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Uniqueness of meromorphic functions sharing one

value with their derivatives

Abhijit Banerjee∗ and Pranab Bhattacharjee†

Abstract. In the paper we deal with the uniqueness problem of
meromorphic functions sharing a finite value with their derivatives. The
results in this paper improve those given by Lahiri-Sarkar, Liu-Yang
and others. In addition, a recent result of the first present author is
complemented in this paper.

Key words: meromorphic function, derivative, weighted sharing

AMS subject classifications: 30D35

Received September 18, 2007 Accepted August 10, 2008

1. Introduction definitions and results

In this paper by meromorphic functions we will always mean meromorphic functions
in the complex plane. We adopt the standard notations in the Nevanlinna theory
of meromorphic functions as explained in [3]. It will be convenient to let E denote
any set of positive real numbers of finite linear measure, not necessarily the same
at each occurrence. For any nonconstant meromorphic function h(z) we denote by
S(r, h) any quantity satisfying

S(r, h) = o(T (r, h)) (r −→ ∞, r �∈ E).

Let f and g be two nonconstant meromorphic functions and let a be a finite
complex number. We say that f and g share a CM, provided that f − a and g − a
have the same zeros with the same multiplicities. Similarly, we say that f and g
share a IM, provided that f−a and g−a have the same zeros ignoring multiplicities.
In addition, we say that f and g share ∞ CM, if 1/f and 1/g share 0 CM, and we
say that f and g share ∞ IM, if 1/f and 1/g share 0 IM (see [11]).

Throughout this paper, we denote by I any set of r ∈ (0,∞) with infinite linear
measure.

In 1996 R. Brück, proved the following result.
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Theorem A. [2] Let f be a nonconstant entire function. If f and f
′
share the

value 1 CM and if N(r, 0; f
′
) = S(r, f) then f

′−1
f−1 is a nonzero constant.

For entire functions of finite order, Yang proved the following result which im-
proved Theorem A.

Theorem B. [10] Let f be a nonconstant entire function of finite order and let
a(�= 0) be a finite constant. If f , f (k) share the value a CM then f(k)−a

f−a is a
nonzero constant, where k(≥ 1) is an integer.

In 1998, Zhang proved the following two results, which extended Theorem A.

Theorem C. [13]Let f be a non-constant meromorphic function. If f and f
′
share

the value 1 CM, and if

N(r,∞; f) +N(r, 0; f
′
) < (λ+ o(1))T (r, f

′
) (1.1)

for some real constant λ ∈ (0; 1
2 ), then f

′−1
f−1 is a nonzero constant.

Theorem D. [13] Let f be a non-constant meromorphic function. If f and f (k)

share the value 1 CM, and if

2N(r,∞; f) +N(r, 0; f
′
) +N(r, 0; f (k)) < (λ+ o(1))T (r, f (k)) (1.2)

for some real constant λ ∈ (0; 1), then f(k)−1
f−1 is a nonzero constant.

We now give the following two examples.

Example 1.1. f(z) = 1 + tanz.

Clearly f(z) − 1 = tanz and f
′
(z) − 1 = tan2z share 1 IM and N(r,∞; f) +

N(r, 0; f
′
) = N(r,−1; e2iz) + N(r, 0; sec2(z)) ∼ 2T (r, eiz). Again it follows from

Mohon’ko’s Lemma (see [9]) that T (r, f
′
) = 2T (r, sec z)+O(1) = 4T (r, eiz)+O(1).

Example 1.2. f(z) = 2
1−e−2z .

Clearly f
′
(z) = − 4e−2z

(1−e−2z)2 . Here f−1 = 1+e−2z

1−e−2z and f ′−1 = − (1+e−2z)2

(1−e−2z)2 . Here

N(r,∞; f)+N(r, 0; f
′
) = N(r, 1; e2z) ∼ 2T (r, ez) and from Mohon’ko’s Lemma {See

[9]} we have T (r, f
′
) = 4T (r, ez) +O(1).

So when λ ≥ 1
2 the condition (1.1) satisfies but the conclusion of Theorem C

ceasess to hold. From the above two examples it is clear that in Theorem C when
the nature of sharing the value 1 is relaxed from CM to IM the condition (1.1) can
not be further weakened.

Throughout this paper we also need the following ten definitions.

Definition 1.1. [7] Let p be a positive integer and a ∈ C ∪ {∞}.
(i) N(r, a; f |≥ p) (N(r, a; f |≥ p)) denotes the counting function (reduced count-

ing function) of those a-points of f whose multiplicities are not less than p.
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(ii) N(r, a; f |≤ p) (N(r, a; f |≤ p)) denotes the counting function (reduced count-
ing function) of those a-points of f whose multiplicities are not greater than p.

Definition 1.2. {6, cf.[12]} For a ∈ C ∪ {∞} and a positive integer p we denote
by Np(r, a; f) the sum N(r, a; f) + N(r, a; f |≥ 2) + . . .N(r, a; f |≥ p). Clearly
N1(r, a; f) = N(r, a; f).

Definition 1.3. [6] Let a, b ∈ C ∪ {∞}. We denote by N(r, a; f | g = b) the
counting function of those a-points of f , counted according to multiplicity, which
are b-points of g.

Definition 1.4. [6] Let a, b ∈ C ∪ {∞}. We denote by N(r, a; f | g �= b) the
counting function of those a-points of f , counted according to multiplicity, which
are not the b-points of g.

Definition 1.5. [14] For a positive integer p and a ∈ C ∪ {∞} we put

δp(a; f) = 1 − lim sup
r−→∞

Np(r, a; f)
T (r, f)

.

Clearly 0 ≤ δ(a; f) ≤ δp(a; f) ≤ δp−1(a; f) . . . ≤ δ2(a; f) ≤ δ1(a; f) = Θ(a; f).

Definition 1.6. [1] Let f and g be two nonconstant meromorphic functions such
that f and g share the value a IM. Let z0 be an a-point of f with multiplicity
p, an a-point of g with multiplicity q. We denote by NL(r, a; f) the counting
function of those a-points of f and g where p > q, by N1)

E (r, a; f) the counting

function of those a-points of f and g where p = q = 1 and by N
(2

E (r, a; f) the
counting function of those a-points of f and g where p = q ≥ 2, each point in
these counting functions is counted only once. In the same way we can define
NL(r, a; g), N1)

E (r, a; g), N
(2

E (r, a; g).

Definition 1.7. [4, 5] Let f , g share a value a IM. We denote by N∗(r, a; f, g) the
reduced counting function of those a-points of f whose multiplicities differ from the
multiplicities of the corresponding a-points of g.

Clearly N∗(r, a; f, g) ≡ N∗(r, a; g, f) and N∗(r, a; f, g) = NL(r, a; f)+NL(r, a; g).

Definition 1.8. Let a ∈ C ∪ {∞} and m, n be two positive integers. We denote
by N(r, a; f | m ≤ f ≤ n) (N(r, a; f | m ≤ f ≤ n)) the counting function (reduced
counting function) of those a-points of f whose multiplicity p satisfies m ≤ p ≤ n.
Definition 1.9. Let a ∈ C ∪ {∞} and m be a positive integer. We denote by
N(r, a; f | g �= a |≥ m) the reduced counting function of those a-points of f which
are not the a points of g whose multiplicities are ≥ m.

To state the next results we require the following definition known as weighted
sharing of values which measure how close a shared value is to be shared IM or to
be shared CM.

Definition 1.10. [4, 5] Let k be a nonnegative integer or infinity. For a ∈ C∪{∞}
we denote by Ek(a; f) the set of all a-points of f , where an a-point of multiplicity
m is counted m times if m ≤ k and k + 1 times if m > k. If Ek(a; f) = Ek(a; g),
we say that f, g share the value a with weight k.
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The definition implies that if f , g share a value a with weight k then z0 is an
a-point of f with multiplicity m (≤ k) if and only if it is an a-point of g with
multiplicity m (≤ k) and z0 is an a-point of f with multiplicity m (> k) if and only
if it is an a-point of g with multiplicity n (> k), where m is not necessarily equal
to n.

We write f , g share (a, k) to mean that f , g share the value a with weight k.
Clearly if f , g share (a, k), then f , g share (a, p) for any integer p, 0 ≤ p < k. Also
we note that f , g share a value a IM or CM if and only if f , g share (a, 0) or (a,∞)
respectively.

In 2004, Lahiri and Sarkar proved the following two results in the direction of
weighted sharing of values which improved the results in [13].

Theorem E. [7] Let f be a nonconstant meromorphic function and k be a positive
integer. If f and f (k) share (1, 2) and

2N(r,∞; f) +N2

(
r, 0; f (k)

)
+N2(r, 0; f

′
) < (λ + o(1)) T

(
r, f (k)

)
(1.3)

for r ∈ I, where 0 < λ < 1, then f(k)−1
f−1 ≡ c for some constant c ∈ C/{0}.

Theorem F. [7] Let f be a nonconstant meromorphic function and k be a positive
integer. If f and f (k) share (1, 1) and

2N(r,∞; f) +N2

(
r, 0; f (k)

)
+ 2N(r, 0; f) < (λ+ o(1)) T

(
r, f (k)

)
(1.4)

for r ∈ I, where 0 < λ < 1, then f(k)−1
f−1 ≡ c for some constant c ∈ C/{0}.

Recently the first present author proved the following result, which shows that
the conditions (1.3) and (1.4) in Theorem E and Theorem F can be further weakened
if l ≥ k.
Theorem G. [1] Let f be a nonconstant meromorphic function and k(≥ 1), l(≥ 1)
be integers and a ( �≡ 0,∞) be a constant. Suppose that f − a and f (k) − a share
(0, l). If l(≥ k) and

2N(r,∞; f) +N2

(
r, 0; f (k)

)
+N

(
r, 0; (f/a)

′)
< (λ+ o(1)) T

(
r, f (k)

)
(1.5)

for r ∈ I, where 0 < λ < 1 then f(k)−a
f−a is a nonzero constant.

Regarding Theorem G, it is natural to ask the following question.
Question 1.1 What can be said concerning the condition (1.5), provided l < k ?

Further results in this direction have been obtained by Liu and Yang in the
following four theorems.

Theorem H. ([see [8], Theorem 1.2]) Let f be a nonconstant meromorphic func-
tion. If f and f

′
share (1, 0) and if

N(r,∞; f) +N
(
r, 0; f

′)
< (λ+ o(1)) T

(
r, f (k)

)
(1.6)

for r ∈ I, where 0 < λ < 1
4 , then

f
′−1

f−1 ≡ c for some constant c ∈ C/{0}.
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Theorem I. ([see [8], Theorem 1.4]) Let f be a nonconstant meromorphic function
and k be a positive integer. If f and f (k) share (1, 0) and

(3k + 6)N(r,∞; f) + 5N(r, 0; f) < (λ+ o(1)) T
(
r, f (k)

)
(1.7)

for r ∈ I, where 0 < λ < 1, then f(k)−1
f−1 ≡ c for some constant c ∈ C/{0}.

Theorem J. ([see [8], Theorem 1.6]) Let f be a nonconstant meromorphic function
and k be a positive integer. If f and f (k) share (a,∞), where a �= 0,∞ is a constant
and satisfy one of the following conditions,

(i) δ(0; f) + Θ(∞; f) > 4k
2k+1 ,

(ii) N(r,∞; f) +N(r, 0; f) < (λ+ o(1))T (r, f),
(
0 < λ < 2

2k+1

)
,

(iii)
(
k + 1

2

)
N(r,∞; f) + 3

2N(r, 0; f) < (λ+ o(1)) T (r, f), (0 < λ < 1)

then f ≡ f (k).

Theorem K. ([see [8], Theorem 1.7]) Let f be a nonconstant meromorphic func-
tion. If f and f

′
share (a, 0), where a �= 0, ∞ is a constant and if

N(r,∞; f) +N(r, 0; f) < (λ+ o(1)) T (r, f),
(

0 < λ <
2
3

)
, (1.8)

then f ≡ f ′
.

In this paper we will establish the following three theorems of which Theorem 1.1
and Theorem 1.3 improve Theorem E, Theorem F and Theorem I and deal with
Question 1.1, Theorem 1.2 improves Theorem J and Theorem K. Following theorems
are the main results of the paper.

Theorem 1.1. Let f be a nonconstant meromorphic function, k(> 1), l(≥ 0) in-
tegers and a ( �≡ 0,∞) be a constant. Suppose that f − a and f (k) − a share (0, l).
If k > l > 0 and

2N(r,∞; f) +N2

(
r, 0; f (k)

)
+N(r, 0; f |≥ 2) +N

(
r, 0; f

′ | f �= 0 |≥ l
)

< (λ + o(1)) T
(
r, f (k)

)
(1.9)

or l = 0, k > 1 and

(3k + 6)N(r,∞; f) +Nk+2(r, 0; f) + 2Nk+1(r, 0; f) +N2(r, 0; f) +N(r, 0; f)

< (λ + o(1)) T
(
r, f (k)

)
(1.10)

for r ∈ I, where 0 < λ < 1, then f(k)−a
f−a is a nonzero constant.
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Theorem 1.2. Let f be a nonconstant meromorphic function and k(≥ 1), l(≥ 0)
two integers. If f and f (k) share (a, l), where a �= 0, ∞ is a constant, l ≥ k− 1 and
satisfy one of the following conditions,

(i) δ(0; f) + 2δk(0; f) + (2k + 1)Θ(∞; f) > 2k + 2,

(ii) N(r,∞; f) + 1
2k+1N(r, 0; f) + 2

2k+1Nk(r, 0; f) < (λ+ o(1)) T (r, f),(
0 < λ < 2

2k+1

)
,

(iii)
(
k + 1

2

)
N(r,∞; f)+ 1

2N(r, 0; f)+Nk(r, 0; f) < (λ+ o(1)) T (r, f), (0 < λ < 1)

then f ≡ f (k).

Theorem 1.3. Let f be a nonconstant meromorphic function and k(≥ 2), l(≥ 0)
integers. If f and f (k) share (a, l), where a �= 0, ∞ is a constant l < k − 1 and
satisfy the following condition(

2k2+l+1
2(l+1)

)
N(r,∞; f)+ 1

2N(r, 0; f)+ k
l+1Nk(r, 0; f) < (λ+ o(1))T (r, f), (0 < λ < 1)

then f ≡ f (k).

Remark 1.1. Putting l = 0 and k = 1 in Theorem 1.2 (ii) we obtain the conclusion
of Theorem K under a weaker condition than (1.8).

2. Lemmas

In this section we present some lemmas which will be needed in the sequel. Let
f be a nonconstant meromorphic function. Henceforth we shall denote by H the
following function.

H =

(
f

′′

f ′ − 2f
′

f − 1

)
−
(
f (2+k)

f (1+k)
− 2f (1+k)

f (k) − 1

)
. (2.1)

Lemma 2.1. [3] Let f be a nonconstant meromorphic function. Then

T
(
r, f (k)

)
≤ (1 + k)T (r, f) + S(r, f).

Lemma 2.2. If for two positive integers p, and k, Np

(
r, 0; f (k) | f �= 0

)
denotes

the counting function of those zeros of f (k) which are not the zeros of f , where a
zero of f (k) with multiplicity m is counted m times if m ≤ p and p times if m > p
then

Np

(
r, 0; f (k) | f �= 0

)
≤ Nk(r, 0; f) + kN(r,∞; f)

−
∞∑

m=p+1

N

(
r, 0;

f (k)

f
|≥ m

)
+ S(r, f).



Uniqueness of meromorphic functions 283

Proof. By the first fundamental theorem and Milloux theorem ([see [3], Theo-
rem 3.1]) we get

N
(
r, 0; f (k) | f �= 0

)
≤ N

(
r, 0;

f (k)

f

)

≤ N
(
r,∞;

f (k)

f

)
+m(r,

f (k)

f
) +O(1)

≤ N(r, 0; f |< k) + kN(r, 0; f |≥ k) + kN(r,∞; f) + S(r, f)
= Nk(r, 0; f) + kN(r,∞; f) + S(r, f).

Now

Np

(
r, 0;

f (k)

f

)
+

∞∑
m=p+1

N

(
r, 0;

f (k)

f
|≥ m

)
= N

(
r, 0;

f (k)

f

)

≤ Nk(r, 0; f) + kN(r,∞; f) + S(r, f).

Since Np

(
r, 0; f (k) | f �= 0

) ≤ Np

(
r, 0; f(k)

f

)
, the lemma follows from above.

Lemma 2.3. [14] For two positive integers p and k

Np

(
r, 0; f (k)

)
≤ Np+k(r, 0; f) + kN(r,∞; f) + S(r, f).

Lemma 2.4. [9] Let f be a nonconstant meromorphic function and let

R(f) =

n∑
k=0

akf
k

m∑
j=0

bjf j

be an irreducible rational function in f with constant coefficients {ak} and {bj}where
an �= 0 and bm �= 0 Then

T (r,R(f)) = dT (r, f) + S(r, f),

where d = max{n,m}.

Lemma 2.5. [see [3],p.68] Suppose that f is meromorphic and transcendental in
the plane and that

fnP = Q

where P and Q are differential polynomials in f and the degree of Q is at most n.
Then

m(r, P ) = S(r, f) as r −→ +∞
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3. Proofs of the theorems

Proof of Theorem 1.1. Without loss of generality we assume that a = 1, since
otherwise we can start the proof with f

a and f(k)

a .
Case 1 Let H �≡ 0.
Subcase 1.1: l ≥ 1. From (2.1) we get

N(r,∞;H) ≤ N(r,∞; f) +N∗
(
r, 1; f, f (k)

)
+N

(
r, 0; f (k) |≥ 2

)
+N

(
r, 0; f

′)
−N(r, 1; f |≥ 2) +N0

(
r, 0; f (1+k)

)
, (3.1)

where N0

(
r, 0; f (1+k)

)
is the reduced counting function of those zeros of f (1+k)

which are not the zeros of f
′
(f (k) − 1)f (k).

Lemma 2.1 implies that S
(
r, f (k)

)
can be replaced by S(r, f). Let z0 be a simple

zero of f − 1. Then z0 must be a simple zero of f (k) − 1 and a zero of H . So

N(r, 1; f |= 1) ≤ N(r, 0;H) ≤ N(r,∞;H) + S(r, f) (3.2)

Hence

N
(
r, 1; f (k)

)
= N(r, 1; f) (3.3)

= N(r, 1; f |= 1) +N(r, 1; f |≥ 2)
≤ N(r,H) +N(r, 1; f |≥ 2) + S(r, f)

≤ N(r,∞; f) +N
(
r.0; f (k) |≥ 2

)
+N(r, 1; f |≥ l + 1)

+N
(
r, 0; f

′)
+N0

(
r, 0; f (1+k)

)
+ S(r, f)

≤ N(r,∞; f) +N
(
r.0; f (k) |≥ 2

)
+N

(
r, 0; f

′)
+N

(
r, 0; f

′ | f �= 0 |≥ l
)

+N0

(
r, 0; f (1+k)

)
+ S(r, f)

Suppose N⊗(r, 0; f (1+k)) is the reduced counting function of those zeros of f (1+k)

which are not the zeros of (f (k) − 1)f (k).
Since

N
(
r, 0; f

′)
+N

(
r, 0; f

′ | f �= 0 |≥ l
)

= N(r, 0; f |≥ 2) +N
(
r, 0; f

′ | f �= 0
)

+N
(
r, 0; f

′ | f �= 0 |≥ l
)
,

by the second fundamental theorem, (3.3) and the above explanation we get

T (r, f (k)) ≤ N
(
r,∞; f (k)

)
+N

(
r, 0; f (k)

)
+N

(
r, 1; f (k)

)
−N⊗

(
r, 0; f (1+k)

)
+ S

(
r, f (k)

)
≤ 2N(r,∞; f) +N2

(
r, 0; f (k)

)
+N(r, 0; f |≥ 2)

+N
(
r, 0; f

′ | f �= 0
)

+N
(
r, 0; f

′ | f �= 0 |≥ l
)

+ S(r, f),
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which contradicts (1.9).
Subcase 1.2: l = 0. In this case (3.2) reduces to

N
1)
E (r, 1; f) ≤ N(r,∞;H) + S(r, f) (3.4)

Since k ≥ 2 and f and f (k) share (1, 0) it follows that f − 1 may have multiple
zeros.

So in view of Definition 1.7 we get from (3.1) and (3.4) that

N
(
r, 1; f (k)

)
= N(r, 1; f) (3.5)

= N
1)
E (r, 1; f) +N

(2

E (r, 1; f) +NL(r, 1; f) +NL

(
r, 1; f (1+k)

)
≤ N(r,H) +N(r, 1; f |≥ 2) +NL

(
r, 1; f (1+k)

)
+ S(r, f)

≤ N(r,∞; f) +N
(
r.0; f (k) |≥ 2

)
+NL(r, 1; f)

+2NL

(
r, 1; f (k)

)
+N

(
r, 0; f

′)
+N0

(
r, 0; f (1+k)

)
+ S(r, f).

Hence by the second fundamental theorem we get in view of Lemmas 2.2, 2.3 and
(3.5) that

T
(
r, f (k)

)
≤ N

(
r,∞; f (k)

)
+N

(
r, 0; f (k)

)
+N

(
r, 1; f (k)

)
−N⊗

(
r, 0; f (1+k)

)
+ S(r, f)

≤ 2N(r,∞; f) +N2

(
r, 0; f (k)

)
+N

(
r, 0; f

′ | f �= 0
)

+N
(
r, 0; f

′)
+2N

(
r, 0;

(
f (k)

)′

| f (k) �= 0
)

+ S(r, f)

≤ (4 + k)N(r,∞; f) +N2+k(r, 0; f) +N(r, 0; f) +N2(r, 0; f)
+2
(
N1+k(r, 0; f) + (1 + k)N(r,∞; f)

)
+ S(r, f),

which contradicts (1.10).
Case 2 Let H ≡ 0. On integration we get from (2.1)

1
f − 1

≡ C

f (k) − 1
+D, (3.6)

where C, D are constants and C �= 0. If z0 be a pole of f with multiplicity p then
it is a pole of f (k) with multiplicity p+ k. This contradicts (3.6). It follows that f
has no pole and so f is entire function here. Let D �= 0. Then from (3.6) we get

f (k) =
(C −D) f +D + 1 − C

−D f +D + 1
(3.7)

Therefore
−Dff (k) = (C −D)f +D + 1 − C − (D + 1)f (k) (3.8)
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Hence by Lemma 2.5 we obtain

m(r, f (k)) = T (r, f (k)) = S(r, f). (3.9)

So using Lemma 2.4 from (3.6) we get T (r, f) = T (r, f (k))+S(r, f) = S(r, f), which
is absurd. Hence D = 0 and so f(k)−1

f−1 = C. This proves the theorem.
Proof of Theorem 1.2. Suppose f �≡ f (k). Let

F =
f

f (k)

Then by the first fundamental theorem we have

T (r, F ) = m
(
r,

1
F

)
+N(r, 0;F ) = N

(
r,∞;

f (k)

f

)
+ S(r, f). (3.10)

Since l ≥ k − 1. We first note that f − a has no zero of multiplicity > k since
otherwise that will be a zero of f (k), which is impossible. If there exists a zero of
f−a of multiplicity p then that will be zero of F −1 of multiplicity at least l+1 ≥ k
when p > l and at least p when p ≤ l. When l ≥ k, clearly f − a and f (k) − a share
(0,∞). Also when l = k − 1 the zeros of f − a whose multiplicities are different
from that of f (k) − a is exactly of order l + 1 = k. It follows that

N(r, a; f) ≤ N
(
r,∞;

f (k)

f − f (k)

)
≤ T (r, F ) +O(1). (3.11)

Again from the second fundamental theorem and Milloux theorem we obtain

m

(
r,

1
f

)
+m

(
r,

1
f − a

)
< m

(
r,

1
f (k)

)
+ S(r, f) (3.12)

≤ T
(
r, f (k)

)
−N

(
r, 0; f (k)

)
+ S(r, f)

≤ N
(
r, 0; f (k)

)
+N

(
r,∞; f (k)

)
+N

(
r, a; f (k)

)
−N

(
r, 0; f (k)

)
+ S(r, f)

≤ N(r,∞; f) +N
(
r, a; f (k)

)
+ S(r, f).

Using the first fundamental theorem, Lemma 2.2 and (3.10) we have from (3.12)

2T (r, f) ≤ N(r,∞; f) +N(r, 0; f) +N(r, a; f) +N(r, a; f) + S(r, f) (3.13)
≤ N(r,∞; f) +N(r, 0; f) + 2

(
Nk(r, 0; f) + kN(r,∞; f)

)
+ S(r, f)

= (2k + 1)N(r,∞; f) +N(r, 0; f) + 2Nk(r, 0; f) + S(r, f),

which contradicts the conditions (i) and (ii) of the theorem. Hence f = f (k).
Similarly proceeding in the same way as done in (3.13) we can obtain

T (r, f) ≤ (k +
1
2

)N(r,∞; f) +
1
2
N(r, 0; f) +Nk(r, 0; f) + S(r, f), (3.14)

which contradicts (iii) of the theorem. Hence f ≡ f (k).
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Proof of Theorem 1.3. Suppose f �≡ f (k). Let

F =
f

f (k)

Here l ≤ k−2. Let z0 be a zero of f −a with multiplicity p satisfying l+2 ≤ p ≤ k.
Then z0 may be a zero of f (k) − a of multiplicity l + 1 and so it is counted in
the counting function of F − 1 at most k

l+1p times. Hence in view of the first
fundamental theorem, Lemma 2.2 we observe that (3.11) changes to

N(r, a; f) ≤ k

l + 1
N

(
r,∞;

f (k)

f − f (k)

)

≤ k

l + 1
T (r, F ) + O(1)

≤ k

l + 1
N

(
r,∞;

f (k)

f

)
+ S(r, f)

≤ k

l + 1
N

(
r, 0;

f (k)

f

)
+ S(r, f)

≤ k

l + 1
[
Nk(r, 0; f) + kN(r,∞; f)

]
+ S(r, f). (3.15)

Using (3.15) we have from (3.12)

2T (r, f) ≤ N(r,∞; f) +N(r, 0; f) +N(r, a; f) +N(r, a; f) + S(r, f)
≤ N(r,∞; f) +N(r, 0; f) + 2N(r, a; f) + S(r, f)

≤ 2k2 + l + 1
l + 1

N(r,∞; f) +N(r, 0; f) +
2k
l + 1

Nk(r, 0; f) + S(r, f).

That is

T (r, f) ≤ 2k2 + l+ 1
2(l + 1)

N(r,∞; f) +
1
2
N(r, 0; f) +

k

l+ 1
Nk(r, 0; f) + S(r, f)

which contradicts the given inequality in the Theorem. So f = f (k).
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