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1. Introduction and preliminaries

Throughout this paper, we always assume that H is a real Hilbert space, C is a
nonempty closed convex subset of H and φ : C × C → R is a real functional with
φ(x, x) = 0 for all x ∈ C. The “so called” equilibrium problem for functional φ is
to find a point x∗ ∈ C such that

φ(x∗, y) ≥ 0, ∀y ∈ C. (1.1)

Denote the set of solutions of the equilibrium problem (1.1) by EP (φ).
Equilibrium problem theory has emerged as an interesting branch of applicable

mathematics. This theory has become a rich source of inspiration and motivation
for the study of a large number of problems arising in economics, optimization and
operations research in a general and unified way.

Special Examples of Equilibrium Problem (1.1)

(1) If φ(x, y) = f(x) − f(y), ∀x, y ∈ C, where f : C → � is a real function,
then equilibrium problem (1.1) reduces to the following minimization problem
subject to implicit constraints:

find x∗ ∈ C such that f(x∗) ≤ f(x), ∀x ∈ C. (1.2)
∗The first and the second author were supported by the Natural Science foundation of Sichuan

Province.
†Department of Mathematics, Southwest University of Science and Technology, Mianyang,

Sichuan 62 1010, China, e-mail: yanglizxs@yahoo.com.cn
‡Department of Mathematics, College of Natural Science, Beijing Institute of Petro-Chemical

Technology, Beijing 102617, China, e-mail: jingailiu@hotmail.com
§Department of Mathematics, College of Natural Science, Chongqing Post Telecommunications

University, Chongqing, 40 0065, China, e-mail: tianyx@cqupt.edu.cn



254 L.Yang, J. A. Liu and Y.X.Tian

(2) If φ(x, y) = supζ∈B(x)〈ζ, y − x〉, where B : C → 2H is a set-valued maximal
monotone operator, then the equilibrium problem (1.1) is equivalent to the
following monotone inclusion problem, i.e.,

find x∗ ∈ C such that 0 ∈ B(x∗). (1.3)

(3) If B = T + NC , where T : C → H is a single-valued mapping and NC is the
normal cone to C, then the inclusion problem (1.3) is reduced to the classical
variational inequality problem, i.e.,

find x∗ ∈ C such that 〈T (x∗), x− x∗ 〉 ≥ 0, ∀x ∈ C. (1.4)

(4) In particular, if C is a closed convex cone, then the variational inequality
problem (1.4) is equivalent to the well-known complementarity problem of
mathematical programming:

find x∗ ∈ C such that T (x∗) ∈ C∗ and 〈T (x∗), x∗〉 = 0, (1.5)

where C∗ = {x ∈ H, 〈x, y〉 ≥ 0, ∀y ∈ C}.

(5) Let P : C → C be a given mapping. If φ(x, y) = 〈x − Px, y − x〉, then the
equilibrium problem (1.1) is equivalent to finding a fixed point x∗ ∈ C of P .

(6) Let I be a finite index set. For each i ∈ I, let Ci be a given set, fi : C → �
be a given function with C :=

∏
i∈I Ci. For x = (xi)i∈I ∈ C, we define

xi := (xj)j∈I,j �=i. The point x∗ = (x∗i)i∈I ∈ C is called a Nash equilibrium,
if for each i ∈ I the following inequalities hold:

fi(x∗) ≤ fi(xi
∗, yi), ∀yi ∈ Ci. (1.6)

Let us define φ : C × C → � by

φ(x, y) =
∑
i∈I

(fi(xi, yi) − fi(x)). (1.7)

Then x∗ ∈ C is a Nash equilibrium if and only if x∗ is a solution of equilibrium
problem (1.1).

(7) Let P, Q be two closed convex subsets of H , C = Q×P and L : C → C be a
convex-concave function. A point (x∗, p∗) ∈ C is called a saddle point for the
function L, if the following condition is satisfied:

L(x∗, p) ≤ L(x∗, p∗) ≤ L(x, p∗), ∀x ∈ Q, p ∈ P. (1.8)

Letting φ(w, v) = L(z, p)−L(x, y), where w = (z, y) and v = (x, p), it follows
that the saddle point problem (1.8) is equivalent to equilibrium problem (1.1)
and their sets of solutions coincide.
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There are a substantial number of papers on results for solving equilibrium
problems based on different relaxed notions and various compactness assumptions.
But up to now only few iterative methods to solve such problems have been done
(see, Antipin and Flam [1], Blum and Oettli [2], Moudafi [7], Moudafi et al. [8],
Combettes and Hirstoaga [4], Suzuki [9], Takahashi and Takahashi [10]).

Motivated and inspired by numerical methods developed by Antipin and Moudafi
[1, 7, 8] for optimization and monotone inclusion and the researches of Combettes-
Histoaga [4], Takahashi and Takahashi [10], the purpose of this paper is, by using
viscosity approximation methods, to consider a class of equilibrium problem which
includes variational inequalities as well as complementarity problems, convex opti-
mization, saddle point problem, problems of finding a zero of a maximal monotone
operator and Nash equilibria problems as special cases. Then we propose and in-
vestigate iterative methods for such problems.

For the purpose, first, we recall some definitions, lemmas and notations.

In the sequel, we use xn ⇀ x and xn → x to denote the weak convergence and
strong convergence of the sequence {xn} in H , respectively.

In a Hilbert space H , for any x ∈ H , there exists a unique nearest point in C,
denoted by PC(x), such that

||x− PCx|| ≤ ||x− y||, ∀y ∈ C.

Such a mapping PC from H onto C is called the metric projection. We know that
PC is nonexpansive. Further, for any x ∈ H and z ∈ C,

z = PC(x) ⇔ 〈x− z, z − y〉 ≥ 0, ∀y ∈ C.

For solving the equilibrium problem (1.1), let us assume that φ satisfies the
following conditions:

(A1) φ(x, x) = 0, ∀x ∈ C;

(A2) φ is monotone, i.e.,

φ(x, y) + φ(y, x) ≤ 0, ∀x, y ∈ C;

(A3) for any x, y, z ∈ C the functional x �→ φ(x, y) is upper-semicontinuous, i.e.,

lim
t→0+

φ(tz + (1 − t)x, y) ≤ φ(x, y), ∀x, y, z ∈ C;

(A4) y �→ φ(x, y) is convex and lower semi-continuous.

The following lemmas will be needed in proving our main results:
Lemma 1.1 [2]. Let H be a real Hilbert space, C be a nonempty closed convex

subset of H, φ : C × C → R be a functional satisfying the conditions (A1)-(A4),
then, for any given x ∈ H and r > 0, there exists z ∈ C such that

φ(z, y) +
1
r
〈y − z, z − x〉 ≥ 0, ∀y ∈ C.
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Lemma 1.2 [4]. Let all the conditions in Lemma 1.1 are satisfied. For any
r > 0 and x ∈ C, define a mapping Tr : H → C as follows:

Tr(x) = {z ∈ C : φ(z, y) +
1
r
〈y − z, z − x〉 ≥ 0, ∀y ∈ C}, x ∈ H.

Then the following holds:

(1) Tr is single-values;

(2) Tr is firmly nonexpansive, i.e.,

||Trx− Try||2 ≤ 〈Trx− Try, x− y〉, ∀x, y ∈ H,

and so ||Trx− Try|| ≤ ||x− y||, ∀x, y ∈ H.

(3) F (Tr) = EP (φ), ∀r > 0;

(4) EP (φ) is a closed and convex set.

Lemma 1.3 [6]. Let {an}, {bn} and {cn} be three nonnegative real sequences
satisfying the following condition:

an+1 ≤ (1 − λn)an + bn + cn, ∀n ≥ n0,

where n0 is some nonnegative integer, {λn} is a sequence in (0, 1) with
∑∞

n=0 λn =
∞, bn = ◦(λn) and

∑∞
n=0 cn < ∞, then limn→∞ an = 0.

Lemma 1.4 [5]. Let X be a uniformly convex Banach space, C be a nonempty
closed convex subset of X and T : C → X be a nonexpansive mapping with a fixed
point, then I − T is demiclosed in the sense that if {xn} is a sequence in C and if
xn ⇀ x and (I − T )xn → 0, then (I − T )x = 0.

Lemma 1.5 [3]. Let E ba a real Banach space, J : E → 2E∗
be the normalized

duality mapping and x, y be any given points in E, then the following conclusion
holds:

||x + y||2 ≤ ||x||2 + 2〈y, j(x + y)〉, ∀j(x + y) ∈ J(x + y).

Especially, if E = H is a real Hilbert space, then

||x + y||2 ≤ ||x||2 + 2〈y, x + y〉, ∀x, y ∈ H.

2. Main results

In this section, we shall prove our main theorems in this paper:
Theorem 2.1. Let H be a real Hilbert space, C be a nonempty closed convex

subset of H, φ : C × C → R be a functional satisfying the conditions (A1)- (A4),
T : C → H be a nonexpansive mapping with F (T )

⋂
EP (φ) �= ∅ and f : H → H

be a contraction mapping with a contractive constant α ∈ (0, 1). Let {αn} be a
sequence in (0, 1] and {rn} ⊂ (0,∞) be a real sequence satisfying the following
conditions:
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(i) αn → 0;
∑∞

n=0 αn = ∞; |1 − αn

αn+1
| → 0 as n → ∞

(ii) 0 < r < rn for all n ≥ 0 and
∑∞

n=0 |rn − rn+1| < ∞,
where r is a positive constant. For any given x0 ∈ H, let {xn} and {un} be the
sequences defined by




φ(un, y) +
1
rn

〈y − un un − xn〉 ≥ 0, ∀y ∈ C,

xn+1 = αnf(un) + (1 − αn)Tun,

(2.1)

for all n ≥ 0. Then xn → x∗ ∈ F (T )
⋂

EP (φ), where x∗ = PF (T )∩EP (φ)f(x∗).
Proof. First we point out that the sequences {xn} and {un} generated by (2.1)

are well-defined. Indeed, it follows from Lemma 1.1 that for given x0 ∈ H , there
exists u0 ∈ C such that

φ(u0, y) +
1
r0

〈y − u0 u0 − x0〉 ≥ 0, ∀y ∈ C,

Define x1 ∈ H by
x1 = α0f(u0) + (1 − α0)Tu0.

By Lemma 1.1 again, there exists u1 ∈ C such that

φ(u1, y) +
1
r1

〈y − u1 u1 − x1〉 ≥ 0, ∀y ∈ C,

Continuing this way, the sequences {xn} and {un} are obtained.
We divide the proof of Theorem 2.1 into six steps:
(I) First we prove that the mapping PF (T )∩EP (φ)f : H → C has a unique

fixed point. In fact, since f : H → H is a contraction and PF (T )∩EP (φ) : H →
F (T ) ∩ EP (φ) is also a contraction, we have

||PF (T )∩EP (φ)f(x) − PF (T )∩EP (φ)f(y)|| ≤ α||x− y||, ∀x, y ∈ H.

Therefore, there exists a unique x∗ ∈ C such that x∗ = PF (T )∩EP (φ)f(x∗).
(II) Now we prove that the sequences {xn} and {un} are bounded in H and

C, respectively. In fact, from the definition of Tr in Lemma 1.2, we know that
un = Trnxn. Therefore, for any p ∈ F (T )

⋂
EP (φ), we have

||un − p|| = ||Trnxn − Trnp|| ≤ ||xn − p||. (2.2)

Therefore, it follows from (2.1) and (2.2) that

||xn+1 − p|| = ||αn(f(un) − p) + (1− αn)(Tun − p)||
≤ αn||f(un) − f(p)||+ αn||f(p)− p|| + (1 − αn)||Tun − p||
≤ αnα||un − p|| + αn||f(p)− p|| + (1 − αn)||un − p||
≤ (1 − αn(1 − α))||xn − p|| + αn||f(p)− p||
≤ max{||xn − p||, ||f(p) − p||

1 − α
}

≤ · · ·
≤ max{||x0 − p||, ||f(p) − p||

1 − α
}.
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This implies that {xn} is a bounded sequence in H . By (2.2), we know that {un}
is a bounded sequence in C and so {Tun}, {f(un)} both are bounded sequences in
H . Let

M = sup
n≥0

{||un − xn|| + ||xn − y||2 + ||f(un)|| + T (un)||}, (2.3)

where y ∈ H is some given point.
(III) Now, we make an estimation for the sequence {||un+1 − un||}. By the

definition of Tr, un = Trnxn and un+1 = Trn+1xn+1. Hence we have

φ(un+1, y) +
1

rn+1
〈y − un+1, un+1 − xn+1〉 ≥ 0, ∀y ∈ C; (2.4)

φ(un, y) +
1
rn

〈y − un, un − xn〉 ≥ 0, ∀y ∈ C; (2.5)

Take y = un+1 in (2.5) and y = un in (2.4). Then, adding the resulting inequalities
and noting the condition (A2), we have

〈un+1 − un,
un − xn

rn
− un+1 − xn+1

rn+1
〉 ≥ 0

and hence

〈un+1 − un, un − un+1 + un+1 − xn − rn

rn+1
(un+1 − xn+1)〉 ≥ 0.

This implies that

||un+1 − un||2 ≤ 〈un+1 − un, xn+1 − xn + (1 − rn

rn+1
)(un+1 − xn+1)〉

≤ ||un+1 − un||{||xn+1 − xn||+ |1 − rn

rn+1
| · ||un+1 − xn+1||}

Thus, by the condition (iii), we have

||un+1 − un|| ≤ ||xn+1 − xn||+ |1 − rn

rn+1
|||un+1 − xn+1||

≤ ||xn+1 − xn||+ 1
r
|rn+1 − rn| ·M.

(2.6)

(IV) Now we prove that ||Tun − un|| → 0. In fact, it follows from (2.1) and
(2.6) that

||xn+1 − xn||
= ||αnf(un) + (1− αn)Tun − αn−1f(un−1) − (1 − αn−1)Tun−1||
= ||αnf(un) − αnf(un−1) + αnf(un−1)− αn−1f(un−1)

+ (1 − αn)Tun − (1 − αn)Tun−1 + (1 − αn)Tun−1 − (1 − αn−1)Tun−1||
≤ αn||f(un) − f(un−1)|| + 2|αn − αn−1|M + (1 − αn)||Tun − Tun−1||
≤ αnα||un − un−1|| + 2|αn − αn−1|M + (1 − αn)||un − un−1||
≤ (1 − αn(1 − α)||un − un−1||+ 2|αn − αn−1|M
≤ (1 − αn(1 − α)||xn − xn−1||+ 1

r
|rn − rn−1|M + 2αn|1 − αn−1

αn
|M.
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By condition (i), (ii) and Lemma 1.3 we have

lim
n→∞ ||xn+1 − xn|| = 0, as n → ∞. (2.7)

It follows from (2.6), (2.7) and the condition (ii) that

||un+1 − un|| → 0, as n → ∞. (2.8)

Since αn → 0 and {f(un)}, {Tun} both are bounded, from (2.7), we have

||xn − Tun|| ≤ ||xn − xn+1|| + ||xn+1 − Tun|
≤ ||xn − xn+1|| + αn||f(un)− Tun|| → 0.

(2.9)

Furthermore, for any p ∈ F (T )
⋂

EP (φ), from Lemma 1.2, we have

||un − p||2 = ||Trnxn − Trnp||2
≤ 〈Trnxn − Trnp, xn − p〉
= 〈un − p, xn − p〉
=

1
2
{||un − p||2 + ||xn − p||2 − ||xn − un||2}.

Hence we have
||un − p||2 ≤ ||xn − p||2 − ||xn − un||2. (2.10)

From the convexity of function x �→ ||x||2 and (2.10), we have

||xn+1 − p||2 ≤ αn||f(un)− p||2 + (1 − αn)||Tun − p||2
≤ αn||f(un)− p||2 + (1 − αn)||un − p||2
≤ αn||f(un)− p||2 + (1 − αn){||xn − p||2 − ||xn − un||2}

and so

(1 − αn)||xn − un||2
≤ ||xn − p||2 − ||xn+1 − p||2 + αn||f(un) − p||2
≤ (||xn − p|| − ||xn+1 − p||)(||xn − p|| + ||xn+1 − p||) + αn||f(un)− p||2
≤ (||xn − xn+1||)(||xn − p||+ ||xn+1 − p||) + αn||f(un) − p||2,

Since αn → 0, {xn} and {f(un)} are bounded and ||xn − xn+1|| → 0, we have

||xn − un|| → 0 as n → ∞. (2.11)

Therefore from (2.9) we have

||Tun − un|| ≤ ||Tun − xn||+ ||xn − un|| → 0. (2.12)

The desired conclusion is proved.
(V) Now, we prove that

lim sup
n→∞

〈f(x∗) − x∗, xn − x∗〉 ≤ 0,
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where x∗ = PF (T )∩EP (φ)f(x∗).
In fact, we can choose a subsequence {xnj} ⊂ {xn} such that

lim
nj→∞〈f(x∗) − x∗, xnj − x∗, 〉 = lim sup

n→∞
〈f(x∗)− x∗, xn − x∗〉. (2.13)

Since {unj} is bounded, without loss of generality, we can assume that unj ⇀ w ∈ C.
By (2.12), ||Tunj − unj || → 0. It follows from the demiclosed principle (see Lemma
1.4) that Tw = w and Tunj ⇀ w.

Next, we prove that w ∈ F (T )∩EP (φ). For the purpose it is sufficient to prove
that w ∈ EP (φ). In fact, since un = Trnxn, we have

φ(un, y) +
1
rn

〈y − un, un − xn〉 ≥ 0, ∀y ∈ C.

It follows from the condition (A2) that

1
rn

〈y − un, un − xn〉 ≥ φ(y, un)

and so
〈y − unj ,

unj − xnj

rnj

〉 ≥ φ(y, unj ). (2.14)

Since
||unj

−xnj
||

rnj
≤ ||unj

−xnj
||

r → 0 and unj ⇀ w, by virtue of the condition (A4),
we have

lim inf
nj→∞ φ(y, unj ) ≤ lim

nj→∞〈y − unj ,
unj − xnj

rnj

〉 = 0,

i.e.,
φ(y, w) ≤ 0, ∀y ∈ C. (2.15)

For any t ∈ (0, 1) and y ∈ C, let yt = ty + (1 − t)w. Then yt ∈ C and so we have
φ(yt, w) ≤ 0. It follows from the conditions (A1), (A4) and (2.15) that

0 = φ(yt, yt)
≤ tφ(yt, y) + (1 − t)φ(yt, w)
≤ tφ(yt, y).

This implies that φ(yt, y) ≥ 0 for all t ∈ (0, 1). Letting t → 0+, by the condition
(A3), we have

φ(w, y) ≥ 0, ∀y ∈ C.

This shows that w ∈ EP (φ) and so w ∈ F (T ) ∩ EP (φ).
Since x∗ = PF (T )∩EP (φ)f(x∗), unj ⇀ w and ||un − xn|| → 0 (see (2.11)), we

have

lim sup
n→∞

〈f(x∗) − x∗, xn − x∗〉 = lim
nj→∞〈f(x∗)− x∗, xnj − x∗〉

= lim
nj→∞〈f(x∗)− x∗, unj − (unj − xnj ) − x∗〉

= 〈f(x∗) − x∗, w − x∗〉 ≤ 0.

(2.16)
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The desired conclusion is proved.
(VI) Finally, we prove that xn → x∗ as n → ∞. In fact, it follows form (2.1)

and Lemma 1.5 that

||xn+1 − x∗||2 = ||αn(f(un) − x∗) + (1− αn)(Tun − x∗)||2
≤ (1 − αn)2||Tun − x∗||2 + 2αn〈f(un) − x∗, xn+1 − x∗〉
≤ (1− αn)2||un− x∗||2+ 2αn〈f(un) − f(x∗) + f(x∗)− x∗, xn+1 − x∗〉
≤ (1 − αn)2||un − x∗||2 + 2αnα||un − x∗|| · ||xn+1 − x∗||

+ 2αn〈f(x∗) − x∗, , xn+1 − x∗〉
≤ (1 − αn)2||un − x∗||2 + αnα{||un − x∗||2 + ||xn+1 − x∗||2}

+ 2αn〈f(x∗) − x∗, , xn+1 − x∗〉
and so, from (2.2),

||xn+1 − x∗||2 ≤ (1 − αn)2 + αnα

1 − αnα
||un − x∗||2 +

2αn〈f(x∗) − x∗, xn+1 − x∗〉
1 − αnα

≤ (1 − αn)2 + αnα

1 − αnα
||xn − x∗||2 +

2αn〈f(x∗) − x∗, xn+1 − x∗〉
1 − αnα

.

(2.17)

Since αn → 0, for any ε > 0, there exists a nonnegative integer n0 such that
1 − ααn > 1

2 for all n ≥ n0. Note that

(1 − αn)2 + αnα

1 − αnα
≤ 1 − αn + α2

n

1 − αnα

≤ (1 − αn(1 − α)) +
α2

n

1 − αnα

≤ (1 − αn(1 − α)) + 2α2
n, ∀n ≥ n0.

(2.18)

Thus, substituting (2.18) into (2.17) and noting (2.3), we have

||xn+1 − x∗||2 ≤ (1 − αn(1 − α))||xn − x∗||2 + 2α2
nM

+
2αn〈f(x∗) − x∗, , xn+1 − x∗〉

1 − αnα
, ∀n ≥ n0,

(2.19)

where M = supn≥0 ||xn − x∗||2.
Let

γn = max{0, 〈f(x∗) − x∗, xn+1 − x∗〉}, ∀n ≥ 0.

Then γn ≥ 0, ∀n ≥ 0.
Next, we prove that

γn → 0. (2.20)

In fact, it follows from (2.16) that for any given ε > 0, there exists n1 ≥ n0 such
that

〈f(x∗) − x∗, , xn+1 − x∗〉 < ε, ∀n ≥ n1.

and so we have
0 ≤ γn < ε, ∀n ≥ n1.
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By the arbitrariness of ε > 0, we get γn → 0. By virtue of {γn}, we can rewrite
(2.19) as follows:

||xn+1 − x∗||2
≤ (1 − αn(1 − α))||xn − x∗||2 + 2α2

nM + 4αnγn, ∀n ≥ n1.
(2.21)

Therefore, taking an = ||xn − x∗||2, λn = αn(1−α), bn = 2α2
nM +4αnγn, cn = 0,

by Lemma 1.4 and the conditions (i)–(ii), the sequence xn → x∗ as n → ∞. This
completes the proof. ✷

From Theorem 2.1, we can obtain the following results:

Theorem 2.2. Let H be a real Hilbert space, C be a nonempty closed convex
subset of H, T : C → H be a nonexpansive mapping with F (T ) �= ∅ and f : H → H
be a contraction mapping with a contractive constant α ∈ (0, 1). Let {αn} be a
sequence in [0, 1] satisfying the following conditions:

αn → 0;
∞∑

n=0

αn = ∞; |1 − αn

αn+1
| → 0.

For any x0 ∈ H, let {xn} be the sequences defined by
xn+1 = αnf(un) + (1− αn)T (un), ∀n ≥ 0, (2.22)

where un = PCxn for all n ≥ 0 and PC is the metric projection from H onto C.
Then xn → x∗ ∈ F (T ) as n → ∞, where x∗ = PF (T )f(x∗).

Proof. Taking φ(x, y) = 0 for all x, y ∈ C and {rn} = 1 for all n ≥ 1 in
Theorem 2.1, then we have

〈y − un, un − xn〉 ≥ 0, ∀y ∈ C.

This implies that un = PCxn. Therefore, the conclusion of Theorem 2.2 can be
obtained from Theorem 2.1 immediately. ✷

Theorem 2.3. Let H be a real Hilbert space, C be a nonempty closed convex
subset of H, φ : C × C → R be a functional satisfying the conditions (A1)-(A4)
such that EP (φ) �= ∅ and f : H → H be a contraction mapping with a contractive
constant α ∈ (0, 1). Let {αn} be a sequence in (0, 1] and {rn} ⊂ (0,∞) be a real
sequence satisfying the following conditions:

(i) αn → 0;
∑∞

n=0 αn = ∞; |1 − αn

αn+1
| → 0;

(ii) 0 < r < rn for all n ≥ 0 and
∑∞

n=0 |rn − rn+1| < ∞.
For any x0 ∈ H, let {xn} and {un} be the sequences defined by




φ(un, y) +
1
rn

〈y − un un − xn〉 ≥ 0, ∀y ∈ C,

xn+1 = αnf(un) + (1 − αn)un,

(2.23)

for all n ≥ 0. Then xn → x∗ ∈ EP (φ) as n → ∞, where x∗ = PEP (φ)f(x∗).
Proof. Taking T = I in Theorem 2.1, then F (T ) = H and so PF (T )∩EP (φ) =

PEP (φ). Therefore, the conclusion of Theorem 2.3 can be obtained from Theo-
rem 2.1. ✷
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