity home-
omorphisms can be chosen so that each is isotopic to the identity.

It is this last property that makes the Busemann conjecture 4.2 a special case
of the Bing-Borsuk conjecture 3.1. The truth of the Bing-Borsuk conjecture would
imply the truth of the Busemann conjecture. Equivalently, if examples of non-
manifold Busemann G-spaces could be constructed, the Bing-Borsuk conjecture
would be settled in the negative.
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4.2. Results in higher dimensions

The first success in resolving the Busemann conjecture 4.2 in higher dimensions
occured in 1968 when Krakus [79] proved it in dimension n = 3.

Theorem 4.4 [Krakus]. Busemann G-spaces of dimension n = 3 are mani-
folds.

Krakus applied Borsuk’s 2-sphere recognition criterion [20] to show that small
metric spheres in 3-dimensional Busemann spaces are topological 2-spheres. The
truth of the conjecture follows immediately from the local product structure on small
metric spheres and homogeneity. Unfortunately, this strategy cannot be extended to
higher dimensions due to the lack of similar characterizations of topological spheres
in higher dimensions.

Starting in dimension n = 4, it can now be seen that Busemann’s prediction
of the difficulty of the problem was remarkably accurate. For example, the case
n = 4 required several modern results and techniques including sheaf theory [21],
epsilon surgery [47], resolution theory [97], decomposition theory [52], and theory of
4-manifolds [66],[67],[109]. The major breakthrough in dimension n = 4 and partial
results applicable to higher dimensions were made by Thurston [118] in 1996:

Theorem 4.5 [Thurston]. Busemann G-spaces of dimension n = 4 are mani-
folds. Moreover, every finite dimensional G-space is a generalized n-manifold. More
precisely, let (X, d) be a G-space, dim X = n < ∞. Then for all sufficiently small
r > 0 and x ∈ X, Br(x) is a homology n-manifold with boundary ∂Br(x) = Sr(x)
and Sr(x) is a homology (n− 1)-manifold with empty boundary.

In 2002 Berestovskii [13] proved the special case of the Busemann conjecture 4.2
for Busemann G-spaces that have Alexandrov curvature bounded above. A Buse-
mann G-space (X, d) has Alexandrov curvature ≤ K if geodesic triangles in X
are at most as ”fat” as corresponding triangles in a surface SK of constant curva-
ture K, i.e. the length of a bisector of the triangle in X is at most the length of
the corresponding bisector of the corresponding triangle in SK . For example, the
boundary of a convex region in R

n has a nonnegative Alexandrov curvature (see
also [2] [10]-[12], [14], [37], [76], [94], [95]).

Theorem 4.6 [Berestovskii]. Busemann G-spaces of dimension n ≥ 5 having
bounded Aleksandrov curvature bounded above are n-manifolds.

The general case of the Busemann conjecture 4.2 for n ≥ 5 remains unsolved:
there are many Busemann G-spaces which do not satisfy the condition of Aleksan-
drov curvature bounded from above (or below). However, all such examples are
known to be topological manifolds. The simplest example of Busemann G-space
which is not ”covered” by Berestovskii’s proof [13] is the finite-dimensional vector
space (Rn, | · |) in which the closed unit ball {x ∈ R

n : |x| ≤ 1} is a strongly convex
centrally symmetric convex body in R

n which is not an ellipse.
Conjecture 4.7 [Busemann G-Spaces Resolution conjecture]. Every

(n ≥ 5)-dimensional Busemann G-space has a resolution.

5. Related problems

Related to the Busemann conjecture 4.2 are three other famous problems: the two
de Groot conjectures and the Moore conjecture.



172 D.M.Halverson and D. Repovš

5.1. The de Groot conjectures

The de Groot conjectures are two manifold recognition problems for spaces that are
absolute suspensions or absolute cones. A compact finite-dimensional metric space
X is called an absolute suspension (AS) if it is a suspension with respect to any pair
of distinct points and is called an absolute cone if it is a cone with respect to any
point. Any space topologically equivalent to Sn is an absolute suspension and any
space topologically equivalent to Bn is an absolute cone. The question is whether
the converse statements are true. At the 1971 Prague Symposium, de Groot [63]
made the following two conjectures:

Conjecture 5.1 [Absolute Suspension conjecture]. Every n-dimensional
absolute suspension is homeomorphic to the n-sphere.

Conjecture 5.2 [Absolute Suspension conjecture]. Every n-dimensional
absolute cone is homeomorphic to the n-cell.

The fact that small metric balls in Busemann G-spaces are absolute cones follows
from the local cone structure and homogeneity. Therefore the truth of the Absolute
Cone conjecture 5.2 would imply the truth of the Busemann conjecture 4.2.

In 1974 Szymański [114] proved the Absolute Suspension conjecture 5.1 for di-
mensions n ≤ 3. In 1978, Mitchell [86] gave an alternate proof to Szymański result
and showed that every n-dimensional absolute suspension is an ENR homology
n-manifold homotopy equivalent to the n-sphere. In 2005 Bellamy and Lysko [9]
proved the generalized Schönflies theorem for absolute suspensions. Nadler [91]
gave a proof of the Absolute Cone conjecture 5.2 in dimensions n = 1, 2. How-
ever, in 2007 Guilbault [69] completely clarified the status of the Absolute Cone
conjecture 5.2:

Theorem 5.3 [Guilbault]. The Absolute Cone conjecture 5.2 is true for n ≤ 4
and false for n ≥ 5.

Guilbaut proved this result in dimensions n ≥ 5 by constructing counter-exam-
ples. For the special case n = 4, Guilbaut shows the Absolute Cone conjecture 5.2 is
true modulo the 3-dimensional Poincaré conjecture, which indeed follows by Perel-
man’s proof of the Poincaré conjecture in dimension n = 3 [90]. Although the
solution of the Absolute Cone conjecture 5.2 leaves the status of the Busemann
conjecture 4.2 unresolved, it does cast some suspicion the validity of 4.2.

5.2. The Moore conjecture

A space X is said to be a codimension one manifold factor if X×R is a topological
manifold. In 1955 Bing constructed his infamous Dogbone space [16]. Bing’s Dog-
bone space is the image of a cell-like map π : R

3 → X . Bing [17] showed that the
the Dogbone space X is not homeomorphic to R

3, howeverX×R
1 is homeomorphic

to R
4. This result led to the Moore conjecture:

Conjecture 5.4 [Moore conjecture]. Every resolvable generalized manifold
is a codimension one manifold factor.

The Moore conjecture 5.4 is also related to the Busemann conjecture 4.2. Every
Busemann G-space is a manifold if and only if small metric spheres are codimension
one manifold factors. Equivalently, in dimensions n ≥ 5, every Busemann G-space
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X is a manifold if and only if small metric spheres Σ ⊂ X are resolvable and have
the property that Σ× R has the disjoint disks property.

Although it is unknown whether small metric spheres are resolvable, Thurston
showed that they are generalized (n − 1)-manifolds. Also, according to the prop-
erties of the Quinn index number which measures the obstruction of a space being
resolvable, the resolvability of Σ is equivalent to the resolvability of X (see [97]).
Moreover, Mitchell [86] proved in 1978 that any n-dimensional absolute suspension
X is a regular generalized n-manifold homotopy equivalent to Sn; all its links are
generalized (n− 1)-manifolds homotopy equivalent to Sn−1.

He furthermore showed that an n-dimensional absolute cone X is a regular gen-
eralized n-manifold proper homotopy equivalent to R

n; all its links are generalized
(n − 1)-manifolds homotopy equivalent to Sn−1. Note that if in Mitchell’s the-
orem ”homotopy equivalent” could be replaced with ”fine homotopy equivalent”,
Mitchell’s theorem would imply resolvability [49] (see also [81],[87],[88]).

Although it is also still unknown whether small metric spheres X in Busemann
G-spaces satisfy the disjoint disks properties, there have been several results deter-
mining useful general position properties of an ANR X that characterize X ×R as
having the disjoint disks property. In particular, these properties include:

(i) The disjoint arc-disk property (Daverman [50]). A space X has the disjoint
arc-disk property if any pair of maps α : I → X and f : D2 → X can be approxi-
mated by paths with disjoint images (i.e. X has the disjoint (1, 2)-cells property).
If X has the disjoint arc-disk property, then X ×R has the disjoint disks property.

(ii) The disjoint homotopies property (Edwards [62], Halverson [71]). A space X
has the disjoint homotopies property if every pair of path homotopies f, g : D×I →
X , where D = I = [0, 1], can be approximated by homotopies f ′, g′ : D × I → X
so that ft(D) ∩ gt(D) = ∅ for all t ∈ I. If X has the disjoint homotopies property,
then X × R has the disjoint disks property.

(iii) The plentiful 2-manifolds property (Halverson [71]). An ANR X has the
plentiful 2-manifolds property if every path α : I → X can be approximated by a
path α′ : I → N ⊂ X where N is a 2-manifold embedded in X . If an ANR X
of dimension n ≥ 4 has the plentiful 2-manifolds property, the X has the disjoint
homotopies property.

(iv) The method of δ-fractured maps (Halverson [72]). A map f : D× I → X is
said to be δ-fractured over a map g : D× I → X , where D = I = [0, 1], if there are
disjoint balls B1, B2, . . . , Bm in D × I such that

1. diam(Bi) < δ;

2. f−1(im(g)) ⊂ ⋃m
i=1 int(Bi); and

3. diam(g−1(f(Bi))) < δ

If X is a space such that for any two path homotopies f, g : D× I → X , where g is
a constant path homotopy, and δ > 0, there are approximations f ′, g′ : D× I → X
such that f ′ is δ-fractured over g′, then X has the disjoint homotopies property.

(v) The 0-stitched disks property (Halverson [73]). A space X has the 0-stitched
disks property if any two maps f, g : D2 → X can be approximated by maps
f ′, g′ : D2 → X such that there are infinite 1-skeleta (K∞)(1) and (L∞)(1) of D2
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and 0-dimensional Fσ sets A ⊂ int(D2)− (K∞)(1) and B ⊂ int(D2)− (L∞)(1) such
that f ′|(K∞

1 )(1) ∪ g′|(K∞
2 )(1) is 1− 1 and f ′(D2 −A) ∩ g′(D2 −B) = ∅. If X has the

0-stitched disks property, then X has DHP.
(vi) The disjoint concordances property (Daverman and Halverson [53]). A path

concordance in a space X is a map F : D × I → X × I, where D = I = [0, 1], such
that F (D× e) ⊂ X × e, e ∈ {0, 1}. A metric space (X, ρ) satisfies the Disjoint Path
Concordances Property (DCP) if, for any two path homotopies Fi : D × I → X
(i = 1, 2) and any ε > 0, there exist path concordances F ′

i : D × I → X × I such
that

F ′
1(D × I) ∩ F ′

2(D × I) = ∅
and ρ(Fi, projXF ′

i ) < ε. An ANR X has the disjoint concordances property if and
only if X × R has the disjoint disks property.

Due to homogeneity, if a Busemann G-space X has a single metric sphere sat-
isfying any one of these properties, then X has the disjoint disks property.

6. Summary and questions

In summary, the following relationships hold between the conjectures and problems
discussed in this survey.

• Bing-Borsuk conjecture 3.1 ⇒ Busemann conjecture 4.2

• de Groot conjecture 5.2 ⇒ Busemann conjecture 4.2

• Moore conjecture 5.4 & Busemann G-Spaces Resolution conjecture 4.7 ⇒
Busemann conjecture 4.2

• Bryant-Ferry-Mio-Weinberger conjecture 3.9 ⇒ failure of the Bing-Borsuk
conjecture 3.1

So far, the validity of only one of these implications has been determined. Recall
that the de Groot conjecture 5.2 was shown to be false for all n ≥ 5 (see [69]).
Note that the failure of the Busemann conjecture 4.2 would settle the Bing-Borsuk
conjecture 3.1 in the negative. If the Busemann G-Spaces Resolution conjecture 4.7
were proved and the Busemann conjecture 4.2 proved to be false, then the Moore
conjecture 5.4 would be settled in the negative.

Below is a summary of relevant questions that remain unsolved:

1. Are all Busemann G-spaces resolvable?

2. Do all Busemann G-spaces X of dimension n ≥ 5 have the disjoint disks
property? (or equivalently, does X contain some metric sphere Σ that has a
general position property that implies X × R has DDP)?

3. Are all finite-dimensional Busemann G-spaces manifolds?

4. Are all absolute cones resolvable?



The Bing-Borsuk and the Busemann conjectures 175

5. Are all finite-dimensional homogeneous connected compact metric spaces re-
solvable?

6. Are all resolvable generalized manifolds codimension one manifold factors?

7. Are all generalized manifolds with the disjoint disks property homogeneous?

7. Epilogue: Homogeneity and group actions

The Bing-Borsuk conjecture 3.1 belongs to a wide group of difficult open problems
related to homogeneity and group actions. The nearest one is an old problem: Is
the Hilbert cube the only homogeneous compact AR?

All problems of this sort can be seen in the following framework: Given a topo-
logical group G and a closed subgroup H , describe the topological structure of the
coset space G/H assuming that it has some extra properties (local contractibil-
ity, finite-dimensionality, local compactness, etc.) Model results here concern the
structure of topological groups [59],[89]:

Theorem 7.1 [Montgomery-Zippin]. Each locally compact locally contractible
topological group is a Lie group and hence a manifold.

A Polish group is a topological group which is also a Polish space [8]:
Theorem 7.2 [Dobrowolski-Torunczyk]. Each Polish ANR-group is a Hilbert

manifold (finite or infinite-dimensional).
The last theorem suggests the following problem which was partially solved by

Banakh and Zarichnyi [7]:
Problem 7.3. Is each complete metric ANR-group a Hilbert manifold?
Now let us turn to homogeneous spaces.
Problem 7.4 [Banakh]. Let G be a Polish group and H a closed subgroup

such that G/H is an ANR. Is then G/H a manifold modeled on: (i) the Euclidean
n-space R

n; (ii) the Hilbert cube Q; or (iii) the Hilbert sequence space l2?
What if G is an ANR-group? What if the quotient map G → G/H is a locally
trivial bundle?

Problem 7.4(i) is exactly the Bing-Borsuk Problem while the second part is
related to the question mentioned above on homogeneous compact AR’s. For con-
nected locally compact topological groups, Problem 7.4 was answered by Szenthe
[112],[113].

Theorem 7.5 [Szenthe]. Let G be a locally compact topological group such
that the quotient group G/G0 of G by its (connected) identity component G0 is
compact (the quotient group G/G0 is called the group of components and is denoted
by π0(G).) Then for any closed subgroup H ⊂ G, the coset space G/H is a disjoint
union of topological manifolds if and only if it is locally contractible.

This theorem has some interesting consequences for homogeneous metric spaces.
We define a metric space X to be metrically homogeneous if for any two points
x, y ∈ X there is an isometry f : X → X such that f(x) = y. Note that every C∞-
smooth Riemannian manifoldM is a Busemann G-space, henceM is homogeneous.
However, M is in general not metrically homogeneous. We also observe that every
transitive group G of isometries of every locally compact metric space M admits a
natural metric with respect to which G is locally compact and acts continuously on
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M . It follows from Theorem 7.5 that the ”isometric version” of the Bing-Borsuk
conjecture 3.1 is true:

Corollary 7.6. A metrically homogeneous compact metric space X is a topo-
logical n-manifold if and only if X is locally compact and locally contractible.

Results from [112],[113] also imply that any locally compact connected (possibly
metrizable) locally contractible topological space M with a locally compact tran-
sitive continuous group G of homeomorphisms, necessarily admits a structure of a
C∞-manifold and a compatible Riemannian metric tensor g such that G acts by
isometries on (M, g).

This implies two facts: (i) such a manifold M is necessarily smoothable. As
a corollary, no nonsmoothable compact 4-manifold (recall that most compact 4-
manifolds are nonsmoothable [67],[109]) admits any locally compact continuous
transitive group of homeomorphisms; and (ii) there are many smooth manifolds
which admit no metrically homogeneous Riemannian metric (for example, the 2-
sphere with two handles). Therefore no such manifold admits any locally compact
transitive continuous group of homeomorphisms.

A topological space X is said to be continuously homogeneous if for every x, y ∈
X there is a homeomorphism hx,y : X → X such that hx,y(x) = y and hx,y
continuously depends on the points x, y in the sense that the map H : X3 → X ,
H : (x, y, z) �→ hx,y(z), is continuous.

It is easy to see that each topological group (endowed with a left-invariant met-
ric) is continuously homogeneous (as a metric space). Continuously homogeneous
spaces were introduced and studied by Banakh et al. [5],[6]. It can be shown that
a topological space X is continuously homogeneous if and only if it is rectifiable in
the sense of Gulko [70]).

Problem 7.7 [Banakh]. Let X be a continuously homogeneous Polish ANR-
space. Is X a Hilbert manifold?

It light of this problem one should mention that continuously homogeneous
spaces cannot be Hilbert cube manifolds [6] (which distinguishes Problem 7.7 from
a more general Problem 7.4).

8. Acknowledgements

The authors acknowledge several comments and suggestions from T. O. Banakh and
V. N. Berestovskii. The authors were supported in part by the Slovenian Research
Agency grants BI-US/07-08/029, P1-0292-0101, and J1-9643-0101. This paper was
presented at the 4th Croatian Mathematical Congress (Osijek, June 17-20, 2008).
We thank the organizers for the invitation and hospitality.

References

[1] P. S.Aleksandrov, Untersuchungen über Gestalt und Lage abgeschlossener
Mengen beliebiger Dimension, Ann. of Math. 30(1928/29), 101–187.

[2] P. S.Aleksandrov, V. I. Berestovskǐi, I. G.Nikolaev, Generalized
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[14] V.N.Berestovskĭi, Poincaré’s conjecture and related statements, (in
Russian), Izv. Vyssh. Uchebn. Zaved. Mat. (2007), No. 9, 3–41; English
transl. in Russian Math. (Iz. VUZ) 51(2007), 1–36.

[15] M.Bestvina, R. J.Daverman, G.A.Venma, J. J.Walsh, A 4-
dimensional 1-LCC shrinking theorem, Geometric Topology and Geometric
Group Theory, Milwaukee, WI, 1997, Topology Appl. 110(2001), 3–20.

[16] R. H.Bing, A decomposition of E3 into points and tame arcs such that
the decomposition space is topologically different from E3, Ann. of Math.
65(1957), 484–500.

[17] R. H.Bing, The cartesian product of a certain nonmanifold and a line is
E4, Ann. of Math. 70(1959), 399–412.



178 D.M.Halverson and D. Repovš
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