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Common fixed point theorems for occasionally
weakly compatible mappings satisfying a
generalized contractive condition

MUJAHID ABBAS* AND B.E. RHOADEST

Abstract. We obtain several fized point theorems for a class of
operators called occasionally weakly compatible maps defined on a sym-
metric space satisfying a generalized contractive condition. These results
establish some of the most general fixed point theorems for four maps.
Our theorem generalizes Theorem 1 of [A. Aliouche, A common fized
point theorem for weakly compatible mappings in symmetric spaces sat-
isfying a contractive condition of integral type, J. Math. Anal. Appl.
322(2006),796-802] and Theorem 1 of [X. Zhang, Common fized point
theorems for some new generalized contractive type mappings, J. Math.
Anal. Appl. 333(2007), 780-786] and those contained therein.
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Prior to 1968 all work involving fixed points used the Banach contraction prin-
ciple. In 1968 Kannan [10] proved a fixed point theorem for a map satisfying a
contractive condition that did not require continuity at each point. This paper was
a genesis for a multitude of fixed point papers over the next two decades. (see
e.g. [12] for a listing and comparison of many of these definitions). Sessa [15]
coined the notion of weakly commuting. Then Jungck generalized this idea, first
to compatible mappings [7] and then to weakly compatible mappings [8]. There
are examples that show that each of these generalizations of commutativity is a
proper extension of the previous definition. We shall list here only the definition
of weakly compatible. Also during this time a number of authors established fixed
point theorems for pairs of maps (see for example [4], [11] and references therein).
Thagafi and Shahzad [2] gave a definition which is proper generalization of nontriv-
ial weakly compatible maps which have coincidence points. The second author [9]
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proved two fixed point theorems involving more general contractive conditions (see
also [16]). Recently, Zhang [17] obtained common fixed point theorems for some
new generalized contractive type mappings. The aim of this paper is to obtain some
fixed points theorem involving occasionally weakly compatible maps in the setting
of a symmetric space satisfying a generalized contractive condition. Our results
complement, extend and unify several well known results.

Two maps S and T are said to be weakly compatible if they commute at coin-
cidence points.

Definition 1. Let X be a set, f,g selfmaps of X. A point x in X is called a
coincidence point of f and g iff fr = gx. We shall call w = fx = gz a point of
coincidence of f and g.

The following concept [2] is a proper generalization of nontrivial weakly com-
patible maps which have a coincidence point.

Definition 2. Two selfmaps f and g of a set X are occasionally weakly com-
patible (owe) iff there is a point x in X which is a coincidence point of f and g at
which f and g commute.

We shall also need the following lemma from [9].

Lemma 1. Let X be a set, f,g owc selfmaps of X. If f and g have a unique
point of coincidence, w := fxr = gz, then w is a unique common fized point of f
and g.

Our theorems are proved in symmetric spaces, which are more general than
metric spaces.

Definition 3. Let X be a set. A symmetric on X is a mapping r : X X X —
[0,00) such that

r(z,y) =0 ff z=vy, and r(x,y)=r(y,x) for zyeX.

Let A € (0,00], R = [0, A). Let F : R, — R satisfy
(i) F(0) =0 and F(t) > 0 for each t € (0, A) and
(ii) F is nondecreasing on R}.

Define, f [0, A) = {F : R} — R : F satisfies (i) — (44)}.
Let A € (0,00]. Let ¥ : R}{ — R satisfies

(i) ©(t) <t for each t € (0, A) and
(ii) v is nondecreasing.

Define, ¥[0, A) = {¢ : R, — R : F satisfies (i) — (ii) above}.

For some examples of mappings F : R}y — R : F which satisfies (i) — (i7), we
refer to [17].

Theorem 1. Let X be a set with a symmetric r. Let D = sup{r(z,y) : z,y €
X}. Suppose that f,g,S,T are selfmaps of X and that the pairs {f,S} and {g,T}
are each owc. If for each x,y € X for which fx # gy we have

F(r(fz,gy)) < (F(M(z,y))), (1)
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for each x,y € X, F € F[0,A) and ¢ € V[0, F(A —0)), where A =D if D = c©
and A> D if D < oo, and

M(z,y) := max{r(Sxz,Ty),r(Sz, fx),r(Ty, gy),r(Sz, gy),r(Ty, fz)},

then there is a unique point w € X such that fw = gw = w and a unique point
z € X such that gz =Tz = z. Moreover, z = w, so that there is a unique common
fized point of f,g,S, and T.

Proof. Since the pairs {f, S} and {g,T} are each owc, there exist points
z,y € X such that fx = Sx and gy = Ty. We claim that fx = gy. For, otherwise,
consider,

M(z,y) := max{r(Sz, Ty), r(Sz, fz),(Ty, gy), r(Sz, gy), r(Ty, fz)} = r(fz, gy)-

Then (1) implies

F(r(fz,gy)) < »(F(M(z,y))) = »(F(r(fz,gy))) < F(r(fz,gy))

a contradiction. Therefore, fo = gy; ie., fr = Sz = gy = Ty. Moreover, if there
is another point z such that fz = Sz, then, using (1) it follows that fz = Sz =
gy=Ty,or fr = fz, and w = fxr = Sx is the unique point of coincidence of f and
S. By Lemma 1, w is the only common fixed point of f and S. By symmetry there
is a unique point z € X such that z = gz = T'z.

Suppose that w # z. Using (1),

F(r(w,z)) = F(r(fw,g2)) < ¢(F(M(w, 2))) < F(r(w, 2)))

a contradiction. Therefore w = z and w is a common fixed point. By the preceding

argument it is clear that w is unique. a
Corollary 1. Let X be a set with a symmetric r. Suppose that f,g,

S, T are selfmaps of X such that {f, S} and {g,T} are owc. If

F(r(fz,gy)) < $(F(m(z,y))), (2)

for each xz,y € X, F € F[0,A) and ¢ € V[0, F(A—0)), where A=D if D = co
and A> D if D < oo, and

m(z,y) := max {r(Sz, Ty),r(Sz, fz),r(Ty, gy), [r(Sz, gy) + r(Ty, f)]/2},

and 0 < h < 1, then f,g,S,T have a unique common fized point.

Proof. Since (2) is a special case of (1), the result follows immediately from
Theorem 1. a

In proving fixed point theorems for four maps, step one is by far the most
difficult part of the proof. In this paper we have imposed the condition owc, which
automatically gives the result of step one. Other authors have circumvented this
difficulty by hypothesizing a property, known as property (E, A), which implies owc.

Two maps f, S are said to satisfy property (E, A) if there exists a sequence {z,, }
such that lim,, Sz, = lim, fz,, = t for some ¢t € X. Some papers in which this
property has appeared are [1] and [3]. Two maps S and T are said to be pointwise
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R-commuting if, for each z € X there exists an R > 0 such that d(STz,TSx) <
Rd(Sz,Tx). The definition of R—pointwise commuting is equivalent to S and T
commuting at coincidence points; i.e. S and T are weakly compatible.

Corollary 2. Let S and T be two weakly compatible selfmappings of a metric
space (X,d) such that T and S satisfy property (E,A), T(X) C S(X), and

F(d(Sz, Ty)) < F(M(z,y))), (3)
for each x,y € X, F € F[0,A), where A=D if D =00 and A > D if D < oo, and
M (z,y) = max {d(Sz, Sy), [d(Tz, Sz) + d(Ty, Sy)]/2,[d(Ty, Sz) + d(Tz, Sy)]/2}.

If SX or TX is a complete subspace of X, then T and S have a unique common
fized point.

Proof. Condition (3) is a special case of condition (1). Property (E, A) implies
that S and T have owc. The conclusion now follows from Theorem 1. a

Corollary 3. Let (X,d) be a symmetric space with symmetric r and f,S self-
maps of X such that f and S are owc, and

F(r(fz, fy)) < ¢(F(M(z,y))), (4)

for each x,y € X, F € F[0,A) and ¢ € V[0, F(A—0)), where A=D if D = co
and A> D if D < oo, and

M(z,y) = ar(Sz, Sy) + bmax{r(fx, Sz),r(fy, Sy)}
+cmax{r(Sz, Sy),r(Sz, fx),r(Sy, fy)} (5)

for all x,y € X, where a,b,c > 0,a+b+c = 1. Then f and S have a unique
common fized point.
Proof. From (5)

M(z,y) = ar(Sz, Sy) + bmax{r(fz, Sx),r(fy, Sy)}
+emax{r(Sz, Sy),r(Sxz, fx),r(Sy, fy)}
(a+b+ c)max{r(Sz, Sy),r(fz, Sx),r(fy, Sy)}

<
< max{r(Sz, Sy),r(fz, Sx),r(fy, Sy),r(fz, Sy),r(fy, Sx)}.

Thus Condition (4) is a special case of condition (1) when f = g and S = T.
Therefore the result now follows from Theorem 1. a

Theorem 2. Let X be a symmetric space with symmetric r, f,g,S, and T
selfmaps of X and

F(T‘(fx’gy))p) < w(F(Mp(x’y)))a (6)

for each z,y € X, F € F[0,A) and ¢ € V[0, F(A —0)), where A= D if D = c©
and A> D if D < oo, and

My(z,y) = a(r(fo, Ty))? + (1 - a) max { (r(f, S2))"", (r(9y, Ty))",

(r(f, S2)P /2 (f, Ty)V/2, (r(Ty, f2))2(r(S, g9))/2 f, - (7)
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for all z,y € X, where 0 <a <1, andp > 1. If {f,S} and {9, T} are owc, then
f,9,5, and T have a unique common fized point.

Proof. By hypothesis there exist points x and y such that fx = Sz and
gy = Ty. Suppose that fx # gy. Then, from (7)

Mp(z,y) = a(r(fz,gy))’ + (1 — a) max{0,0,0, (r(fz, gy))"} = (r(fz,gy))"

F(r(fz, g9))") < ¢(F(Mp(z,y)))
= (F((r(fz,99))")) < F((r(fz,99))")

a contradiction. Therefore r(fxz, gy) = 0, which implies that fz = gy. Suppose
that there exists another point z such that fz = Sz. Then, using (6) one obtains
fz=8z=g9y =Ty = fx = Sx and hence w = fr = fz is the unique point of
coincidence of f and S. By symmetry there exists a unique point v € X such that
v =gz = Tv. It then follows that w = v, w is a common fixed point of f,g,.S, and
T, and w is unique. O
Define G = {g : R> — R®} such that
(91) ¢ is nondecreasing in the 4th and the 5th variable,
(g2) If u,v,€ RT are such that u < g(v,v,u,u + v,0), or
u < g(v,u,v,u+v,0) or v < g(u, u,v,u+ v,0), or
u < g(v, u,v,u,u~+v), then u < hv,
where 0 < h < 1 is a constant,
(93) If u € R is such that u < §(u,0,0,u,u) or u < §(0,u,0,u,u) or
u < ¢(0,0,u,u,u), then u = 0.
Theorem 3. Let X be a set, r a symmetric on X. Let f,g,S,T be selfmaps of
X satisfying

E(r(fz,g9y)) < g(F(r(Sz, Ty)), F(r(fz,Sx)), F(r(gy, Ty)),
F(r(fz,Ty)), F(r(gy, Sz))), (8)

forallx,y € X, F € F[0,A), where A=D if D =00 and A > D if D < o0, and
g satisfies (g3). If {f,S} and {g, T} are owc, then f,g,S,T have a unique common
fized point.

Proof. By hypothesis there exist points z,y € X such that fx = Sz and
gy = Ty. Suppose that fx # gy. Then, from (8)

F(r(fz,gy)) < g(F(r(fz,9y)),0,0, F(r(fz, gy)), F(r(gy, f))),

which from (g3) implies that F(r(fz,gy)) = 0 and hence r(fx,gy) = 0. Hence
fx = gy. As in the previous theorems it can then be shown that fx is unique and
that u = fx is a common fixed point of the four mappings. Condition (8) implies
uniqueness. O

A control function ® is defined by ® : RT — Rt which satisfies ®(¢t) = 0 iff
t=0.

Theorem 4. Let {f,S} and {g,T} be owc pairs of selfmaps of a space X, with
symmetric r and

F(®(r(fz,9y))) < Y(F(Ms(z,y))), 9)
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for each xz,y € X, F € F[0,A) and ¢y € V[0, F(A —0)), where A= D if D = c©
and A> D if D < oo, and

Ma(w,y) = max { ®(r(Sz, Ty)), ®(r(Sa, f)), &((r(9y, Ty)),

[@(r(fa, Ty)), +@(r(Sz, 9y)))/2 }- (10)

Then f,g,S, and T have a unique common fized point.

Proof. By hypothesis there exist points x,y € X for which fx = Sz and

gy = T'y. Suppose that fz # gy. Then, from (10)

Mg (x,y) := max{®(r(fz, gy)), ®(0), ®(0), ®(r(fz,gy))}

Thus

0 < F(®(r(fz,9y))) < (F(Mas(x,y)))
= (F(@(r(fr,gy))) < F(®(r(fz,gy)),

a contradiction. Therefore

((r(fz,gy)) =0,

which implies that (r(fz,gy) = 0, implying that fx = gy. It then follows that
f,g9,S, and T have a common fixed point. Condition (9) gives uniqueness. O

Acknowledgement

The present version of the paper owes much to the precise and kind remarks of
anonymous referees.

References

[1]

2]

M. AAMRI, D. EL MOUTAWAKIL, Some new common fized point theorems un-
der strict contractive conditions, J. Math. Anal. Appl. 270(2002), 181-188.

M. A. AL-THACGAFI, N.SHAHZAD, Generalized I-nonexpansive selfmaps and
invariant approximations, Acta Math. Sinica 24(2008), 867-876.

A. ALIOUCHE, A common fized point theorem for weakly compatible mappings
in symmetric spaces satisfying a contractive condition of integral type, J. Math.
Anal. Appl. 322(2006), 796-802.

I. BeEG, M. ABBAS, Coincidence point and invariant approximation for map-
pings satisfying generalized weak contractive condition, Fixed Point Theory and
Applications, 2006, Article ID 74503, pages 1-7.

P.Z. DAFFER, H. KANEKO, Applications of f-contraction mappings to nonlin-
ear integral equations, Bull. Inst. Math. Acad. Sinica 22(1994), 169-174.

G. Juncck, Commuting mappings and fized points, Amer. Math. Monthly
73(1976), 261-263.



[7]

FIXED POINT THEOREMS FOR OWC MAPS 301

G. JuNGCK, Compatible mappings and common fized points, Int. J. Math. &
Math. Sci., 9(1986), 771-779.

G. JuNnGek, Common fized points for noncontinuous nonself maps on non-
metric spaces, Far East J. Math. Sci. 4(1996), 19-215.

G.JUNGCK, B.E.RHOADES, Fized point theorems for occasionally weakly
compatible mappings, Fixed Point Theory 7(2006), 287-296.

R. KANNAN, Some results on fized points, Bull. Calcutta Math. Soc. 60(1968),
71-76.

R. P.PanT, Common fixed point of contractive maps, J. Math. Anal.Appl.
226(1998), 251-258.

B. E. RHOADES, A comparison of various definitions of contractive mappings,
Trans. Amer. Math. Soc. 26(1977), 257-290.

B. E. RHOADES, Two fized point theorems for mappings satisfying a general
contractive condition of integral type, Int. J. Math. Math. Sci. 63(2003), 4007-
4013.

K.P.R.SasTrY, S. V.R.NAIDU, G.V.R.BABU, G. A. NAIDU, Generaliza-
tion of common fized point theorems for weakly commuting maps by altering
distances, Tamkang J. Math. 31(2000), 243-250.

S. SESSA, On a weak commutativity condition of mappings in fixed point con-
siderations, Publ. Inst. Math. 32(1982), 149-153.

P. VisavaraJu, B. E. RHOADES, R. MOHANRAJ, A fized point theorem for a
pair of maps satisfying a general contractive condition of integral type, Int. J.
Math. Math. Sci. 15(2005), 2359-2364.

X. ZHANG, Common fized point theorems for some new generalized contractive
type mappings, J. Math. Anal. Appl. 333(2007), 780-786.



