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Degenerate Eisenstein series on symplectic groups∗

Goran Muić
†

Abstract. In this paper we describe the generalization of usual no-
tion of Siegel Eisenstein series (see for example [9]) to give a simple and
natural construction of some classes of square–integrable automorphic
representations for symplectic groups. The construction of automorphic
representations obtained in this paper is an automorphic version of the
local construction of strongly negative unramified representations [5] 1

or of discrete series obtained by Tadić [11] in early 90’s (see also later
work [8]). This is taken from our paper [7].

As an application we show how one can obtain an automorphic real-
ization of certain global spherical representations. This has an interest-
ing consequence locally and globally. We adopt Arthur’s point of view
(see [2]).
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1. Notation

Let G = Sp2n be a split symplectic group of rank n over a number field k. Let A be
the ring of adéles of k. We write {v} for the set of places of k. For each place v of
k, let kv be its completion at that place. Let | |v be the normalized absolute value
of kv. Put | | =

∏
v | |v. If v is finite (denoted by v < ∞), then let Ov be the ring

of integers of kv and �v a generator of the maximal ideal in Ov. Then A � ∏′
v kv

is a restricted product over all places {v}.
For a finite place v, we fix a maximal compact subgroup Kv = G(Ov) of

Sp2n(kv). Let G∞ =
∏

v G(kv), where the product extends over all Archimedean
places of k. It is a semisimple Lie group with the finite center. We fix a suitable
maximal compact subgroup K∞ ⊂ G∞. We let

K = K∞ ×
∏

v is finite

Kv.
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This is a maximal compact subgroup of G(A).
We let g∞ be the Lie algebra of G∞. Let U(g∞) be the universal enveloping

algebra of the complexified Lie algebra g∞,C = g∞ ⊗R C. Let Z(g∞) be the center
of U(g∞).

Let G(Af ) be the restricted product of all G(kv), v is finite. The group G(Af )
is a totally disconnected group, i.e. it has a basis of neighborhoods of 1 consisting
of open compact subgroups. The group G(k) is embedded diagonally as a discrete
subgroup of G(A). We have the following:

G(A) � G∞ ×G(Af ).

We say that a continuous function f : G(A) → C is smooth if f(·, gf) ∈ C∞(G∞)
for all gf ∈ G(Af ), and there exists an open compact subgroup L ⊂ G(Af ) such
that f(g∞, gf · l) = f(g∞, gf) for all (g∞, gf ) ∈ G∞ × G(Af ) and l ∈ L. Here we
consider f as a function of two variables f(g) = f(g∞, gf ), where g = (g∞, gf ).
We write C∞(G(A)) for the vector space of all smooth functions on G(A). We let
C∞

c (G(A)) be the space of all smooth compactly supported functions on G(A).
By definition, we let C∞(G(k) \G(A)) ⊂ C∞(G(A)) be the subspace consisting

of all functions f ∈ C∞(G(A)) such that f(γ · g) = f(g) for all γ ∈ G(k) and
g ∈ G(A).

Let X ∈ g∞. Let f ∈ C∞(G(A)). Then we let

X.f(g∞, gf ) = d/dt|t=0f(g∞ exp(tX), gf ).

This gives the structure of a U(g∞)–module on C∞(G(A)). The subspaceC∞(G(k)\
G(A)) is a U(g∞)–submodule. In fact, both are invariant under the action of G(A)
by the right translation.

The function f ∈ C∞(G(A)) is K∞–finite (on the right) if spanC{(g∞, gf ) →
f(g∞k∞, gf ); k∞ ∈ K∞} is finite dimensional. Similarly, f ∈ C∞(G(A)) is
Z(g∞)–finite if the space spanned by z.f , z ∈ Z(g∞) is finite dimensional. In
other words, the annhilator of f in Z(g∞) has finite codimension. By a well–known
result, if f ∈ C∞(G(A)) is K∞–finite and Z(g∞)–finite, then it is real–analytic in
g∞. We write C∞(G(A))K∞,Z(g∞)−finite for the space of all f ∈ C∞(G(A)) which
are K∞–finite and Z(g∞)–finite on the right. Similarly, we define C∞(G(k) \
G(A))K∞,Z(g∞)−finite. The space C∞(G(A))K∞,Z(g∞)−finite is no longer G(A)–
invariant but it is (g∞,K∞)×G(Af )–module. Furthermore, the space C∞(G(k) \
G(A))K∞,Z(g∞)−finite is its submodule.

An automorphic form is a function f ∈ C∞(G(k) \G(A))K∞,Z(g∞)−finite which
satisfies certain growth condition (see [3], 4.2). The space of all automorphic forms
we denote by A(G(k) \G(A)). It is a (g∞,K∞)×G(Af )–submodule of C∞(G(k) \
G(A))K∞,Z(g∞)−finite.

One of the important ways to construct automorphic forms is through the Eisen-
stein series. This is what we explain next.

2. Construction of degenerate Eisenstein series

We write Bn = TnUn for the Borel subgroup of G, W for its Weyl group and ∆ for
the set of simple roots with respect to Bn.
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Let P = MN be a maximal standard k–parabolic subgroup of Sp2n. Assume
M � GL(m)× Sp2n′ . Let

V ⊂ A(Sp2n′(k) \ Sp2n′(A))

be an irreducible subspace of the space of automorphic forms. Let us call the
corresponding representation Π. Assume that V is concentrated on Bn′ . (That is,
there is a constant term along Bn′ that does not vanish.) Let V0 be the space of
constant terms along Bn′ of V . The map V → V0 defined by

ϕ� (g′ �→
∫

Un′ (k)\Un′ (A)

ϕ(u′g′)du′)

is an intertwining operator. In particular, since V is irreducible and concentrated
on Bn′ , the map is an isomorphism.

For t ∈ Tn′(A), we let
V t

0 = l(t)V0,

where
l(t)F (g′) = F (t−1g′).

The representation of
∏

v<∞ Sp2n′(kv) × (g′∞,K ′
∞) on V t

0 is irreducible and iso-
morphic to V0 (and to V ). The main point of that construction is that we can find
0 �= F ∈ ∑

t∈Tn′(A) V
t
0 and a character λ′ : Tn′(A) → C×, necessarily trivial on

Tn′(k), such that

F (t′g′) = δ1/2
Bn′ (t

′)λ′(t′)F (g′), t′ ∈ Tn′(A), g′ ∈ Sp2n′(A).

Hence, we have the following:

F (t′u′g′) = δ1/2
Bn′ (t

′)λ′(t′)F (g′), t′ ∈ Tn′(A), u′ ∈ Un′(A), g′ ∈ Sp2n′(A). (1)

The same identity holds for all functions in the subrepresentation–
∏

v<∞ Sp2n′(kv)×
(g′∞,K ′

∞) V ′ ⊂ ∑
t∈Tn′(A) V

t
0 generated by F . Clearly, V ′ is direct sum of irre-

ducible representations all isomorphic to V . Therefore, we may assume that V ′ is
itself irreducible. Then (1) implies the embedding

Π ↪→ IndSp2n′(A)
Bn′(A) (λ′). (2)

Let µ : k× \ A× → C× be a (unitary) grössencharacter. The representation
µ1GL(m,A) is an automorphic representation of GL(m,A) on the one dimensional
space W ⊂ A(GL(m, k) \GL(m,A)). The computation of the constant term W0 of
W along Borel subgroup BGL

m gives an embedding:

µ1GL(m,A) ↪→ IndGLm(A)
BGL

m (A)

(
| |s−(m−1)/2µ⊗ · · · ⊗ | |s+(m−1)/2µ

)
.

Fixing above data, we can realize the induction in stages:

IndSp2n(A)

M(A)N(A)| det |sµ1GL(m,A) ⊗Π) ↪→
IndSp2n(A)

Bn(A)

(
| |s−(m−1)/2µ⊗ · · · ⊗ | |s+(m−1)/2µ⊗ λ1 ⊗ · · · ⊗ λn′

)



188 G.Muić

which enables us to fix a nice realization for IndSp2n(A)

M(A)N(A)(| det |sµ1GL(m,A)⊗Π) with
analytic sections fs. Then we define a degenerate Eisenstein series as follows:

E(fs, g) =
∑

γ∈P (k)\Sp2n(k)

fs(γg) (3)

as opposed to the usual Eisenstein series:

E(fs, g) =
∑

γ∈Bn(k)\Sp2n(k)

fs(γg).

This series converges for Re(s) sufficiently large and continues to a meromorphic
function in s. Obviously it as an automorphic form inA(Sp2n(k)\Sp2n(A)). Finally,
its analytic behaviour is controlled by its constant term along Borel Bn. More
precisely, they have the same set of poles (counting with multiplicity).

The Eisenstein series given by (3) is concentrated on the Borel subgroup, and
its constant term along Bn is given by

E0(fs, g) =
∫

Un(k)\Un(A)

E(fs, ug)du =
∑

w∈W, w(∆\{α})>0

M(λ(s), w)fs(g). (4)

Here α is the unique simple root in N and we write

λ(s) = | |s−(m−1)/2µ⊗ · · · ⊗ | |s+(m−1)/2µ⊗ λ1 ⊗ · · · ⊗ λn′ .

We remind the reader that M(λ(s), w) that is the standard intertwining operator
IndSp2n(A)

Bn(A) (λ(s)) → IndSp2n(A)
Bn(A) (w(λ(s))) . ForRe(s) >> 0, it is given by the integral:

M(λ(s), w)fs(k) =
∫

Un(A)∩wUn(A)w−1\Un(A)

fs(w̃−1uk), k ∈ K, (5)

which does not depend on the choice of the representative w̃ for w in Sp2n(k).
This intertwining operators factors into a product of the local intertwining op-

erators that needs to be suitable normalized:

M(λ(s), w)fs = ⊗vA(λ(s)v, w̃)fs,v,

for factorizable fs = ⊗vfs,v.
The expression (4) is studied using local methods of [5] by normalizing inter-

twining operators as in [4] or [10].
The normalizing factor is defined by

r(λ(s)v, w) =
∏

α∈Σ+,w(α)<0

L(1, λ(s)v ◦ α∨)ε(0, λ(s)v ◦ α∨, ψv)
L(0, λ(s)v ◦ α∨) ,

where L and ε-factors are the usual one. We let

N (λ(s)v, w̃) = r(λ(s)v, w)A(λ(s)v, w̃).
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Since fs = ⊗vfs,v is unramified (that is, Kv–invariant) outside of finite set S of
places of k (containing all Archimedean places), we have

M(λ(s), w)fs

=


 ∏

α∈Σ+

w(α)<0

L(0, λ(s) ◦ α∨)
L(1, λ(s) ◦ α∨)ε(0, λ(s) ◦ α∨)


 ⊗v∈S N (λ(s)v, w̃)fs,v ⊗v �∈S f̃s,v. (6)

Here, for v �∈ S,
f̃s,v ∈ IndSp2n(kv)

Bn(kv) (w(λ(s)v))

is unramified and normalized.
Having written the expression for the global intertwining operator in the form

(3-6), we have local and global contribution to the poles of the intertwining operator
and hence to the poles of the degenerate Eisenstein series.

The global contribution that comes from the term in the parenthesis

∏
α∈Σ+,w(α)<0

L(0, λ(s) ◦ α∨)
L(1, λ(s) ◦ α∨)ε(0, λ(s) ◦ α∨)

is easily analyzed using some basic facts about automorphic L–functions L(s, µ)
(s ∈ C) attached to characters µ : k× \ A× → C×.

We can write µ as a restricted tensor product µ = ⊗vµv of local characters
µv : k×v → C×. We choose a non–trivial additive character ψ : k \ A → C× and
write it as a restricted product of local characters ψ =

∏′
v ψv. In the above set-

up, Tate associated local factors L(s, µv) and ε(s, µv, ψv) such that the product
ε(s, µ) =

∏
v ε(s, µv, ψv) is independent of ψ and is a finite product since for all but

finite places ψv and µv are unramified, and, in that case, ε(s, µv, ψv) = 1. Moreover,
we have that the product L(s, µ) =

∏
v L(s, µv) initially converges for Re(s) > 1

and extends to the whole complex plane as a meromorphic function satisfying the
following functional equation:

L(s, µ) = ε(s, µ)L(1− s, µ−1).

Moreover, if µ �= 1, then L(s, µ) is holomorphic. L(s,1) has simple poles at s = 0
and s = 1 and no other poles.

To controll the local contribution we can use local representation theory. This
is what we explain next.

3. Construction of automorphic representations

Let Wk be the Weil group of k. Let Ĝ(C) = SO(2n + 1,C) be the complex dual
group of G = Sp2n.

We say that an Arthur parameter ϕ :Wk×SL(2,C)→ Ĝ(C) is spherical unipotent
if it is trivial on Wk. Thus, it is of the form ϕ : SL(2,C) → Ĝ(C). We can find a
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unique increasing sequence of positive integers (m1, . . . ,mk),

k∑
i=1

2mi + 1 = 2n+ 1,

such that
ϕ = ⊕k

i=1V2mi+1. (7)

We remark that k must be odd.
Let λ(ϕ) : Tmin(k) \ Tmin(A) → C× be defined by:

(| |−mk ⊗ | |−mk+1 ⊗ · · · ⊗ | |mk−1)⊗ · · · ⊗ (| |−m3 ⊗ | |−m3+1 ⊗ · · · ⊗ | |m2)⊗
⊗ (| |−m1 ⊗ | |−m1+1 ⊗ · · · ⊗ | |−1).

We remark that for k = 1, the trivial representation 1Sp2m1
(A) has a unique

automorphic realization

j(V2m1+1) : 1Sp2m1
(A) → A2(Sp2m1

(k) \ Sp2m1
(A)).

The usual embedding

1Sp2m1
(A) ↪→ Ind

Sp2m1
(A)

Bm1 (A) (| |−m1 ⊗ · · · ⊗ | |−1)

is obtained computing the constant term along Bm1 on the space of constant func-
tions Image(j(V2m1+1)).

First, we describe the construction of the spherical component.
Theorem 1. Let k > 0 be an odd integer. Under above assumptions, the

unique irreducible K–spherical subquotient σ(ϕ) of the globally induced representa-
tion IndSp2n(A)

Bn(A) (λ(ϕ)) is its subrepresentation, and there is a non–zero embedding
j(ϕ) : σ(ϕ) → A2(Sp2n(k) \ Sp2n(A)) constructed recursively as follows. Let k ≥ 3.
Put ϕ′ = ⊕k−2

i=1 V2mi+1 and 2n′ + 1 =
∑k−2

i=1 2mi + 1. Consider the global induced
representation

Ind
Sp2n′+4mk−1+2(A)

P (A)

(| det |s1GL(2mk−1+1,A) ⊗ Image(j(ϕ′))
)
, (8)

where P is a standard parabolic subgroup of Sp2n′+4mk−1+2 with Levi factor
GL(2mk−1+1)×Sp2n′ . (At s = 0 this representation is unitary and therefore semi-
simple (of infinite length).) Then the map obtained from a degenerate Eisenstein
series

fs � E(fs, ·)|s=0 (9)

is an intertwining operator

Ind
Sp2n′+4mk−1+2(A)

P (A)

(
1GL(2mk−1+1,A) ⊗ Image(j(ϕ′))

) →
A(Sp2n′+4mk−1+2(k) \ Sp2n′+4mk−1+2(A)),
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which is non–trivial on the unique irreducible K–spherical subrepresentation of (8)
for s = 0; let us write X for the image of the K–spherical subrepresentation. Taking
the constant term of X along Borel Bn′+2mk−1+1 we obtain the following embedding:

X ↪→ Ind
Sp2n′+4mk−1+2(A)

Bn′+2mk−1+1(A)

(| |−mk−1 ⊗ | |−mk−1+1 ⊗ · · · ⊗ | |mk−1 ⊗ λ(ϕ′)) (10)

which we use to construct degenerate Eisenstein series

fs � E(fs, g) =
∑

γ∈P (k)\Sp2n(k)

fs(γg)

attached to the global induced representation

IndSp2n(A)

P (A)

(| det |s1GL(mk−mk−1,A) ⊗X
)
, (11)

where P is a standard parabolic subgroup of Sp2n with Levi factor GL(mk−mk−1)×
Sp2n′+4mk−1+2. Then the map

IndSp2n(A)
P (A)

(
| det |

mk−1+mk+1
2 1GL(mk−mk−1,A) ⊗X

)K

→ A(Sp2n(k) \ Sp2n(A))

given by

fmk−1+mk+1
2

�
(
s− mk−1 +mk + 1

2

)2

E(fs, ·)|s= mk−1+mk+1
2

(12)

is well–defined and non–trivial. Let E be a
∏

v<∞ Sp2n(kv)×(g∞,K∞)-subrepresen-
tation of A(Sp2n(k)\Sp2n(A)) generated by the image of the space of K–invariants.
Then E is irreducible, contained in the space of square–integrable automorphic forms
A2(Sp2n(k) \ Sp2n(A)), and it induces the required embedding j(ϕ) : σ(ϕ) � E ⊂
A2(Sp2n(k)\Sp2n(A)). Finally, the embedding σ(ϕ) ↪→ IndSp2n(A)

Bn(A) (λ(ϕ)) is obtained
computing the constant term of E along Bn.

Second, we can describe the generalization of this theorem for non–spherical
representations. This requires the construction of a particular local normalized
intertwining operator. (See [7], Theorem 6-21 for details.)

We end by the following remark which follows from Theorem 1. Let k = Q and
∞ be the unique Archimedean place of Q. Then σ(ϕ)∞ is automorphic and in fact

σ(ϕ)∞ ↪→ L2(Sp2n(Q) \ Sp2n(A))

with the image contained in the space of residual representations.
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Astérisque 171-172(1989), 13–71.



192 G.Muić
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